5.10 RF Exposure

5.10.1 Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: RF exposure is calculated.

Ellines for Haximann refinissive Exposure: Nr. exposure is ediculated:					
Fraguency Dange	Electric Field	Magnetic Field	Power Density	Averaging Time	
Frequency Range	Strength [V/m]	Strength [A/m]	[mW/cm ²]	[minute]	
Limits for General Population / Uncontrolled Exposure					
0.3 ~ 1.34	614	1.63	*(100)	30	
1.34 ~ 30	824 /f	2.19/f	*(180/f ²)	30	
30 ~ 300	27.5	0.073	0.2	30	
300 ~ 1500	/	/	f/1500	30	
1500 ~ 15000	/	/	1.0	30	

f=frequency in MHz, *= plane-wave equivalent power density

MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2 \quad (\Rightarrow R = \sqrt{PG/4\pi S})$$

S=power density [mW/cm²]

P=Power input to antenna [mW]

G=Power gain of the antenna in the direction of interest relative to an isotropic radiator R= distance to the center of radiation of the antenna [cm]

EUT: Maximum peak output power = 3.573[mW Antenna gain=0.946(=-2.39[dBi])	Maximum peak output power = 3.573[mW](= 5.53 dBm) Antenna gain=0.946(=-2.39[dBi])			
100 mW, at 20 cm from an antenna 6[dBi]	$S = PG/4\pi R^2 = 100 \times 3.98 / (4 \times \pi \times 400)$ = 0.0792 [mW/cm ²] < 1.0 [mW/cm ²]			
3.573 mW, at 20 cm from an antenna -2.39[dBi]	$S = PG/4\pi R^2 = 0.0007 \text{ [mW/cm}^2] < 1.0 \text{ [mW/cm}^2]$			
3.573 mW, at 2.5 cm from an antenna -2.39[dBi]	$S = PG/4\pi R^2 = 0.0431 \text{ [mW/cm}^2] < 1.0 \text{ [mW/cm}^2]$			

5.10.2 RF Exposure Compliance Issue

The information should be included in the user's manual:

This appliance and its antenna must not be co-located or operation in conjunction with any other antenna or transmitter. A minimum separation distance of 20 cm must be maintained between the antenna and the person for this appliance to satisfy the RF exposure requirements.

Page: 38 of 39