

Test report No.: KES-SR-17T0001-R1 Page (1) of (22)

SAR EVALUATION REPORT

Equipment under test Dual-mode Baby Monitor

Model name SEM-3053WN

FCC ID NLMSEM3053WN

Applicant Hanwha Techwin Co., Ltd.

Manufacturer RDI Technology (Shenzhen) Co., Ltd.

Date of test(s) 2017.01.05, 2017.01.25

Date of issue 2017.01.25

Issued to

Hanwha Techwin Co., Ltd.

1204, Changwon-daero, Seongsan-gu, Changwon-si, Gyeongsangnam-do, South Korea Tel: +82-70-7147-8361 / Fax: +82-31-8108-3717

Issued by

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,14057, Korea 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do,12658, Korea Tel.: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
Ah	ACO
Wi-han Jeong Test engineer	Jeff Do Technical manager

Test report No .: KES-SR-17T0001-R1 Page (2) of (22)

Revision history

Revision	Date of issue	Test report No.	Description
-	2017.01.10	KES-SR-17T0001	Initial
1	2017.01.25	KES-SR-17T0001-R1	Average power is re-measured

KES Co., Ltd. C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Test report No .: KES-SR-17T0001-R1 Page (3) of (22)

TABLE OF CONTENTS

1.	General in	nformation	4		
	1.1.	EUT description	4		
	1.2.	Accessories of EUT	4		
	1.3.	Highest SAR summary	4		
	1.4.	Guidance applied	5		
	1.5.	Test conditions	5		
	1.6.	Test reduction procedure	5		
	1.7.	SAR definition.	8		
2.	SAR mea	surement system	9		
	2.1.	Robot	.10		
	2.2.	Probe	.10		
	2.3.	Data Acquisition Electronics (DAE)	. 11		
	2.4.	Phantoms			
	2.5.	Device holder	.12		
3.	SAR mea	surement procedure	. 13		
4.		nulating liquids			
5.	System ve	erification	.16		
	5.1.	Procedure	.16		
	5.2.	System verification	.16		
6.	RF expos	ure limits	. 17		
7.	Test resul	ts summary	. 18		
	7.1.	RF conducted power	. 18		
	7.1.1	. Power measurement procedures	. 18		
	7.1.2		. 18		
	7.1.3		. 18		
	7.2.	SAR results	. 19		
	7.2.1	. SAR measurement results	. 19		
8.	Measuren	nent equipment	.20		
9.	D. Measurement Uncertainty				
App	Appendix list				
	Appendix	A. DASY5 report	. 22		
	Appendix B. Calibration certificate				

1. General information

Applicant:	Hanwha Techwin Co., Ltd.		
Applicant address:	1204, Changwon-daero, Seongsan-gu, Changwon-si		
	Gyeongsangnam-do, South	Korea	
Test site:	KES Co., Ltd.		
Test site address:	C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,14057, Korea		
	473-29, Gayeo-ro, Yeoju-si	, Gyeonggi-do, 12658, Korea	1
Model:	SEM-3053WN		
FCC ID:	NLMSEM3053WN		
Test device serial No.:	Production	Pre-production	Engineering
Application purpose:	☑ Original grant	Class I permissive change	Class II permissive change

1.1. EUT description

Equipment under test	Dual-mode Baby Monitor
Frequency range	2408 MHz ~ 2468 MHz
Modulation technique	FHSS
Type of Modulation	GFSK
Number of channels	16
Antenna specification	Antenna type: Dipole, Peak gain: 2.0 dBi
Power source	DC 3.7 V (Rechargeable Battery)
The FUT battery must l	he fully charged and checked periodically during the test t

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

1.2. Accessories of EUT

Accossory	Description	Other	
Accessory	N/A	Standard	

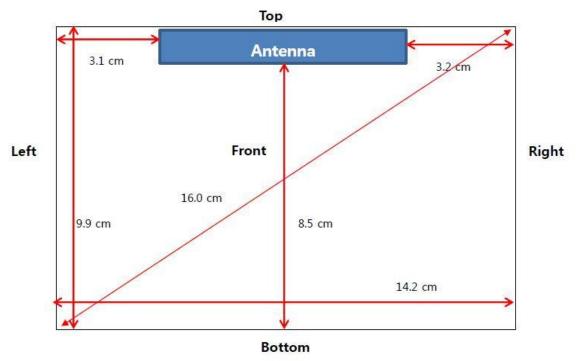
1.3. Highest SAR summary

Equipment class	Frequency band	Tissue type	Reported SAR value 1g-SAR (W/kg)
DSS	2.4 GHz	Body	0.149

Notes:

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications

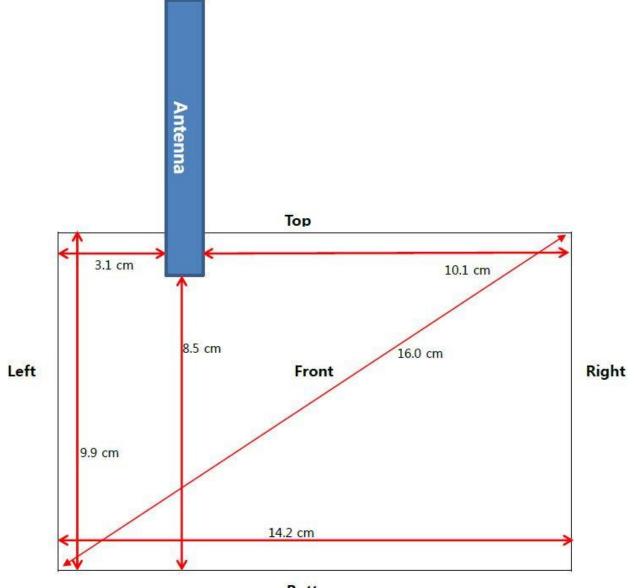
1.4. Guidance applied


The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- · IEEE 1528-2013
- FCC KDB Publication 865664 D01 v01r04 (SAR measurement up to 6 GHz)
- FCC KDB Publication 865664 D02 v01r02 (SAR reporting)
- FCC KDB Publication 447498 D01 v06 (General SAR guidance)
- FCC KDB Publication 941225 D07 v01r02 (UMPC Mini Tablet)

1.5.	Test	conditions
------	------	------------

Ambient temperature	(22 ± 2) °C	
Tissue simulating liquid	(22 ± 2) °C	
Humidity	$(55 \pm 5) \%$ R.H.	


1.6. Test reduction procedure

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No.: KES-SR-17T0001-R1 Page (6) of (22)

Bottom

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

SAR Test Exclusion Thresholds for 100MHz - 6GHz and ≤ 50 mm

For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following: [(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR, 30 where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation31
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step

Mode	Condition	Front side (mm)	Rear Side (mm)	Top side (mm)	Bottom side (mm)	Left side (mm)	Right side (mm)
FHSS Max Target	Antenna distance	9	10	0	85	31	32
power: 18.39dBm	SAR exclusion threshold	11.9	10.71	3.35	3.45	21.41	1.26
(69.02 mW)	SAR Test	Measure	Measure	Measure	Exempt note1	Exempt note1	Exempt note1

Note:

- 1. According to 941225 D07 UMPC Mini Table, UMPC mini-tablet devices must be tested for 1-g SAR on all surfaces and side edges with a transmitting antenna located at \leq 25 mm from that surface or edge.
- 2. According to 447498 D01 4.3.1 Standalone SAR exclusion considerations formula, It's less than 3.0 for 1-g SAR, so it's possible to exclude on bottom, left, right side.

Test report No.: KES-SR-17T0001-R1 Page (8) of (22)

1.7. SAR definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Figure 1).

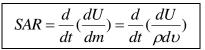


Figure 1. SAR Mathematical equation

SAR is expressed in units of Watts per Kilogram(W/kg)

$$SAR = \frac{\sigma E^2}{\rho}$$

Where:

 σ = Conductivity of the tissue-simulating material (S/m)

 ρ = Mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

Note:

The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do, 14057, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-SR-17T0001-R1 Page (9) of (22)

2. SAR measurement system

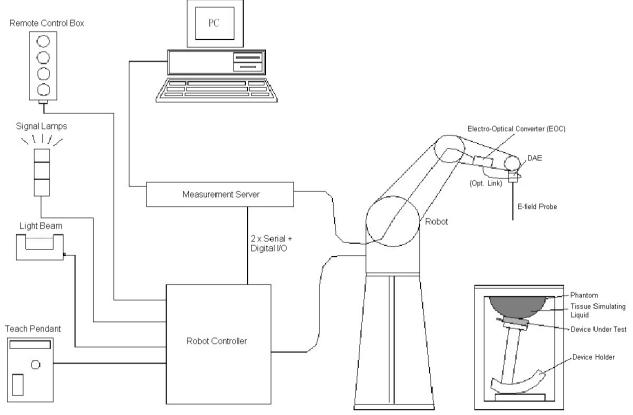


Figure 2. SPEAG DASY system configuration

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- · A standard high precision 6-axis robot with controller, a teach pendant and software
- · A data acquisition electronic (DAE) attached to the robot arm extension
- · A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical s ignals
- A measurement server performs the time critical tasks such as signal filtering, control of th e robot operation and fast movement interrupts.
- · A probe alignment unit which improves the accuracy of the probe positioning
- · A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warmin g lamps, etc.
- The SAM twin phantom and/or ELI phantom
- · A device holder
- Tissue simulating liquid
- · Dipole for evaluating the proper functioning of the system

Test report No.: KES-SR-17T0001-R1 Page (10) of (22)

2.1. Robot

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ± 0.035 mm)
- High reliability (industrial design)
- · Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

Figure 3. SPEAG DASY 5

2.2. Probe

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

1		
Model	EX3DV4	
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)	1
Dynamic Range	$10 \ \mu W/g$ to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < $1 \ \mu W/g$)	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	Figure 4. Probe

Test report No.: KES-SR-17T0001-R1 Page (11) of (22)

2.3. Data Acquisition Electronics (DAE)

Model	DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement	-100 to +300 mV (16 bit resolution and two range settings: 4	De la
Range	mV, 40 0mV)	And the second s
Input Offset Voltage ± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)		
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	Figure 5. DAE

2.4. Phantoms

Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	$2 \pm 0.2 \text{ mm} (6 \pm 0.2 \text{ mm at ear point})$	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	Figure 6. Twin SAM
Filling Volume	approx 25 liters	

Model	ELI	
Construction	Phantom for compliance testing of handheld and body- mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	Figure 7. ELI
Filling Volume	approx 30 liters	

Test report No .: KES-SR-17T0001-R1 Page (12) of (22)

2.5. Devic	e holder	
Model	Mounting device	
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	РОМ	Figure 8. Mounting device
Model	Laptop extensions kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	Figure 9. Laptop extensions kit

3. SAR measurement procedure

Step 1: Power reference measurement

The power reference measurement and power reference measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2 and 3: Area scan & zoom scan procedures

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the zoom scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1 g and 10 g.

			\leq 3 GHz	> 3 GHz		
Maximum distance from (geometric center of pr			5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle surface normal at the m			30° ± 1°	20° ± 1°		
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan sp	atial resolu	ution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test d measurement point on the test	on, is smaller than the above, nust be \leq the corresponding evice with at least one		
Maximum zoom scan s	patial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$ \begin{array}{c} \leq 2 \ {\rm GHz:} \leq 8 \ {\rm mm} \\ 2 - 3 \ {\rm GHz:} \leq 5 \ {\rm mm} \end{array} & \begin{array}{c} 3 - 4 \ {\rm GHz:} \leq 5 \ {\rm mm} \end{array} \\ \begin{array}{c} 4 - 6 \ {\rm GHz:} \leq 4 \ {\rm mm} \end{array} $			
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	maded	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closes to phantom surface		\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
Surrace	grid	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1)$			
Minimum zoom scan volume x, y, z			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Figure 10. Area and zoom scan resolutions per FCC KDB Publication 865664 D01v01r04

Step 4: Power drift measurement

The power drift measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The power drift measurement gives the field difference in dB from the reading conducted within the last power reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No.: KES-SR-17T0001-R1 Page (15) of (22)

4. Tissue simulating liquids

For the measurement of the field distribution inside the phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in figure 11.

Figure 11. Liquid height photo

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent dielectric probe kit and an Agilent network analyzer.

The following table shows the measuring results for simulating liquid.

Frequency (Mz)	Tissue type	Liquid temp.(°C)	Parameters	Target value	Measured value	Deviation (%)	Limit (%)	Data
2450	Body	22.3	Permittivity (ɛr)	52.7	52.693	-0.01	±5	2017.01.05
2430	Бойу	22.5	Conductivity (σ)	1.95	1.958	0.41	±5	2017.01.05
	22.3	Permittivity (ɛr)	52.7	52.807	0.20	±5	2017.01.05	
2408	Body	22.5	Conductivity (σ)	1.95	1.892	-2.97	±5	2017.01.05
2440	Dody	Body 22.3	Permittivity (ɛr)	52.7	52.731	0.06	±5	2017.01.05
2440	Бойу		Conductivity (σ)	1.95	1.939	-0.56	±5	2017.01.05
2468	Body	Body 22.3	Permittivity (ɛr)	52.7	52.509	-0.36	±5	2017.01.05
2408			Conductivity (σ)	1.95	1.976	1.33	±5	2017.01.05

5. System verification

5.1. Procedure

SAR measurement was prior to assessment, the system is verified to the ± 10 % of the specifications at each frequency band by using the system verification kit.

- Cabling the system, using the verification kit equipment.
- Generate about 250 mW input level from the signal generator to the dipole antenna.
- Dipole antenna was placed below the flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

Note;

SAR verification was performed according to the FCC KDB 865664 D01v01r04.

5.2. System verification

Frequency (Mz)	Tissue type	Probe (S/N)	Antenna (S/N)	1 W Target SAR _{1g} (W/kg)	Measured SAR ₁₂ (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation (%)	Limit (%)	Data
2450	Body	3879	896	49.5	12.1	48.4	-2.22	±10	2017.01.05

Test report No.: KES-SR-17T0001-R1 Page (17) of (22)

6. **RF** exposure limits

Uncontrolled environment

Uncontrolled environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled environment

Controlled environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

	Uncontrolled environment general population (W/kg) or (IW/g)	Controlled environment occupational (W/kg) or (mW/g)
Spatial peak SAR head	1.60	8.00
Spatial average SAR whole body	0.08	0.40
Spatial peak SAR hands, feet, ankles, wrists	4.00	20.00

Figure 12. RF exposure limits

7. Test results summary

7.1. **RF** conducted power

7.1.1. Power measurement procedures

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 b) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not correct one available on the device to support conducted power measurement, such as FRS and certain Part 15. transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

7.1.2. **RF conducted power**

Mode	Frequency (Mb)	Channel	Measured Average power (dBm)
GFSK	2 408	1	18.39
GFSK	2 440	9	18.25
GFSK	2 468	16	17.87

7.1.3. Target power and Tune-up limits

Mode	Frequency (Mz)	Channel	Tune-up Power(dBm)	Tune-up limits(dBm)
GFSK	2 408	1	18.0	19.0
GFSK	2 440	9	18.0	19.0
GFSK	2 468	16	18.0	19.0

Note:

1. The device operates using the following maximum output power specifications. The reported SAR is measured SAR value adjusted for maximum output power tolerance.

2. Tune up tolerance is ± 1.0 dB.

Test report No.: KES-SR-17T0001-R1 Page (19) of (22)

7.2. SAR results7.2.1. SAR measurement results

		EUT position			Dista	Power(dBm)		Tune-up	Duty	Duty	SAR _{1g} (W/kg)	
Plot No.	Antenn a		Frequency (MHz)	Ch.	nce (mm)	Meas ured power	Tune up limit	Scaling Factor	Cycle (%)	Cycle Scaling Factor	Measured SAR	Scaled SAR
1	Folded	Тор	2408	1	5	18.39	19.0	1.15	83	1.21	0.04	0.056
2	Folded	Front	2408	1	5	18.39	19.0	1.15	83	1.21	0.011	0.015
3	Folded	Rear	2408	1	5	18.39	19.0	1.15	83	1.21	0.015	0.021
4	Unfolde d	Тор	2408	1	5	18.39	19.0	1.15	83	1.21	0.011	0.015
5	Unfolde d	Front	2408	1	5	18.39	19.0	1.15	83	1.21	0.107	0.149
6	Unfolde d	Rear	2408	1	5	18.39	19.0	1.15	83	1.21	0.032	0.045

Note:

- 1. The test data reported are worst case SAR values according to test procedure specified in IEEE 1528-2003,FCC KDB publication 865664 D01v01r04 and 447498 D01v06.
- 2. All mode of operation were investigated and worst case results are reported.
- 3. Battery is fully charged at the beginning of the SAR measurements.
- 4. Liquid tissue depth was at least 15 cm for all frequencies.
- 5. The manufacturer has confirmed that device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 6. According to the FCC KDB publication 865664 D01v01r04, variability SAR tests are required if the measured SAR results for the frequency band are more than 0.8 W/kg.
- 7. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB publication 447498 D01v06.
- 8. According to the FCC KDB publication 447498 D01, Testing of other required channels with in the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the midband or highest output power channel is ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.
- 9. According to the FCC KDB publication 941225 D07, at 5 mm separation from a flat phantom, for the data modes, wireless technologies and frequency bands supported by the device to determine SAR compliance. When 1-g SAR is tested at 5 mm, 10-g SAR is not required.
- 10. When duty cycle is non-100% the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)".
- 11. Scaled $SAR(W/kg) = Measured SAR[W/kg] \times Duty cycle Scaling Factor \times Tune up Scaling Factor.$

Test report No.: KES-SR-17T0001-R1 Page (20) of (22)

8. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Stäubli Robot Unit	Stäubli	TX60L	F15/5Y7QA1/A/01	N/A	N/A
Data Acquisition Electronics	SPEAG	DAE4	1460	1 year	2017.05.30
E-Field Probe	SPEAG	EX3DV4	3879	1year	2017.08.31
Electro Optical Converter	SPEAG	EOC60	1096	N/A	N/A
2mm Oval Phantom ELI5	SPEAG	QD OVA 003 AA	2036	N/A	N/A
Dipole Antenna	SPEAG	D2450V2	896	2years	2018.05.24
S-Parameter Network Analyzer	Agilent	8753ES	MY40000210	1 year	2017.07.24
Calibration Kit	Agilent	85033D	3423A02429	N/A	N/A
EPM Series Power Meter	HP	E4419B	GB37290599	1 year	2017.07.04
E-Series AVG Power Sensor	HP	E9300H	MY41495967	1 year	2017.07.04
E-Series AVG Power Sensor	HP	E9300H	US39215405	1year	2017.07.04
Power Meter	Anritsu	ML2495A	1438001	1year	2017.01.25
Pulse Power Sensor	Anritsu	MA2411B	1339205	1year	2017.01.25
RF Power Amplifier	None	EMPOWER	1030	1 year	2017.07.04
Dual Directional Coupler	HP	11692D	1212A03523	1 year	2017.07.04
Vector Signal Generator	R&S	SMBV100A	256397	1 year	2017.07.04
Signal Analyzer	R&S	FSV30	101389	1 year	2017.01.25
Hygro-Thermometer	BODYCOM	BJ5478	N/A	1 year	2017.07.05
Dielectric Probe Kit	Agilent	85070E	MY44300696	N/A	N/A

Test report No.: KES-SR-17T0001-R1 Page (21) of (22)

9. Measurement Uncertainty

DASY5 Uncertainty Budget										
Uncertainty Component										
Measurement system										
Probe calibration $(k = 1)$	6.30	Ν	1.00	1.00	6.30	×				
Axial isotropy	0.50	R	1.73	0.70	0.20	×				
Hemispherical isotropy	2.60	R	1.73	0.70	1.05	×				
Boundary effect	0.80	R	1.73	1.00	0.46	∞				
Linearity	0.60	R	1.73	1.00	0.35	∞				
System detection limits	0.25	R	1.73	1.00	0.14	×				
Readout electronics	1.00	R	1.73	1.00	0.58	∞				
Response time	0.00	R	1.73	1.00	0.00	∞				
Integration time	2.60	R	1.73	1.00	1.50	∞				
RF ambient conditions—noise	3.00	R	1.73	1.00	1.73	∞				
RF ambient conditions—reflections	3.00	R	1.73	1.00	1.73	∞				
Probe positioner mechanical tolerance	1.50	R	1.73	1.00	0.87	∞				
Probe positioning with respect to phantom shell	2.90	R	1.73	1.00	1.67	∞				
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	1.00	R	1.73	1.00	0.58	∞				
Test sample positioning	2.30	N	1.00	1.00	2.30	9				
Device holder uncertainty	3.60	N	1.00	1.00	3.60	5				
Output power variation -SAR drift measurement	5.00	R	1.73	1.00	2.89	∞				
SAR scaling	0.00	R	1.73	1.00	0.00	∞				
Phantom shell uncertainty—shape, thickness, and permittivity	4.00	R	1.73	1.00	2.31	∞				
Uncertainty in SAR correction for deviations in permittivity and conductivity	1.90	R	1.73	1.00	1.10	∞				
Liquid conductivity measurement	0.28	N	1.00	0.64	0.18	5				
Liquid permittivity measuremen	0.09	N	1.00	0.60	0.05	5				
Liquid conductivity-target	5.00	R	1.73	0.64	1.85	∞				
Liquid permittivity—target	5.00	R	1.73	0.60	1.73	∞				
Combined st	tandard uncerta	ainty(RSS)			± 9.65 %	8 256.084				
Expa	anded uncertair	nty			± 19.30 %	<i>K</i> =2				

Test report No.: KES-SR-17T0001-R1 Page (22) of (22)

Appendix list Appendix A. DASY5 report Appendix B. Calibration certificate