FCC TEST REPORT

CATEGORY: Portable

PRODUCT NAME: BlueEar

FCC ID. : NLFHSBTA

FILING TYPE: Certification

BRAND NAME: Billionton Systems Inc.

MODEL NAME: HSBTA-X

APPLICANT: Billionton Systems Inc.

No. 21, Sui-LihRd., Hsin-Chu, 300, Taiwan

MANUFACTURER: Same as applicant

ISSUED BY: SPORTON INTERNATIONAL INC.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,

Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA, NVLAP or any agency of U.S. government.

The test equipment used to perform the test are calibrated and traceable to NML/ROC or NIST/USA.

Vice General Manager

SPORTON International Inc.

Lab Code: 200079-0

Table of Contents

History of this test report	ii
CERTIFICATE OF COMPLIANCE	iii
1.1. Applicant	1
1.2. Manufacturer 1.3. Basic Description of Equipment under Test 1.4. Features of Equipment under Test 1.5. Antenna Description 1.6. Table for Carrier Frequencies	1 1 2
2. Test Configuration of the Equipment under Test	3
2.1. Connection Diagram of Test System 2.2. The Test Mode Description	3
3. General Information of Test	4
3.1. Test Facility	4
Standards for Methods of Measurement	4
3.6. Test Distance	4
4. List of Measurements	5
4.1. Summary of the Test Results	5
5. Test Result	6
5.1. Test of Hopping Channel Bandwidth	
5.2. Test of Hopping Channel Separation	
5.3. Test of Number of Hopping Frequency	
5.5. Maximum Peak Output Power	
5.6. Test of Band Edges Emission	
5.7. Test of AC Power Line Conducted Emission	21
5.8. Test of Spurious Radiated Emission	
5.9. Antenna Requirements	30
6. List of Measuring Equipments Used	31
Appendix A. Photographs of EUT	A1 ~ A10

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

Original Report Issue Date: Oct. 22, 2004

Report No.: FR4O0701

FCC ID: NLFHSBTA Issued on Oct. 22, 2004

History of this test report

ttachment No.	Issue Date	Description

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

CERTIFICATE OF COMPLIANCE

with

47 CFR FCC Part 15 Subpart C (Section 15.247)

PRODUCT NAME: BlueEar

BRAND NAME: Billionton Systems Inc.

MODEL NAME: HSBTA-X

APPLICANT: Billionton Systems Inc.

No. 21, Sui-LihRd., Hsin-Chu, 300, Taiwan

MANUFACTURER : Same as applicant

I **HEREBY** CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4 - 2003 and all test are performed according to 47 CFR FCC Part 15. Testing was carried out on Oct. 15, 2004 at SPORTON International Inc. LAB.

Dr. Alan Lane
Vice General Manager
SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

Report No.: FR4O0701

Page No.

: 1 of 32

1. General Description of Equipment under Test

1.1. Applicant

Billionton Systems Inc.

No. 21, Sui-LihRd., Hsin-Chu, 300, Taiwan

1.2. Manufacturer

Same as applicant

1.3. Basic Description of Equipment under Test

This product is a earphone with Bluetooth wireless solution. The technical data has been listed on section "Features of Equipment under Test".

1.4. Features of Equipment under Test

Items		Description
Type of Modulation	:	GFSK
Number of Channels	:	79
Frequency Band	:	2400MHz ~ 2483.5MHz
Carrier Frequency	:	See section 1.6 for details
Data Rate	:	1Mbps
Channel Bandwidth	:	1
Max. Peak Output Power (Conducted)	:	2.50dBm
Antenna Type	:	See section 1.5 for details
Function Type	:	Transceiver
Testing Duty Cycle	:	44.80%
Test Power Source	:	3.70V AC (battery)
Temperature Range (Operating)	:	-10 ~ 55 ℃

SPORTON International Inc.

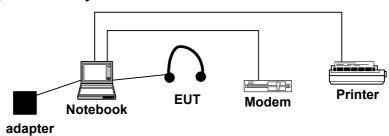
TEL: 886-2-2696-2468 Issued Date: Oct. 22, 2004 FAX: 886-2-2696-2255

1.5. Antenna Description

1 types of antenna are filed in this project.

No.	Antenna Type	Gain (dBi)
1	Chip Antenna	1.00dBi @2.4GHz

1.6. Table for Carrier Frequencies


Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
00	2402 MHz	20	2422 MHz	40	2442 MHz	60	2462 MHz
01	2403 MHz	21	2423 MHz	41	2443 MHz	61	2463 MHz
02	2404 MHz	22	2424 MHz	42	2444 MHz	62	2464 MHz
03	2405 MHz	23	2425 MHz	43	2445 MHz	63	2465 MHz
04	2406 MHz	24	2426 MHz	44	2446 MHz	64	2466 MHz
05	2407 MHz	25	2427 MHz	45	2447 MHz	65	2467 MHz
06	2408 MHz	26	2428 MHz	46	2448 MHz	66	2468 MHz
07	2409 MHz	27	2429 MHz	47	2449 MHz	67	2469 MHz
80	2410 MHz	28	2430 MHz	48	2450 MHz	68	2470 MHz
09	2411 MHz	29	2431 MHz	49	2451 MHz	69	2471 MHz
10	2412 MHz	30	2432 MHz	50	2452 MHz	70	2472 MHz
11	2413 MHz	31	2433 MHz	51	2453 MHz	71	2473 MHz
12	2414 MHz	32	2434 MHz	52	2454 MHz	72	2474 MHz
13	2415 MHz	33	2435 MHz	53	2455 MHz	73	2475 MHz
14	2416 MHz	34	2436 MHz	54	2456 MHz	74	2476 MHz
15	2417 MHz	35	2437 MHz	55	2457 MHz	75	2477 MHz
16	2418 MHz	36	2438 MHz	56	2458 MHz	76	2478 MHz
17	2419 MHz	37	2439 MHz	57	2459 MHz	77	2479 MHz
18	2420 MHz	38	2440 MHz	58	2460 MHz	78	2480 MHz
19	2421 MHz	39	2441 MHz	59	2461 MHz		

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 2 of 32 Issued Date : Oct. 22, 2004

ssued on Oct. 22, 2004 Report No.: FR4O0701

2. Test Configuration of the Equipment under Test

2.1. Connection Diagram of Test System

2.2. The Test Mode Description

Spurious emission below 1GHz and AC Conduction test is independent of channel selection, so only channel 78 with GFSK modulation was tested.

2.3. Description of Test Supporting Units

Support unit	Brand	Model No.	Serial No.	FCC ID	Data cable (m)
Notebook	DELL	PP01L	-	DoC	-
Printer	EPSON	STYLUS COLOR 680	SP0016	DoC	-
Modem	ACEEX	CM141	-	DoC	-

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 3 of 32 Issued Date : Oct. 22, 2004

Report No.: FR4O0701

3. General Information of Test

3.1. Test Facility

Test Site Location : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiag, Tao

Yuan Hsien, Taiwan, R.O.C.

: TEL 886-3-327-3456

: FAX 886-3-318-0055

Test Site No : 03CH01-HY / TH01-HY

3.2. Test Conditions

Normal Voltage : 3.70V (battery)

Extreme Voltages : 4.26V and 3.15V (power supply)

Normal Temperature : **20**℃

Extreme Temperature : -10 $^{\circ}$ C and 55 $^{\circ}$ C

3.3. Standards for Methods of Measurement

Here is the list of the standards followed in this test report.

ANSI C63.4-2003

47 CFR Part 15 Subpart C (Section 15.247)

3.4. DoC Statement

This EUT is also classified as a device of computer peripheral Class B which DoC has to be followed. It has been verified according to the rule of 47 CFR part 15 Subpart B, and found that all the requirements has been fulfilled.

3.5. Frequency Range Investigated

Radiated emission test: from 30 MHz to 10th carrier harmonic

3.6. Test Distance

The test distance of radiated emission (30MHz~1GHz) test from antenna to EUT is 3 M The test distance of radiated emission (1GHz~10th carrier harmonic) test from antenna to EUT is 1 M

3.7. Test Software

During testing, Channel & Power Controlling Software: This was provided by the manufacturer and is able to let the test engineer select the operating channel as well as the RF output power. The parameters for channel selection is trying to offer the test engineer the ability to fix the operating channel for testing, both normal data and continuously transmitting modes are allowed, and that for RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Page No. : 4 of 32 TEL: 886-2-2696-2468 Issued Date: Oct. 22, 2004 FAX: 886-2-2696-2255

4. List of Measurements

4.1. Summary of the Test Results

Applied Standard: 47 CFR Part 15 and Part 2

Paragraph	FCC Rule	Description of Test	Result
5.1	15.247	Hopping Channel Bandwidth	Pass
5.2	15.247	Hopping Channel Separation	Pass
5.3	15.247	Number of Hopping Frequency Used	Pass
5.4	15.247	Dwell Time of Each Frequency	Pass
5.5	15.247	Maximum Peak Output Power	Pass
5.6	15.247	Band Edges Emission	Pass
5.7	15.207	AC Power Line Conducted Emission	Pass
5.8	15.209/15.247	Spurious Radiated Emission	Pass
5.9	15.203/15.247	Antenna Requirement	Pass

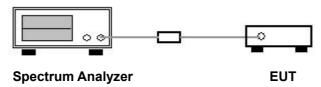
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

FCC ID: NLFHSBTA

Issued on Oct. 22, 2004 Report No.: FR4O0701

5. Test Result

5.1. Test of Hopping Channel Bandwidth


5.1.1. Measuring Instruments

Item 18 of the table is on section 6.

5.1.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 30KHz and VBW to 100KHz.
- 3. The spectrum width with level higher than 20dB below the peak level.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

5.1.3. Test Setup Layout

5.1.4. Test Result: See spectrum analyzer plots below

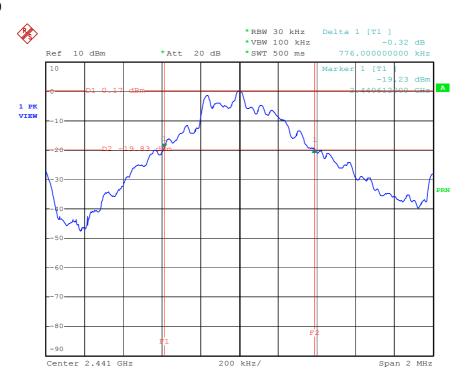
Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 44.80%

Test Engineer: Sam Lee

Modulation Type	Channel	Frequency	20dB Bandwidth	Min. Limit
		(MHz)	(kHz)	(kHz)
GFSK	00	2402 MHz	776.00	25
GFSK	39	2441 MHz	776.00	25
GFSK	78	2480 MHz	776.00	25

Page No. : 6 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004 FAX: 886-2-2696-2255

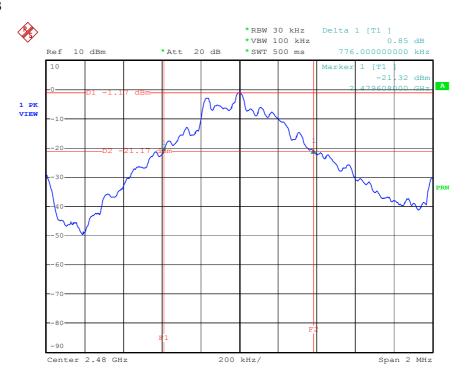

Report No.: FR4O0701

Channel 00

15.OCT.2004 13:25:20 Date:

Channel 39

15.OCT.2004 15:14:01 Date:


Page No. : 7 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004

FAX: 886-2-2696-2255

Report No.: FR4O0701

Channel 78

Date: 15.OCT.2004 15:15:46

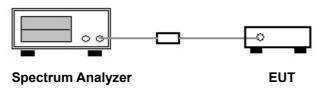
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 8 of 32

Issued Date : Oct. 22, 2004

FCC ID: NLFHSBTA

Issued on Oct. 22, 2004 Report No.: FR4O0701

Test of Hopping Channel Separation


5.2.1. Measuring Instruments

Item 18 of the table is on section 6.

5.2.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 300KHz.
- 3. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

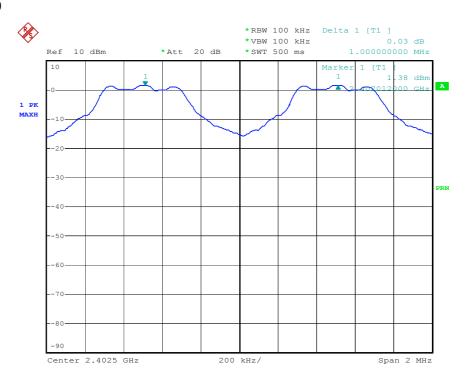
5.2.3. Test Setup Layout

5.2.4. Test Result: See spectrum analyzer plots below

Temperature: 26°C Relative Humidity: 64%

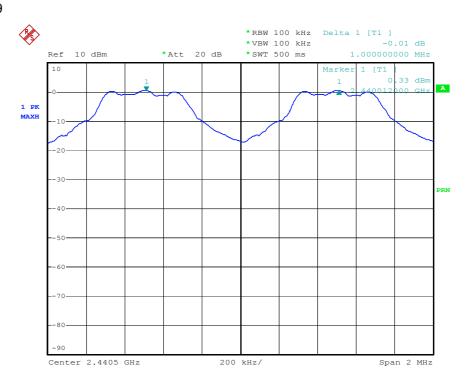
Duty Cycle of the Equipment During the Test: 44.80%

Test Engineer: Sam Lee


Modulation Type	Channel	Frequency	Hopping Channel Separation	Min. Limit
		(MHz)	(kHz)	(kHz)
GFSK	00	2402 MHz	1000	776.00
GFSK	39	2441 MHz	1000	776.00
GFSK	78	2480 MHz	1000	776.00

SPORTON International Inc.

Page No. : 9 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004 FAX: 886-2-2696-2255

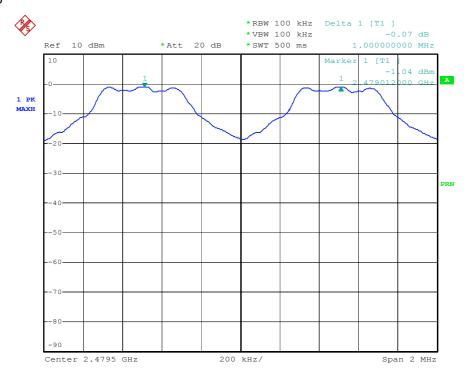

Report No.: FR4O0701

Channel 00

Date: 15.OCT.2004 15:21:12

Channel 39

Date: 15.OCT.2004 15:20:35


Page No. : 10 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004

FAX: 886-2-2696-2255

Report No.: FR4O0701

Channel 78

Date: 15.OCT.2004 15:19:50

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 11 of 32 Issued Date : Oct. 22, 2004

FCC ID: NLFHSBTA

Issued on Oct. 22, 2004 Report No.: FR4O0701

Page No.

: 12 of 32

5.3. Test of Number of Hopping Frequency

5.3.1. Measuring Instruments

Item 18 of the table is on section 6.

5.3.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. The spectrum width with level higher than 20dB below the peak level.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

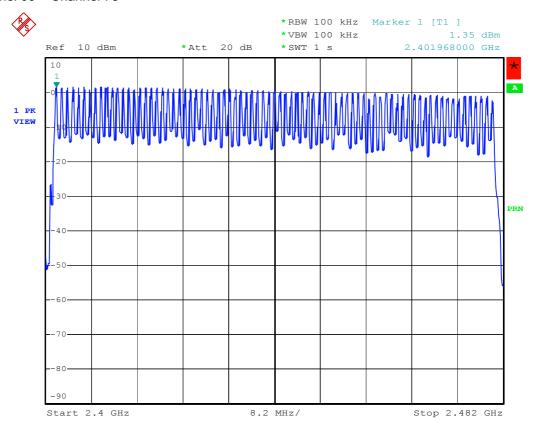
5.3.3. Test Setup Layout

5.3.4. Test Result: See spectrum analyzer plots below

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 44.80%

Test Engineer: Sam Lee


Modulation Type	Channel	Frequency	Number of Hopping Ch.	Min. Limit
		(MHz)	(Channels)	(Channels)
GFSK	00 ~ 78	2402 MHz ~ 2480 MHz	79	75

TEL: 886-2-2696-2468 Issued Date: Oct. 22, 2004 FAX: 886-2-2696-2255

Report No.: FR4O0701

Channel 00 ~ Channel 78

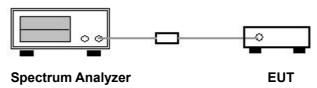
Date: 15.OCT.2004 15:34:10

Page No. : 13 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004 FAX: 886-2-2696-2255

FCC ID: NLFHSBTA

Issued on Oct. 22, 2004 Report No.: FR4O0701

5.4. Test of Dwell Time of Each Frequency


5.4.1. Measuring Instruments

Item 18 of the table is on section 6.

5.4.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 4. Set the EUT for DH5 packet transmitting.
- 5. Measure the maximum time duration, t, of one single pulse.
- 6. DH5 Packet permit maximum 320 hops per second in 79 channels. So, the dwell time is the time duration of the pulse times 128 within 31.6 seconds.

5.4.3. Test Setup Layout

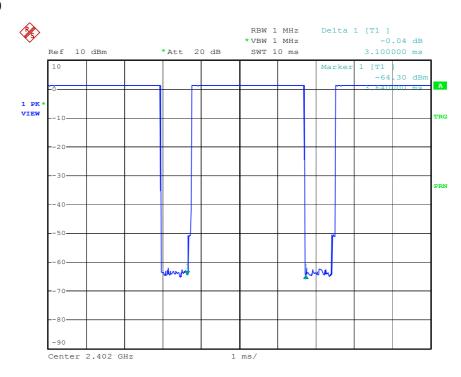
5.4.4. Test Result : See spectrum analyzer plots below

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 44.80%

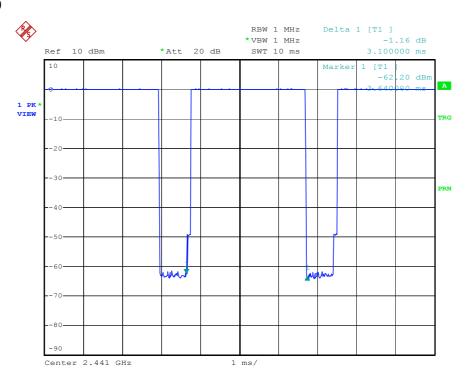
Test Engineer: Sam Lee

Channel	Frequency	Pulse Duration	Dwell Time	Limits
	(MHz)	(ms)	(s)	(s)
00	2402 MHz	3.1000	0.3968	0.4
39	2441 MHz	3.1000	0.3968	0.4
78	2480 MHz	3.1000	0.3968	0.4


SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 14 of 32

Issued Date: Oct. 22, 2004

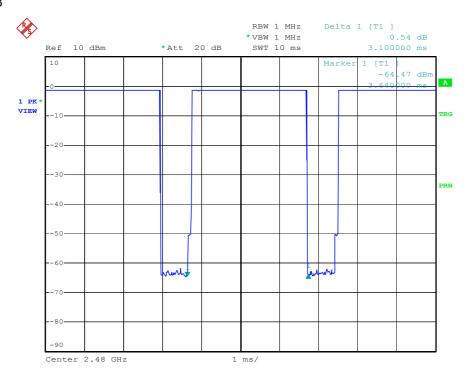

Report No.: FR4O0701

Channel 00

15.OCT.2004 15:37:22 Date:

Channel 39

15.OCT.2004 15:40:09 Date:


Page No. : 15 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004

FAX: 886-2-2696-2255

Report No.: FR4O0701

Channel 78

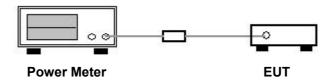
Date: 15.OCT.2004 15:41:01

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

FCC ID: NLFHSBTA

Issued on Oct. 22, 2004 Report No.: FR4O0701

5.5. Maximum Peak Output Power


5.5.1. Measuring Instruments

Item 19, 21 of the table is on section 6.

5.5.2. Test Procedures

- 1. The transmitter output was connected to the peak power meter and recorded the peak value.
- 2. Repeated the 1~4 for the middle and highest channel of the EUT.

5.5.3. Test Setup Layout

5.5.4. Test Result of Conducted Peak Power

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 44.80%

Test Engineer: Sam Lee

Modulation Type	Channel	Frequency	Output Power	Limits
_		(MHz)	(dBm)	(dBm)
GFSK	00	2402 MHz	2.50	30
GFSK	39	2441 MHz	1.50	30
GFSK	78	2480 MHz	0.10	30

The max output power is 2.50 dBm.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 17 of 32 Issued Date : Oct. 22, 2004

5.5.5. Test Result of EIRP Power

Temperature: 26°CRelative Humidity: 64%

• Duty Cycle of the Equipment During the Test: 44.80%

Test Engineer: Sam Lee

Antenna No.	Gain	Modulation	Channel	Frequency	Output Power	Limits
	(dBi)	Type		(MHz)	(dBm)	(dBm)
1	1.00	GFSK	00	2402 MHz	3.5	36
1	1.00	GFSK	39	2441 MHz	2.5	36
1	1.00	GFSK	78	2480 MHz	1.1	36

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 18 of 32 Issued Date : Oct. 22, 2004

Issued on Oct. 22, 2004 Report No.: FR4O0701

5.6. Test of Band Edges Emission

5.6.1. Measuring Instruments

Item 18 of the table is on section 6.

5.6.2. Test Procedures

- 1. The transmitter is set to the lowest channel.
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge.
- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

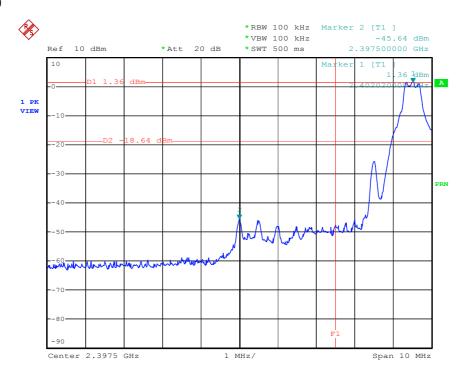
5.6.3. Test Result:

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 44.80%

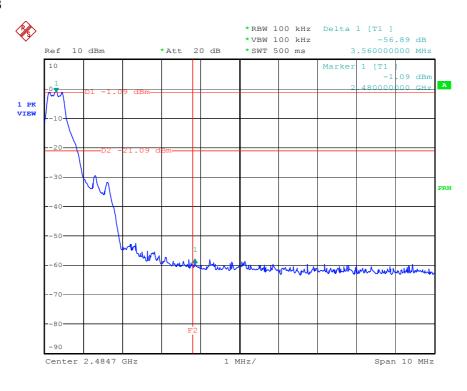
Test Engineer: Sam Lee

Modulation	Test	Freq.	Level*	Margin	Limit	Trace
Туре	Channel	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(PK/AV)
GFSK	00	2386.00	53.77	-20.23	74	PK
GFSK	00	2383.42	41.28	-12.72	54	AV
GFSK	78	2495.25	54.93	-19.07	74	PK
GFSK	78	2495.25	41.40	-12.60	54	AV


Level*: The max field strength in the restricted bands.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 19 of 32

Issued Date : Oct. 22, 2004


Report No.: FR4O0701

Channel 00

Date: 15.OCT.2004 15:11:12

Channel 78

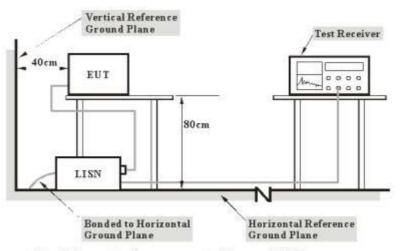
Date: 15.OCT.2004 15:18:02

Page No. : 20 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004 FAX: 886-2-2696-2255

FCC ID: NLFHSBTA

Issued on Oct. 22, 2004 Report No.: FR4O0701

Test of AC Power Line Conducted Emission


5.7.1. Measuring Instruments

Please reference item 1~5 in chapter 6 for the instruments used for testing.

5.7.2. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN)
- 4. All the support units are connected to the other LISNs. The LISN should provides 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Use the Channel & Power Controlling software to make the EUT working on selected channel and expected output power, then use the "H" Patter Generator software to make the supporting equipments stay on working condition.
- 7. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 8. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

5.7.3. Test Setup Layout

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Page No. : 21 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004 FAX: 886-2-2696-2255

FCC ID: NLFHSBTA

Issued on Oct. 22, 2004 Report No.: FR4O0701

5.7.4. Test Result of Conducted Emission

Temperature: 26°CRelative Humidity: 64%Test Engineer: Sky Wu

Line to Ground

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	@0.1505270	56.59	-9.38	65.97	56.48	0.10	0.01	QP
2	@0.1505270	43.49	-12.48	55.97	43.38	0.10	0.01	Average
3	0.1716470	47.70	-17.18	64.88	47.59	0.10	0.01	QP
4	0.1716470	37.24	-17.64	54.88	37.13	0.10	0.01	Average
5	0.2365760	38.10	-24.12	62.22	37.99	0.10	0.01	QP
6	0.2365760	29.65	-22.57	52.22	29.54	0.10	0.01	Average
7	0.9282090	30.09	-25.91	56.00	29.95	0.10	0.04	QP
8	0.9282090	18.88	-27.12	46.00	18.74	0.10	0.04	Average
9	1.890	22.53	-23.47	46.00	22.41	0.10	0.02	Average
10	1.890	32.83	-23.17	56.00	32.71	0.10	0.02	QP
11	4.500	31.06	-24.94	56.00	30.79	0.20	0.07	QP
12	4.500	23.96	-22.04	46.00	23.69	0.20	0.07	Average

Neutral to Ground

			0 ver	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	ф	dВ	
1	0.1577750	52.49	-13.09	65.58	52.38	0.10	0.01	QP
2	@0.1577750	45.17	-10.41	55.58	45.06	0.10	0.01	Average
3	0.2267630	38.66	-23.91	62.57	38.55	0.10	0.01	QP
4	0.2267630	28.29	-24.28	52.57	28.18	0.10	0.01	Average
5	0.4328100	29.65	-27.55	57.20	29.53	0.10	0.02	QP
6	0.4328100	19.31	-27.89	47.20	19.19	0.10	0.02	Average
7	0.9963750	32.95	-23.05	56.00	32.81	0.10	0.04	QP
8	0.9963750	23.72	-22.28	46.00	23.58	0.10	0.04	Average
9	4.410	31.17	-24.83	56.00	30.99	0.11	0.07	QP
10	4.410	23.77	-22.23	46.00	23.59	0.11	0.07	Average
11	16.400	29.45	-30.55	60.00	29.05	0.23	0.17	QP
12	16.400	23.65	-26.35	50.00	23.25	0.23	0.17	Average

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 22 of 32 Issued Date : Oct. 22, 2004

5.7.5. Photographs of Conducted Emission Test Configuration

FRONT VIEW

REAR VIEW

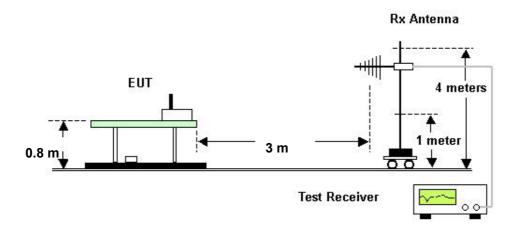
SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 23 of 32

Report No.: FR4O0701

Issued Date : Oct. 22, 2004

5.8. Test of Spurious Radiated Emission


5.8.1. Measuring Instruments

Please reference item 6~17 in chapter 6 for the instruments used for testing.

5.8.2. Test Procedures

- 1. Configure the EUT according to ANSI C63.4.
- 2. The EUT was placed on the top of the turn table 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turn table.
- 4. Power on the EUT and all the supporting units.
- 5. The turn table was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 9. For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 10. If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for above the 1GHz, the reported.
- 11. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.8.3. Test Setup Layout

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 24 of 32

Report No.: FR4O0701

Issued Date : Oct. 22, 2004

Report No.: FR4O0701

5.8.4. Test Results for CH 78 / 2480 MHz (for emission below 1GHz)

Modulation Type: GFSK Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 44.80%

Test Engineer: Hikaru Chan

(A) Polarization: Horizontal

	Freq	Level	Over Limit	Limit Line	Read Level	Probe Factor		Preamp Factor	Remark	Ant Pos	Table Pos
8	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		cm	deg
1	111.940	30.11	-13.39	43.50	45.37	10.73	1.89	27.88	Peak		
2	144.070	26.80	-16.70	43.50	40.18	12.31	2.12	27.81	Peak		
3	190.990 528.000		-12.08 -11.80		41.58 41.65		2.48 4.05	27.72 28.73		===	===
2	835.200	36.67	-9.33	46.00	38.21	21.83	5.25	28.62	Peak		
3	960.800	41.63	-12.37	54.00	41.17	23.03	5.67	28.24	Peak	1555	12000

(B) Polarization: Vertical

	Freq	Level	Over Limit		Read Level	Probe Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	·	cm	deg
1	120.100	27.86	-15.64	43.50	41.86	11.90	1.96	27.86	Peak		
2	144.070	26.97	-16.53	43.50	40.35	12.31	2.12	27.81	Peak		
3	166.510	26.65	-16.85	43.50	38.77	13.31	2.34	27.77	Peak	11000	10000
1	666.400	37.20	-8.80	46.00	40.68	20.60	4.65	28.73	Peak	145	214
2	864.000	36.92	-9.08	46.00	38.39	21.77	5.24	28.48	Peak		
2	960 900	40 64	-12 26	54 00	40 19	23 03	5 67	29 24	Dook		

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 25 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004

FAX: 886-2-2696-2255

Report No.: FR4O0701

Page No.

: 26 of 32

5.8.5. Test Results for CH 00 / 2402 MHz (for emission above 1GHz)

Modulation Type: GFSKTemperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 44.80%

Test Engineer: Hikaru Chan

(A) Polarization: Horizontal

Spurious emission emitted by the EUT is too low to be measured.

(B) Polarization: Vertical

	Freq	Level	Over Limit			Probe Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	\$	cm	deg
1	1996.000	47.55	-6.45	54.00	58.29	27.40	1.51	39.65	Average		
1	2386.000	53.77	-20.23	74.00	23.78	28.27	1.72	0.00	Peak		
1	2383.420	41.28	-12.72	54.00	11.31	28.26	1.71	0.00	Average		

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

TEL: 886-2-2696-2468 Issued Date: Oct. 22, 2004 FAX: 886-2-2696-2255

Report No.: FR4O0701

5.8.6. Test Results for CH 39 / 2441 MHz (for emission above 1GHz)

Modulation Type: GFSK Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 44.80%

Test Engineer: Hikaru Chan

(A) Polarization: Horizontal

Spurious emission emitted by the EUT is too low to be measured.

(B) Polarization: Vertical

	Freq	Level				Probe Factor				Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	B	cm	deg
10	2004 000	42 25	_C 2F	E4 00	EO 44	27 42	1 54	20 65	A	(93/25/53/	6000000

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 27 of 32 TEL: 886-2-2696-2468 Issued Date : Oct. 22, 2004

FAX: 886-2-2696-2255

Report No.: FR4O0701

Page No.

: 28 of 32

5.8.7. Test Results for CH 78 / 2480 MHz (for emission above 1GHz)

Modulation Type: GFSKTemperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 44.80%

Test Engineer: Hikaru Chan

(A) Polarization: Horizontal

Spurious emission emitted by the EUT is too low to be measured.

(B) Polarization: Vertical

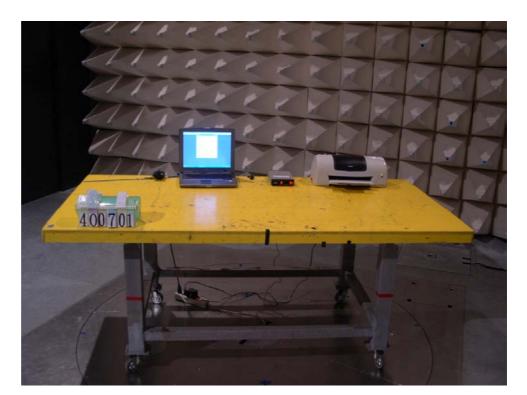
	77 <u>-</u> 247-27			Limit							Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		cm	deg
18	1998 000	47 90	-6 10	54 00	58 63	27 40	1 52	39 65	Averege	154	195

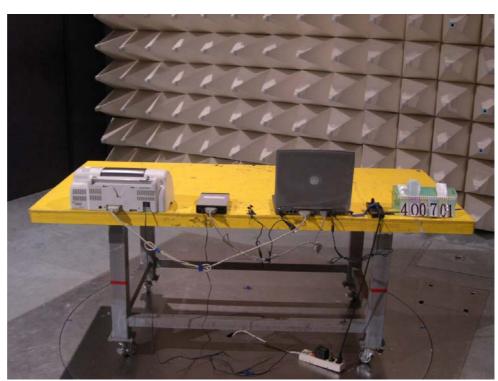
Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

SPORTON International Inc.


TEL: 886-2-2696-2468 Issued Date: Oct. 22, 2004 FAX: 886-2-2696-2255


FCC ID: NLFHSBTA

Issued on Oct. 22, 2004 Report No.: FR4O0701

5.8.8. Photographs of Radiated Emission Test Configuration

FRONT VIEW

REAR VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 29 of 32

Issued Date : Oct. 22, 2004

5.9. Antenna Requirements

5.9.1. Standard Applicable

47 CFR Part15 Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

47 CFR Part15 Section 15.247 (b):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.9.2. Antenna Connected Construction

There is no antenna connector for integral chip antenna. There is no antenna connector for the EUT.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 30 of 32 Issued Date : Oct. 22, 2004

sued on Oct. 22, 2004 Report No.: FR4O0701

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	EMC Receiver	R&S	ESCS 30	100174	9 KHz – 2.75 GHz	Feb. 16, 2004	Conduction (CO04-HY)
2	LISN	MessTec	NNB-2/16Z	2001/004	9 KHz – 30 MHz	Jun. 09, 2004	Conduction (CO04-HY)
3	LISN (Support Unit)	MessTec	NNB-2/16Z	99041	9 KHz – 30 MHz	Apr. 27, 2004	Conduction (CO04-HY)
4	EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
5	RF Cable-CON	UTIFLEX	3102-26886-4	CB044	9KHz~30MHz	Apr. 21, 2004	Conduction (CO04-HY)
6	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2004	Radiation (03CH03-HY)
7	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 31, 2004	Radiation (03CH03-HY)
8	Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Nov. 05, 2003	Radiation (03CH03-HY)
9	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz –200MHz	Jul. 28, 2004	Radiation (03CH03-HY)
10	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz -1GHz	Jul. 28, 2004	Radiation (03CH03-HY)
11	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Dec. 03, 2003	Radiation (03CH03-HY)
12	Amplifier	MITEQ	AFS44	849984	100MHz~26.5GHz	Mar. 26, 2004	Radiation (03CH03-HY)
13	Horn Antenna	EMCO	3115	6821	1GHz – 18GHz	Sep. 11, 2004	Radiation (03CH03-HY)
14	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
15	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
16	Horn Antenna	Schwarzbeck	BBHA9170	154	18GHz~40GHz	Jun. 09, 2004	Radiation (03CH03-HY)
17	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Dec. 05, 2003	Radiation (03CH03-HY)

Calibration Interval of instruments listed above is one year.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 31 of 32

Issued Date : Oct. 22, 2004

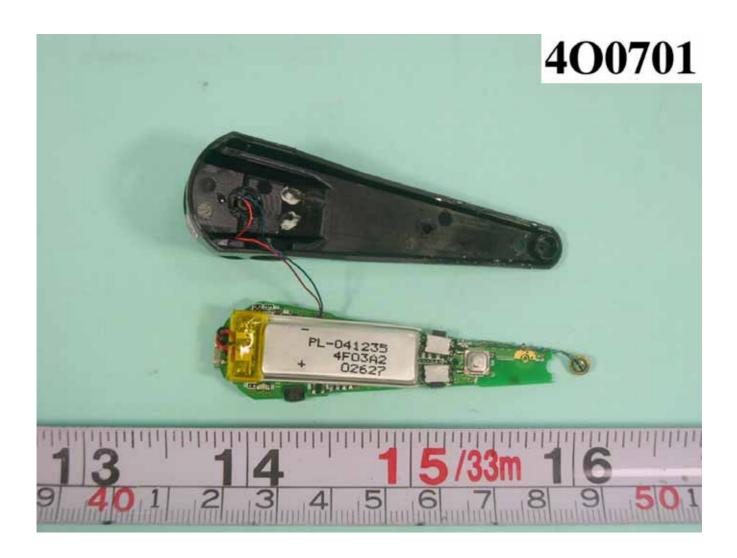
Calibration Items Instrument Manufacturer Model No. Serial No. Characteristics Remark Date Conducted FSP7 838858/014 9KHZ~7GHZ Sep. 02, 2004 18 Spectrum analyzer R&S (TH01-HY) Conducted 19 Power meter R&S **NRVS** 100444 DC~40GHz Jun. 15, 2004 (TH01-HY) Conducted 20 Power sensor R&S NRV-Z55 100049 DC~40GHz Jun. 15, 2004 (TH01-HY) Conducted Jun. 15, 2004 21 Power Sensor R&S NRV-Z32 100057 30MHz-6GHz (TH01-HY) Conducted 22 AC power source HPC HPA-500W HPA-9100024 AC 0~300V Jun. 16, 2004 (TH01-HY) Conducted 23 AC power source G.W. GPC-6030D C671845 DC 1V~60V Nov. 06, 2003 (TH01-HY) Conducted Temp. and **KSON** THS-C3L Sep. 30, 2004 24 612 N/A **Humidity Chamber** (TH01-HY) Conducted 25 RF CABLE-1m Jye Bao RG142 CB034-1m 20MHz~7GHz Jan. 01, 2004 (TH01-HY) Conducted 26 RF CABLE-2m Jye Bao RG142 CB035-2m 20MHz~1GHz Jan. 01, 2004 (TH01-HY)

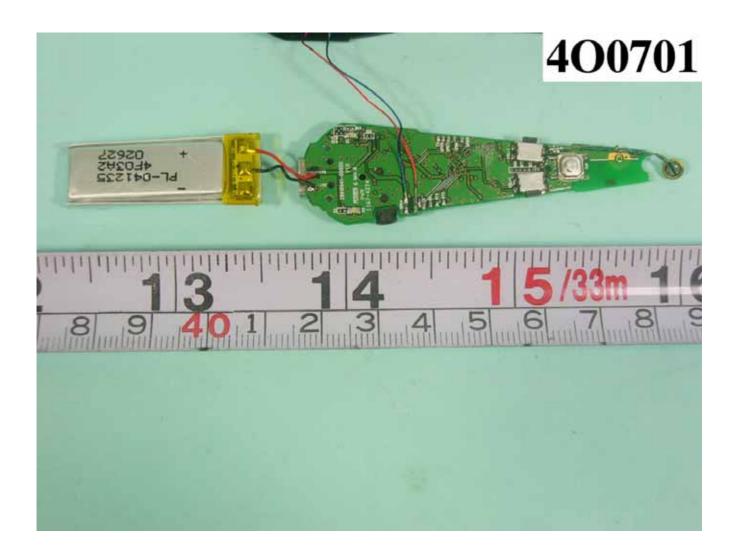
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 32 of 32 Issued Date : Oct. 22, 2004

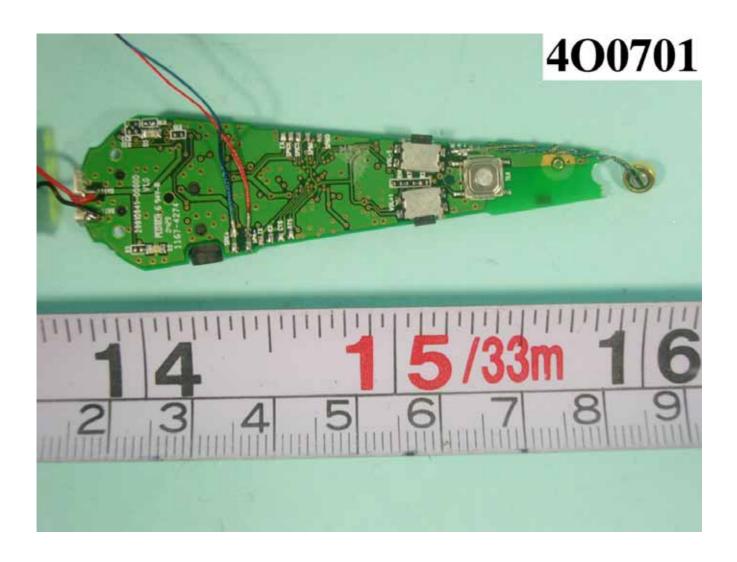
Calibration Interval of instruments listed above is one year.

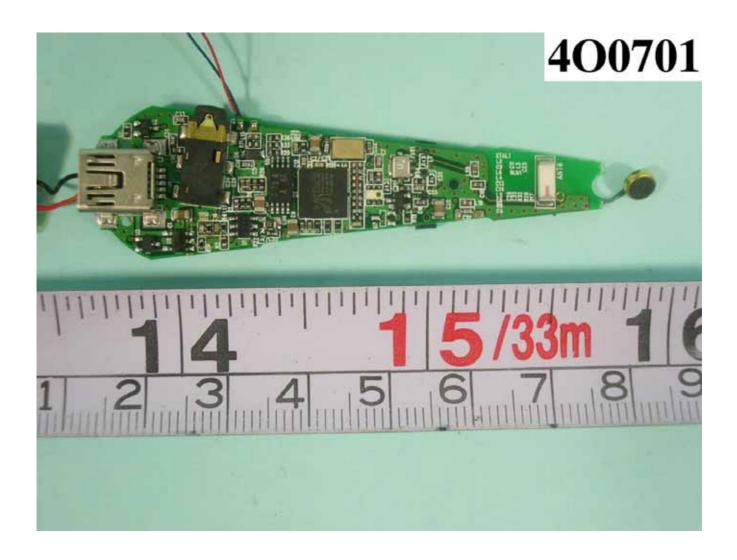
TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A1 OF A10 ISSUED DATE: Oct. 22, 2004

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A2 OF A10
ISSUED DATE: Oct. 22, 2004


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A3 OF A10
ISSUED DATE: Oct. 22, 2004


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A4 OF A10
ISSUED DATE: Oct. 22, 2004


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A5 OF A10
ISSUED DATE: Oct. 22, 2004


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A6 OF A10
ISSUED DATE: Oct. 22, 2004

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A7 OF A10
ISSUED DATE: Oct. 22, 2004

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A8 OF A10
ISSUED DATE: Oct. 22, 2004

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A9 OF A10
ISSUED DATE: Oct. 22, 2004

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 PAGE NUMBER: A10 OF A10 ISSUED DATE: Oct. 22, 2004