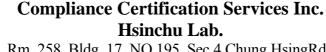
Report No.: 70806302-RP1 Page 1 of 52

FCC 47 CFR PART 15 SUBPART C AND ANSI C63.4: 2003

TEST REPORT

For

Bluetooth Audio Transmitter with iPOD dock


Model: GBTIPODTR2

Issued for

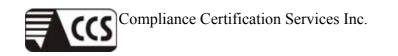
BILLIONTON SYSTEMS INC.

No. 21, Sui-Lih Rd., Hsin-Chu, 300, Taiwan

Issued by

Rm. 258, Bldg. 17, NO.195, Sec.4 Chung HsingRd., ChuTung Chen, Hsinchu, Taiwan 310, R.O.C

> TEL: (03) 591-0068 FAX: (03) 582-5720



Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, NVLAP or any government agencies. The test results in the report only apply to the tested sample.

Report No.: 70806302-RP1
Page 2 of 52

TABLE OF CONTENTS

TITLE	PAGE NO.
1. TEST REPORT CERTIFICATION	3
2. EUT DESCRIPTION	4
2.1 DESCRIPTION OF EUT & POWER	4
3. DESCRIPTION OF TEST MODES	5
4. TEST METHODOLOGY	5
5. FACILITIES AND ACCREDITATIONS	6
5.1 FACILITIES	6
5.2 EQUIPMENT	6
5.3 LABORATORY ACCREDITATIONS LISTINGS	6
5.4 TABLE OF ACCREDITATIONS AND LISTINGS	7
6. CALIBRATION AND UNCERTAINTY	8
6.1 MEASURING INSTRUMENT CALIBRATION	8
6.2 MEASUREMENT UNCERTAINTY	8
7. SETUP OF EQUIPMENT UNDER TEST	<i>9</i>
8. APPLICABLE LIMITS AND TEST RESULTS	10
8.1 20dB BANDWIDTH FOR HOPPING	10-12
8.2 MAXIMUM PEAK OUTPUT POWER	13-15
8.3 MAXIMUM PERMISSIBLE EXPOSURE	16-17
8.4 HOPPING CHANNEL SEPARATION	18-19
8.5 NUMBER OF HOPPING FREQUENCY USED	20-21
8.6 DWELL TIME ON EACH CHANNEL	22-25
8.7 CONDUCTED SPURIOUS EMISSION	26-29
8.8 RADIATED EMISSIONS	30
8.8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS	30-33
8.8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz	34
8.8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz	35-37
8.8.4 RESTRICTED BAND EDGES	
8.9 POWERLINE CONDUCTED EMISSIONS	
9. ANTENNA REQUIREMENT	46
9.1 STANDARD APPLICABLE	46
9.2 ANTENNA CONNECTED CONSTRUCTION	46
APPENDIX SETUP PHOTOS	47-52

Report No.: 70806302-RP1 Page ____3 __of ____52___

1. TEST REPORT CERTIFICATION

Applicant : BILLIONTON SYSTEMS INC.

Address : No. 21, Sui-Lih Rd., Hsin-Chu, 300, Taiwan

Equipment Under Test: Bluetooth Audio Transmitter with iPOD dock

: GBTIPODTR2 Model

Tested Date : August $06 \sim 27, 2007$

APPLICABLE STANDARD		
STANDARD	TEST RESULT	
FCC Part 15 Subpart C:2006 AND ANSI C63.4:2003	No non-compliance noted	

Approved by:

Reviewed by:

C. F. Wu

Manager of Hsinchu Laboratory

sistant Manager of Hsinchu Laboratory Compliance Certification Services Inc. pliance Certification Services Inc.

WE HEREBY CERTIFY THAT: The measurements shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable. We assume full responsibility for the accuracy and completeness of these measurements and vouch for the qualifications of all persons taking them.

Report No.: 70806302-RP1 Page ___4 __of ___52

2. EUT DESCRIPTION

2.1 DESCRIPTION OF EUT & POWER

Product Name	Bluetooth Audio Transmitter with iPOD dock		
Model Number	GBTIPODTR2		
Frequency Range	2402MHz to $2480MHz$ f = $2402 + nMHz$, n = 0,78		
Transmit Power	6.94dBm		
Channel Spacing	1MHz		
Channel Number	79		
Air Data Rate	GFSK (1Mbps), π/4-DQPSK(2Mbps), 8-DPSK(3Mbps)		
Type of Modulation	Frequency Hopping Spread Spectrum		
Frequency Selection	by software / firmware		
Transmitter Classification	mobile device		
Antenna Type	Dipole Antenna, Antenna Gain : 2dBi		
5VDC (From Notebook PC, Powered From Host De			
Power Source	Power Adapter)		
I/O Port	USB Port × 1, Audio In Port × 1, Audio Out Port × 1		

Power Adapter

No.	o. Manufacturer Model No.		Power Input	Power Output	
1	SUNNY	SYS1306-0305-W2	100-240VAC / 50~60Hz, 0.1A	5VDC, 0.5A, 2.5W	

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID:NLF-GBTIPODTR2 filing to comply with Section 15.207, 15.209 and 15.247 of the FCC Part 15, Subpart C Rules.
- 3. For more details, please refer to the User's manual of the EUT.

Report No.: 70806302-RP1 Page ___5 __ of ___52

3. DESCRIPTION OF TEST MODES

The EUT had been tested under operating condition.

There are three channels have been tested as following:

Channel	Frequency (MHz)
Low	2402
Middle	2441
High	2480

Bluetooth mode: 1Mbps data rate (worst case) were chosen for full testing.

Note: After the preliminary san all the data rates, we found the test mode(s) producing the highest emission level, so evaluated we chosen the above modes (worst case) as a representative.

4. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4 and FCC CFR 47 2.1046, 2046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055, 2.1057, 15.207, 15.209 and 15.247.

Report No.: 70806302-RP1 Page <u>6</u> of <u>52</u>

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at Rm.258, Bldg.17, NO.195, Sec. 4, Chung Hsing Rd., Chu-Tung Chen. Hsin-Chu, Taiwan 310 R.O.C.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200118-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: 90585 and 90584).

Report No.: 70806302-RP1 Page __7 __of __52

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP	EN 55014-1, AS/NZS 1044, CNS 13783-1, IEC/CISPR 14-1, IEC/CISPR 22, EN 55022, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, AS/NZS CISPR 22, AS/NZS 3548, IEC 61000-4-2/3/4/5/6/8/11	200118-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 90585, 90584
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-1229/1189 C-1250/1294
Taiwan	TAF	FCC Method-47 CFR Part 15 Subpart C,D,E CISPR 11, FCC METHOD-47 CFR Part 18, EN 55011, CNS 13803, CISPR 13, CNS 13439, FCC Method-47 CFR Part 15 Subpart B, CISPR 14-1, EN 55014-1, CNS 13783-1, EN 55015, CNS 14115, CISPR 22, EN 55022, VCCI CNS 13438, EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 0240
Taiwan	BSMI	CNS 13803, CNS 13438, CNS 13439, CNS 13783-1, CNS 14115	SL2-IS-E-0002 SL2-IN-E-0002 SL2-A1-E-0002 SL2-R1-E-0002 SL2-R2-E-0002 SL2-L1-E-0002
Canada	Industry Canada	RSS-GEN Issue 2	Canada IC 4417-1

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Report No.: 70806302-RP1 Page 8 of 52

6. CALIBRATION AND UNCERTAINTY

6.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

6.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 1000 MHz	+/- 3.2 dB
Radiated Emission, 1 to 26.5GHz	+/- 3.2 dB
Power Line Conducted Emission	+/- 2.1 dB

Uncertainty figures are valid to a confidence level of 95%

Report No.: 70806302-RP1 Page 9 of 52

7. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

No.	Product	Manufacturer	Model No.	Serial No.	FCC ID
1	Notebook PC	DELL	Latitude D610	CN-0C4708-48643-625-5565	DoC
2	iPOD	APPLE	A1136	4X553730OSZ9	DoC
3	MP3				DoC
4	Bluetooth Earphone	Billionton			

SETUP DIAGRAM FOR TESTS

EUT & peripherals setup diagram is shown in appendix setup photos.

EUT OPERATING CONDITION

RF Mode:

- 1. Setup all computers like the setup diagram.
- 2. Run CSR Blue Test software.
- 3. TX mode

TXDATA1

LO Freq: 2402, 2441, 2480

Power (EXT, Int): 255, 2402 = 30, 2441 = 30, 2480 = 30

4. RX mode

RXSTART1

LO Freq: 2402, 2441, 2480

RX Attenuation 0

- 5. All of the function are under run.
- 6. Start test.

Normal Mode:

- 1. Setup all computers like the setup diagram.
- 2. All of the functions are under run.
- 3. Start test.

Report No.: 70806302-RP1 Page 10 of 52

8. APPLICABLE LIMITS AND TEST RESULTS

8.1 20dB BANDWIDTH FOR HOPPING

LIMIT

Limit: N/A

TEST EQUIPMENT

Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	June 06, 2007

TEST SETUP

TEST PROCEDURE

The 20dB band width was measured with a spectrum analyzer connected to RF antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. The analyzer center frequency was set to the EUT carrier frequency, using the analyzer. Display Line and Marker Delta functions, the 20dB band width of the emission was determined.

TEST RESULTS

No non-compliance noted

Channel	Channel Frequency (MHz)	20dB Bandwidth (kHz)	Pass / Fail
Low	2402	886	N/A
Middle	2441	886	N/A
High	2480	886	N/A

Report No.: 70806302-RP1 Page 11 of 52

20dB BANDWIDTH

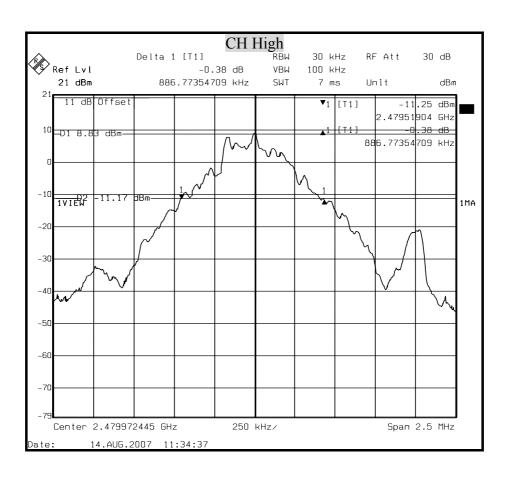
-40

-50

-60

-70

Center 2.440972445 GHz


14.AUG.2007 11:32:17

250 kHz/

Span 2.5 MHz

Report No.: 70806302-RP1 Page 12 of 52

Report No.: 70806302-RP1 Page 13 of 52

8.2 MAXIMUM PEAK OUTPUT POWER

LIMIT

§15.247(b)(1) The Maximum Peak Output Power Measurement is 125mW for frequency hopping systems operating in 2400~2483.5 MHz employing at least 15 hopping channels.

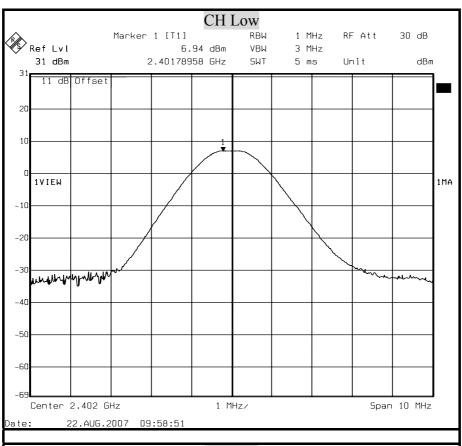
TEST EQUIPMENT

Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	June 06, 2007

TEST SETUP

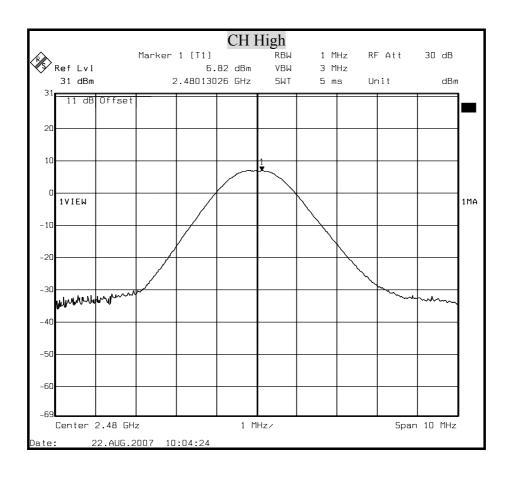
TEST PROCEDURE

The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.


TEST RESULTS


No non-compliance noted

Channel	Channel Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Pass / Fail
Low	2402	6.94	20.97	PASS
Middle	2441	6.21	20.97	PASS
High	2480	6.82	20.97	PASS


Report No.: 70806302-RP1 Page 14 of 52

MAXIMUM PEAK OUTPUT POWER

Report No.: 70806302-RP1 Page 15 of 52

Report No.: 70806302-RP1 Page ____16 __of ___52

8.3 MAXIMUM PERMISSIBLE EXPOSURE

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate theenvironment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	ange Electric Field Magnetic Field		Power Density	Average Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	Average Time	
	(A) Limits for Oc	ecupational / Contro	l Exposures		
300-1,500		F/300		6	
1,500-100,000			5	6	
	(B) Limits for Genera	al Population / Unco	ontrol Exposures		
300-1,500		F/1500		6	
1,500-100,000			1	30	

CALCULATIONS

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \quad \& \quad S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and

$$d(cm) = d(m) / 100$$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Where

d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

Report No.: 70806302-RP1
Page 17 of 52

LIMIT

Power Density Limit, S=1.0mW/cm²

TEST RESULTS

No non-compliance noted

Minimum separation distance (cm)	Output Power (dBm)	Antenna Gain (dBi)	Power Density Limit (mW/cm ²)	Power Density at 20cm (mW/cm ²)
20.0	6.94	2.0	1.00	0.001559

Remark: For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

Report No.: 70806302-RP1 Page 18 of 52

8.4 HOPPING CHANNEL SEPARATION

LIMIT

§15.247(a)(1) Frequency hopping system operating in 2400-2483.5MHz. Band may have hopping channel carrier frequencies that are separated by 25kHz or two-third of 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

TEST EQUIPMENT

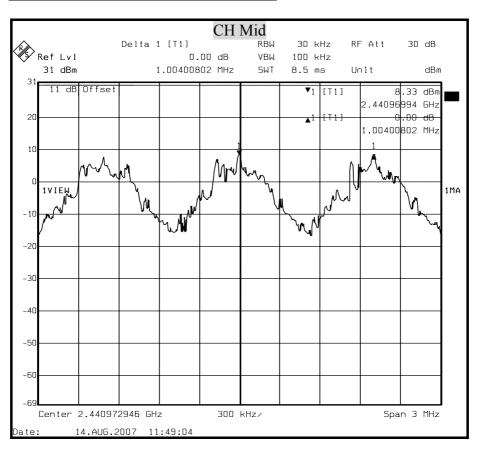
Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	June 06, 2007

TEST SETUP

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the MaxHold function record the separation of adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by spectrum analyzer MARK function. And then plot the result on spectrum analyzer screen.
- 5. Repeat above procedures until all frequencies measured were complete.

TEST RESULTS


No non-compliance noted

Refer to section 7.1, 20dB bandwidth measurement, the measured channel separation should be greater than two-third of 20dB bandwidth or Minimum bandwidth.

Channel	Adjacent Hopping Channel Separation (kHz)	Two –third of 20dB bandwidth (kHz)	Minimum Bandwidth (kHz)	Result
2441MHz (Mid)	1004	591	25	PASS

Report No.: 70806302-RP1 Page 19 of 52

HOPPING CHANNEL SEPARATION

Report No.: 70806302-RP1 Page 20 of 52

8.5 NUMBER OF HOPPING FREQUENCY USED

LIMIT

§15.247(a)(1)(iii) For frequency hopping system operating in the 2400-2483.5MHz bands shall use at least 15 hopping frequencies

TEST EQUIPMENT

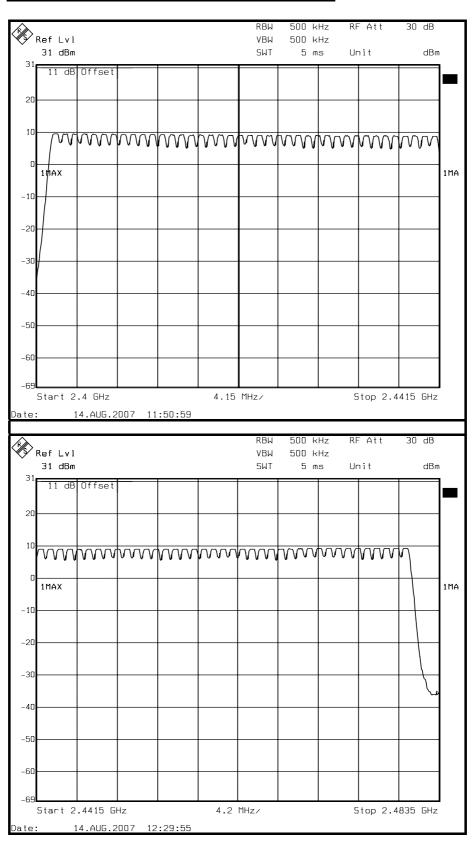
Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	June 06, 2007

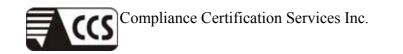
TEST SETUP

TEST PROCEDURE

- 1 Check the calibration of the measuring instrument (spectrum analyzer) using either an internal calibrator or a known signal from an external generator.
- 2 Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3 Set the spectrum analyzer on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4 Set the spectrum analyzer on View mode and then plot the result on spectrum analyzer screen.
- 5 Repeat above procedures until all frequencies measured were complete.

TEST RESULTS


No non-compliance noted


Refer to the attached plot.

There are 79 hopping frequencies in a hopping sequence.

Report No.: 70806302-RP1 Page 21 of 52

NUMBER OF HOPPING FREQUENCY USED

Report No.: 70806302-RP1 Page 22 of 52

8.6 DWELL TIME ON EACH CHANNEL

LIMIT

§15.247(a)(1)(iii) For frequency hopping system operating in the 2400-2483.5MHz band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

TEST EQUIPMENT

Description & Manufacturer	Model No.	Serial No.	Date of Calibration
ROHDE & SCHWARZ SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	June 06, 2007

TEST SETUP

TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. The Bluetooth Audio Transmitter with iPOD dock has 3 type of payload, DH1, DH3, DH5. The hopping rate is 1600 per second.

The longer the payload is, the slower the hopping rate is.

Report No.: 70806302-RP1 Page 23 of 52

TEST RESULTS

No non-compliance noted

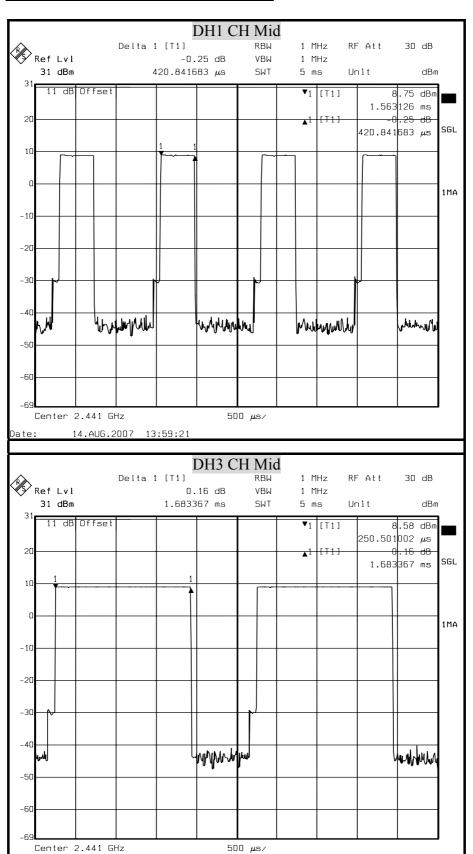
Time of occupancy on the TX channel in 31.6sec = time domain slot length \times hop rate \div number of hop per channel \times 31.6

Refer to the attached graph.

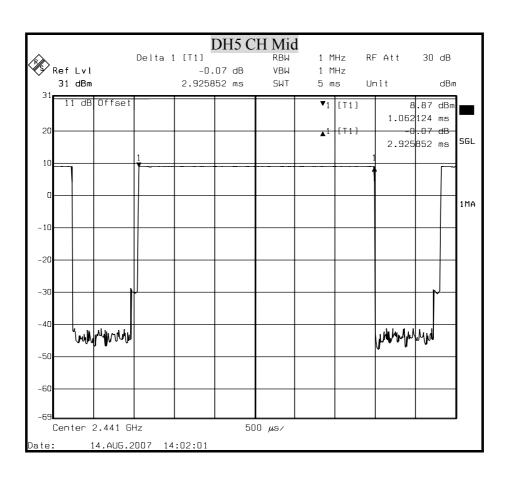
The hopping rates of Bluetooth devices change with different types of payload. The longer the payload is, the slower the hopping rate. The hopping rate scenario is defined in Bluetooth core specification.

Transmitting Frequency	Packet type	Dwell time (ms)			Results
2441MHz	DH1	0.4208	134.65	400	PASS
2441MHz	DH3	1.6833	269.32	400	PASS
2441MHz	DH5	2.9258	312.08	400	PASS

DH1 Dwell time = $0.4208 \text{ ms} \times (1600 \div 2) \div 79 \times 31.6 = 134.65 \text{ (ms)}$


DH3 Dwell time = $1.6833 \text{ ms} \times (1600 \div 4) \div 79 \times 31.6 = 269.32 \text{ (ms)}$

DH5 Dwell time = $2.9258 \text{ ms} \times (1600 \div 6) \div 79 \times 31.6 = 312.08 \text{ (ms)}$


Report No.: 70806302-RP1 Page 24 of 52

DWELL TIME ON EACH PAYLOAD

14.AUG.2007 14:00:45

Report No.: 70806302-RP1 Page <u>25</u> of <u>52</u>

Report No.: 70806302-RP1 Page <u>26</u> of <u>52</u>

8.7 CONDUCTED SPURIOUS EMISSION

LIMITS

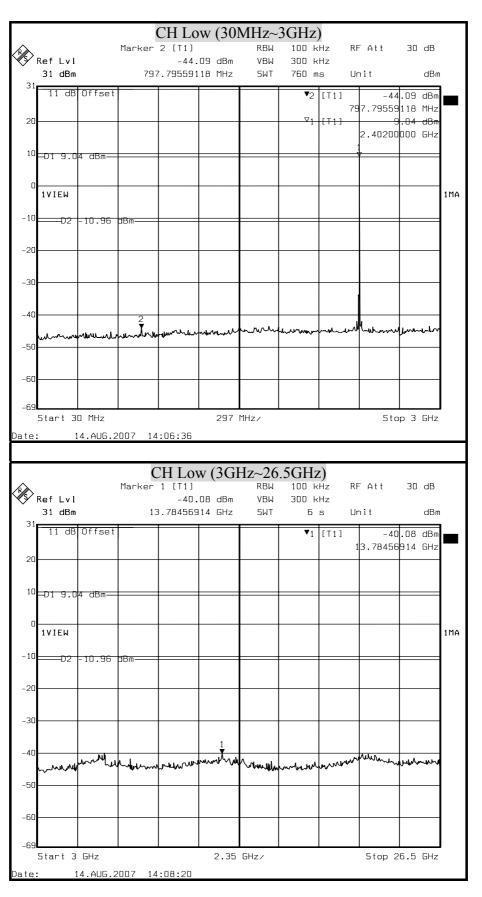
§ 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the and that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

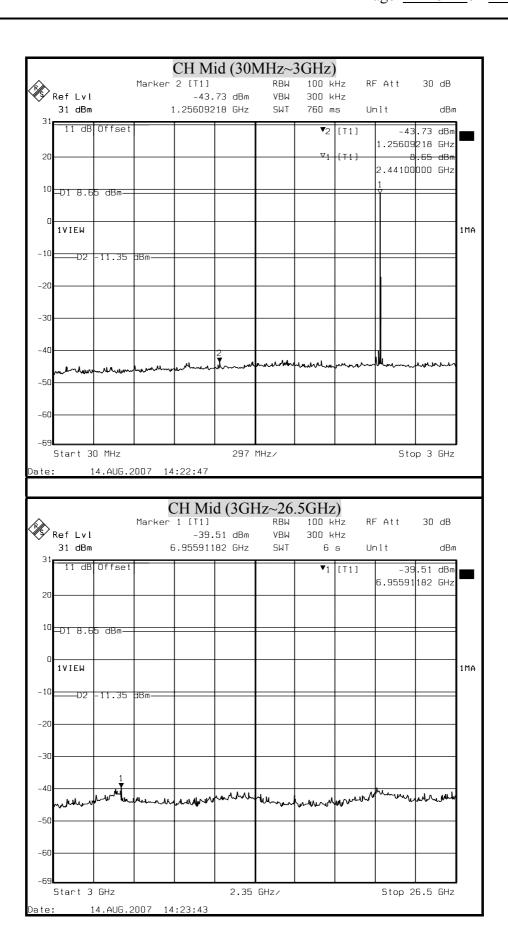
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

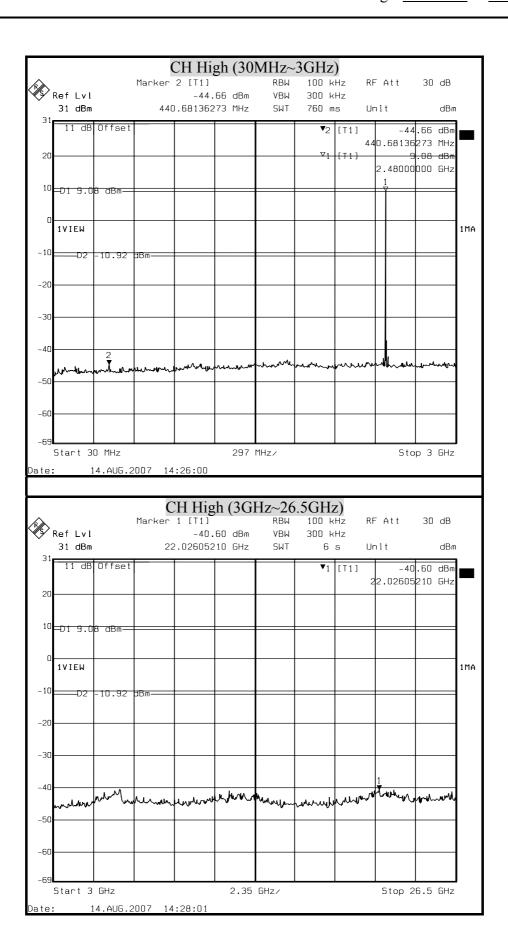
The spectrum from 30 MHz to 26.5 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

TEST RESULTS


No non-compliance noted


Report No.: 70806302-RP1 Page 27 of 52

BAND EDGE COMPLIANCE OF RF CONDUCTED EMISSIONS


OUT-OF-BAND SPURIOUS EMISSIONS-CONDUCTED MEASUREMENT

Report No.: 70806302-RP1 Page <u>28</u> of <u>52</u>

Report No.: 70806302-RP1 Page 29 of 52

Report No.: 70806302-RP1 Page 30 of 52

8.8 RADIATED EMISSIONS

8.8.1 TRANSMITTER RADIATED SUPURIOUS EMSSIONS

LIMITS

§ 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 -1710	10.6 -12.7
6.26775 - 6.26825	108 -121.94	1718.8 - 1722.2	13.25 -13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 – 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 -16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3338	36.43 - 36.5
12.57675 - 12.57725	322 -335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

² Above 38.6

Report No.: 70806302-RP1 Page 31 of 52

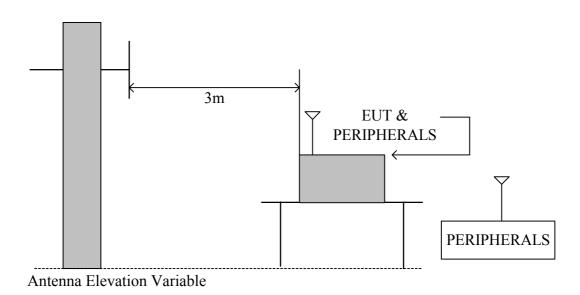
§ 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

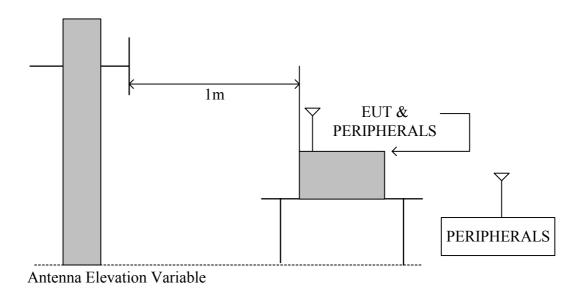
^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz, However, operation within these frequency bands is permitted under other sections of this Part, e-g, Sections 15.231 and 15.241.

§ 15.209 (b) In the emission table above, the tighter limit applies at the band edges.

TEST EQUIPMENT


The following test equipment is utilized in making the measurements contained in this report.

Manufacturer or Type	Model No.	Serial No.	Date of Calibration	Calibration Period	Remark
CHASE BILOG ANTENNA	CBL6112B	2817	August 28, 2006	1 Year	FINAL
R/S SPECTRUM ANALYZER	FSEK30	835253/002	October 18, 2006	1 Year	FINAL
AGILENT SPECTRUM ANALYZER	E4446A	MY433601.32	June 06, 2007	1 Year	FINAL
R/S EMI TEST RECEIVER	ESCS30	835418/008	September 02, 2006	1 Year	FINAL
OPEN SITE		No.2	May 07, 2007	1 Year	FINAL
BELDEN N TYPE COAXIAL CABLE	9913-30M	001	August 21, 2007	1 Year	FINAL
Horn Antenna	AH-118	10089	August 30, 2006	1 Year	FINAL
Horn Antenna	AH-840	03077	February 25, 2007	1 Year	FINAL
Agilent Pre-amplifier	8449B	3008A01471	December 25, 2006	1 Year	FINAL
HP Amplifier	8447D	1937A02748	December 25, 2006	1 Year	FINAL
HP High pass filter	84300/80038	002	CAL. ON USE	1 Year	FINAL
HP High pass filter	84300/80039	003	CAL. ON USE	1 Year	FINAL
Loop Antenna ETS-LINDGREN	6502	2356	June 15, 2007	1 Year	FINAL


Report No.: 70806302-RP1 Page 32 of 52

TEST SETUP

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 to 1GHz.

The diagram below shows the test setup that is utilized to make the measurements for emission above 1GHz.

Report No.: 70806302-RP1 Page 33 of 52

TEST PROCEDURE

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. White measuring the radiated emission below 1GHz, the EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. White measuring the radiated emission above 1GHz, the EUT was set 1 meters away from the interference-receiving antenna
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarization of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

TEST RESULTS

No non-compliance noted

Report No.: 70806302-RP1 Page 34 of 52

8.8.2 WORST-CASE RADIATED EMISSION BELOW 1 GHz

Product Name	Bluetooth Audio Transmitter with iPOD dock	Test Date	2007/08/27
Model Name	GBTIPODTR2	Test By	Gundam Lin
Test Mode	Normal operating	TEMP & Humidity	36°C, 54%

Frequency (MHz) Antenna Factor				Reading dBμV)	Limits (dBµV/m)	Emission Level at 3m(dBµV/m)	
(WILL)	(dB/m)	(dB)	Horizontal	Vertical	(αΔμ ۷/ΙΙΙ)	Horizontal	Vertical
127.99	12.46	1.62	19.60	20.40	43.50	33.68	34.48
143.99	11.56	1.71	29.20	28.20	43.50	42.47	41.47
152.02	11.08	1.76	21.20	21.40	43.50	34.04	34.24
159.99	10.60	1.81	28.00	23.60	43.50	40.41	36.01
175.99	9.88	1.86	21.00	19.30	43.50	32.74	31.04
191.99	9.88	1.91	19.90	19.50	43.50	31.69	31.29
207.99	10.43	1.97	21.70	20.50	43.50	34.10	32.90
287.99	13.61	2.33	9.60	7.50	46.00	25.54	23.44
447.99	17.23	2.98	9.70	8.80	46.00	29.91	29.01
767.99	20.38	4.11	10.20	9.80	46.00	34.69	34.29

- 1. Emission level $(dB\mu V/m) = Antenna\ Factor\ (dB/m) + Cable\ loss\ (dB) + Meter\ Reading\ (dB\mu V)$.
- 2. According to technical experience, all spurious emission at channel Low, Middle and High are almost the same below 1GHz, so the spurious emission test result of the channel Low was chosen as representative in finial test.

Report No.: 70806302-RP1 Page 35 of 52

8.8.3 TRANSMITTER RADIATED EMISSION ABOVE 1 GHz

Product Name	Bluetooth Audio Transmitter with iPOD dock	Test Date	2007/08/09
Model Name	GBTIPODTR2	Test By	Alan Fan
Test Mode	CH Low TX	TEMP & Humidity	27°C, 85%

Measurement Distance at 1m					Horizonta	al polarity	,				
Freq. (MHz)	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Dist (dB)	Filter (dB)	Level 1m (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
1601.97	57.60	27.30	3.76	36.87	9.50	0.00	42.29	74.00	-31.71	P	1.00
1601.97	42.75	27.30	3.76	36.87	9.50	0.00	27.44	54.00	-26.56	A	1.00
3201.80	50.00	30.80	5.62	36.83	9.50	0.00	40.09	74.00	-33.91	P	1.00
3201.80	35.90	30.80	5.62	36.83	9.50	0.00	25.99	54.00	-28.01	A	1.00
4803.74	63.15	34.49	6.32	36.59	9.50	0.37	58.23	74.00	-15.77	P	1.00
4803.74	42.21	34.49	6.32	36.59	9.50	0.37	37.29	54.00	-16.71	A	1.00
7205.97	63.60	39.51	8.26	36.82	9.50	0.93	65.98	74.00	-8.02	P	1.00
7205.97	42.78	39.51	8.26	36.82	9.50	0.93	45.16	54.00	-8.84	A	1.00
9608.12	63.00	40.41	9.28	37.47	9.50	0.53	66.25	74.00	-7.75	P	1.00
9608.12	42.41	40.41	9.28	37.47	9.50	0.53	45.66	54.00	-8.34	A	1.00
12010.94	53.10	41.72	10.58	36.57	9.50	0.45	59.77	74.00	-14.23	P	1.00
12010.94	36.42	41.72	10.58	36.57	9.50	0.45	43.09	54.00	-10.91	A	1.00
14410.82	46.98	43.96	10.91	35.37	9.50	0.59	57.57	74.00	-16.43	P	1.00
14410.82	33.46	43.96	10.91	35.37	9.50	0.59	44.05	54.00	-9.95	A	1.00
			Measu	rement D	istanc	e at 1m	Vertical	polarity			
Freq.	Reading	4.55	0.11	D			T 1				
(MHz)	(dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Dist (dB)	Filter (dB)	Level 1m (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
(MHz) 1602.03	_			-			1m				
	(dBµV)	(dBµV)	(dB)	(dB)	(dB)	(dB)	1m (dBμV/m)	$(dB\mu V/m)$	(dB)	(P/Q/A)	(Meter)
1602.03	(dBμV) 65.00	(dBμV) 27.30	(dB) 3.76	(dB) 36.87	(dB) 9.50	(dB) 0.00	1m (dBμV/m) 49.69	(dBµV/m) 74.00	(dB)	(P/Q/A)	(Meter) 1.00
1602.03 1602.03	(dBμV) 65.00 60.45	(dBμV) 27.30 27.30	(dB) 3.76 3.76	(dB) 36.87 36.87	(dB) 9.50 9.50	(dB) 0.00 0.00	1m (dBμV/m) 49.69 45.14	(dBµV/m) 74.00 54.00	(dB) -24.31 -8.86	(P/Q/A) P A	(Meter) 1.00 1.00
1602.03 1602.03 3203.88	(dBμV) 65.00 60.45 52.02	(dBμV) 27.30 27.30 30.80	(dB) 3.76 3.76 5.62	(dB) 36.87 36.87 36.83	(dB) 9.50 9.50 9.50	(dB) 0.00 0.00 0.00	1m (dBμV/m) 49.69 45.14 42.11	(dBμV/m) 74.00 54.00 74.00	-24.31 -8.86 -31.89	(P/Q/A) P A P	1.00 1.00 1.00
1602.03 1602.03 3203.88 3203.88	(dBμV) 65.00 60.45 52.02 40.12	(dBμV) 27.30 27.30 30.80 30.80	(dB) 3.76 3.76 5.62 5.62	(dB) 36.87 36.87 36.83 36.83	(dB) 9.50 9.50 9.50 9.50	(dB) 0.00 0.00 0.00 0.00	1m (dBμV/m) 49.69 45.14 42.11 30.21	74.00 54.00 74.00 54.00 54.00	-24.31 -8.86 -31.89 -23.79	(P/Q/A) P A P A	1.00 1.00 1.00 1.00
1602.03 1602.03 3203.88 3203.88 4804.35	(dBμV) 65.00 60.45 52.02 40.12 68.00	27.30 27.30 30.80 30.80 34.49	(dB) 3.76 3.76 5.62 5.62 6.32	(dB) 36.87 36.87 36.83 36.83 36.59	(dB) 9.50 9.50 9.50 9.50 9.50	(dB) 0.00 0.00 0.00 0.00 0.37	1m (dBμV/m) 49.69 45.14 42.11 30.21 63.08	74.00 54.00 74.00 54.00 74.00 74.00	-24.31 -8.86 -31.89 -23.79 -10.92	P A P A P	1.00 1.00 1.00 1.00 1.00
1602.03 1602.03 3203.88 3203.88 4804.35 4804.35	(dBµV) 65.00 60.45 52.02 40.12 68.00 44.50	(dBμV) 27.30 27.30 30.80 30.80 34.49 34.49	(dB) 3.76 3.76 5.62 5.62 6.32 6.32	(dB) 36.87 36.87 36.83 36.83 36.59 36.59	(dB) 9.50 9.50 9.50 9.50 9.50 9.50	(dB) 0.00 0.00 0.00 0.00 0.37 0.37	1m (dBμV/m) 49.69 45.14 42.11 30.21 63.08 39.58	74.00 54.00 74.00 54.00 74.00 54.00 54.00	-24.31 -8.86 -31.89 -23.79 -10.92 -14.42	P A P A A	1.00 1.00 1.00 1.00 1.00 1.00
1602.03 1602.03 3203.88 3203.88 4804.35 4804.35 7205.47	(dBµV) 65.00 60.45 52.02 40.12 68.00 44.50 70.45	27.30 27.30 30.80 30.80 34.49 34.49 39.51	(dB) 3.76 3.76 5.62 5.62 6.32 6.32 8.26	(dB) 36.87 36.87 36.83 36.83 36.59 36.59 36.82	9.50 9.50 9.50 9.50 9.50 9.50 9.50	(dB) 0.00 0.00 0.00 0.00 0.37 0.37 0.93	1m (dBμV/m) 49.69 45.14 42.11 30.21 63.08 39.58 72.83	74.00 54.00 74.00 54.00 74.00 54.00 74.00 74.00	-24.31 -8.86 -31.89 -23.79 -10.92 -14.42 -1.17	P A P A P P	(Meter) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1602.03 1602.03 3203.88 3203.88 4804.35 4804.35 7205.47	(dBµV) 65.00 60.45 52.02 40.12 68.00 44.50 70.45 45.10	27.30 27.30 30.80 30.80 34.49 34.49 39.51 39.51	(dB) 3.76 3.76 5.62 5.62 6.32 6.32 8.26 8.26	(dB) 36.87 36.83 36.83 36.59 36.59 36.82 36.82	9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50	(dB) 0.00 0.00 0.00 0.00 0.37 0.37 0.93 0.93	1m (dBμV/m) 49.69 45.14 42.11 30.21 63.08 39.58 72.83 47.48	74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 54.00	-24.31 -8.86 -31.89 -23.79 -10.92 -14.42 -1.17 -6.52	P A P A P A A P A	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1602.03 1602.03 3203.88 3203.88 4804.35 4804.35 7205.47 7205.47 9608.65	(dBµV) 65.00 60.45 52.02 40.12 68.00 44.50 70.45 45.10 65.08	(dBμV) 27.30 27.30 30.80 30.80 34.49 34.49 39.51 39.51 40.41	(dB) 3.76 3.76 5.62 5.62 6.32 6.32 8.26 8.26 9.28	(dB) 36.87 36.87 36.83 36.83 36.59 36.59 36.82 37.47	9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50	(dB) 0.00 0.00 0.00 0.00 0.37 0.37 0.93 0.93 0.53	1m (dBμV/m) 49.69 45.14 42.11 30.21 63.08 39.58 72.83 47.48 68.33	74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-24.31 -8.86 -31.89 -23.79 -10.92 -14.42 -1.17 -6.52 -5.67	P A P A P A P P A P P A P P A P P A P P A P P A P P A P P P P A P	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1602.03 1602.03 3203.88 3203.88 4804.35 4804.35 7205.47 7205.47 9608.65	(dBµV) 65.00 60.45 52.02 40.12 68.00 44.50 70.45 45.10 65.08 43.21	27.30 27.30 30.80 30.80 34.49 34.49 39.51 39.51 40.41 40.41	(dB) 3.76 3.76 5.62 5.62 6.32 6.32 8.26 8.26 9.28 9.28	(dB) 36.87 36.87 36.83 36.83 36.59 36.59 36.82 37.47 37.47	(dB) 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50	0.00 0.00 0.00 0.00 0.37 0.37 0.93 0.93 0.53	1m (dBμV/m) 49.69 45.14 42.11 30.21 63.08 39.58 72.83 47.48 68.33 46.46	(dBµV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-24.31 -8.86 -31.89 -23.79 -10.92 -14.42 -1.17 -6.52 -5.67 -7.54	P A P A P A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A A P A	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1602.03 1602.03 3203.88 3203.88 4804.35 4804.35 7205.47 7205.47 9608.65 9608.65 12010.03	(dBµV) 65.00 60.45 52.02 40.12 68.00 44.50 70.45 45.10 65.08 43.21 55.69	27.30 27.30 30.80 30.80 34.49 34.49 39.51 39.51 40.41 40.41 41.72	(dB) 3.76 3.76 5.62 5.62 6.32 6.32 8.26 8.26 9.28 9.28 10.58	(dB) 36.87 36.83 36.83 36.59 36.59 36.82 37.47 37.47 36.58	(dB) 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50	0.00 0.00 0.00 0.00 0.37 0.37 0.93 0.93 0.53 0.53	1m (dBμV/m) 49.69 45.14 42.11 30.21 63.08 39.58 72.83 47.48 68.33 46.46 62.35	(dBµV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	-24.31 -8.86 -31.89 -23.79 -10.92 -14.42 -1.17 -6.52 -5.67 -7.54 -11.65	P A P A P A P P A P P A P P A P P A P P A P P A P P A P P A P P A P P A P P P P A P P P A P	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1602.03 1602.03 3203.88 3203.88 4804.35 4804.35 7205.47 7205.47 9608.65 9608.65 12010.03	(dBµV) 65.00 60.45 52.02 40.12 68.00 44.50 70.45 45.10 65.08 43.21 55.69 37.90	(dBµV) 27.30 27.30 30.80 30.80 34.49 39.51 39.51 40.41 41.72 41.72	(dB) 3.76 3.76 5.62 5.62 6.32 6.32 8.26 8.26 9.28 9.28 10.58	(dB) 36.87 36.87 36.83 36.89 36.59 36.82 37.47 37.47 36.58 36.58	(dB) 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.50	(dB) 0.00 0.00 0.00 0.00 0.37 0.37 0.93 0.53 0.53 0.45 0.45	1m (dBμV/m) 49.69 45.14 42.11 30.21 63.08 39.58 72.83 47.48 68.33 46.46 62.35 44.56	(dBµV/m) 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00	-24.31 -8.86 -31.89 -23.79 -10.92 -14.42 -1.17 -6.52 -5.67 -7.54 -11.65 -9.44	P A P A P A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A P A A A P A A P A A P A A P A A P A A P A A P A A P A A A P A A A P A A A P A A A P A A A P A	(Meter) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

- 1. The measurement was searched to 10th harmonic.
- 2. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 4. Dist: correction to extra plate reading to 3m specification distance 1m measurement distance = -9.5dB
- 5. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 6. The other emission levels were 20dB below the limit
- 7. The test limit distance is 3M limit.

Report No.: 70806302-RP1 Page 36 of 52

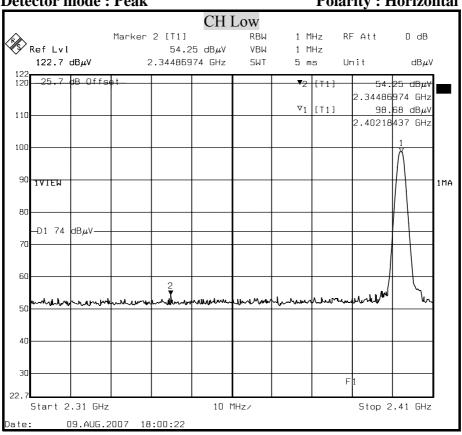
Product Name	Bluetooth Audio Transmitter with iPOD dock	Test Date	2007/08/09
Model Name	GBTIPODTR2	Test By	Alan Fan
Test Mode	CH Middle TX	TEMP & Humidity	27°C, 85%

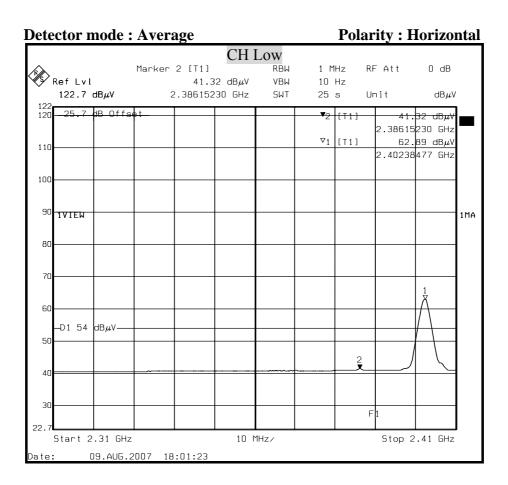
	Measurement Distance at 1m							al polarity	,		
Freq. (MHz)	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Dist (dB)	Filter (dB)	Level 1m (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
1627.83	58.57	27.50	3.80	36.85	9.50	0.00	43.52	74.00	-30.48	P	1.00
1627.83	48.04	27.50	3.80	36.85	9.50	0.00	32.99	54.00	-21.01	A	1.00
3255.96	49.37	30.80	5.65	36.81	9.50	0.00	39.52	74.00	-34.48	P	1.00
3255.96	34.90	30.80	5.65	36.81	9.50	0.00	25.05	54.00	-28.95	A	1.00
4882.00	64.31	34.61	6.32	36.61	9.50	0.29	59.42	74.00	-14.58	P	1.00
4882.00	42.65	34.61	6.32	36.61	9.50	0.29	37.76	54.00	-16.24	A	1.00
7323.43	64.73	39.62	8.30	36.94	9.50	0.82	67.04	74.00	-6.96	P	1.00
7323.43	43.39	39.62	8.30	36.94	9.50	0.82	45.70	54.00	-8.30	A	1.00
9764.70	62.18	40.29	9.57	37.59	9.50	0.58	65.53	74.00	-8.47	P	1.00
9764.70	42.32	40.29	9.57	37.59	9.50	0.58	45.67	54.00	-8.33	A	1.00
12204.31	56.01	42.03	10.52	36.48	9.50	0.38	62.96	74.00	-11.04	P	1.00
12204.31	38.54	42.03	10.52	36.48	9.50	0.38	45.49	54.00	-8.51	A	1.00
14646.08	47.59	44.07	11.09	35.57	9.50	0.50	58.19	74.00	-15.81	P	1.00
14646.08	34.52	44.07	11.09	35.57	9.50	0.50	45.12	54.00	-8.88	A	1.00
	T.	T	Measu	rement D	istanc	e at 1m		polarity		T	
Freq. (MHz)	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Dist (dB)	Filter (dB)	Level 1m (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
1628.06	62.83	27.50	3.80	36.85	9.50	0.00	47.78	74.00	-26.22	P	1.00
1628.06	59.35	27.50	3.80	36.85	9.50	0.00	44.30	54.00	-9.70	A	1.00
3255.97	53.89	30.80	5.65	36.81	9.50	0.00	44.04	74.00	-29.96	P	1.00
3255.97	41.86	30.80	5.65	36.81	9.50	0.00	32.01	54.00	-21.99	A	1.00
4881.70	67.93	34.61	6.32	36.61	9.50	0.29	63.04	74.00	-10.96	P	1.00
4881.70	44.13	34.61	6.32	36.61	9.50	0.29	39.24	54.00	-14.76	A	1.00
7323.49	70.38	39.62	8.30	36.94	9.50	0.82	72.69	74.00	-1.31	P	1.00
7323.49	45.19	39.62	8.30	36.94	9.50	0.82	47.50	54.00	-6.50	A	1.00
9764.67	65.61	40.29	9.57	37.59	9.50	0.58	68.96	74.00	-5.04	P	1.00
9764.67	43.59	40.29	9.57	37.59	9.50	0.58	46.94	54.00	-7.06	A	1.00
12204.18	58.71	42.03	10.52	36.48	9.50	0.38	65.66	74.00	-8.34	P	1.00
12204.18	39.55	42.03	10.52	36.48	9.50	0.38	46.50	54.00	-7.50	A	1.00
	54.70	4407	11 00		0.50	0.50	< - 00	74.00	-8.67	P	1.00
14645.17 14645.17	54.73 38.05	44.07 44.07	11.09	35.57 35.57	9.50 9.50	0.50	65.33 48.65	74.00 54.00	-5.35	A	1.00

- 1. The measurement was searched to 10th harmonic.
- 2. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 4. Dist: correction to extra plate reading to 3m specification distance 1m measurement distance = -9.5dB
- 5. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 6. The other emission levels were 20dB below the limit
- 7. The test limit distance is 3M limit.

Report No.: 70806302-RP1 Page 37 of 52

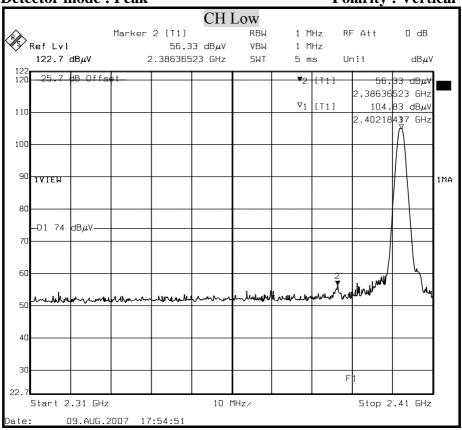
Product Name	Bluetooth Audio Transmitter with iPOD dock	Test Date	2007/08/09
Model Name	GBTIPODTR2	Test By	Alan Fan
Test Mode	CH High TX	TEMP & Humidity	27°C, 85%

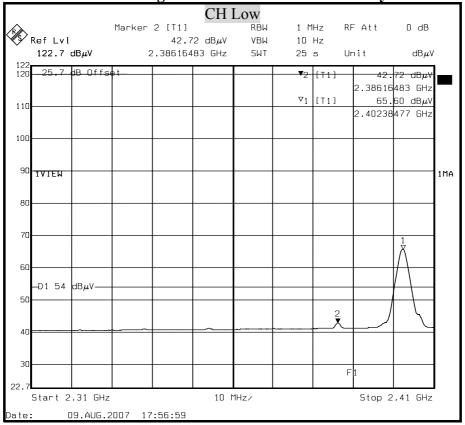

Measurement Distance at 1m Horizontal polarity											
	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Dist (dB)	Filter (dB)	Level 1m (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
1654.03	56.80	27.70	3.84	36.83	9.50	0.00	42.02	74.00	-31.98	P	1.00
1654.03	46.78	27.70	3.84	36.83	9.50	0.00	32.00	54.00	-22.00	A	1.00
3308.15	49.05	30.80	5.68	36.78	9.50	0.00	39.25	74.00	-34.75	P	1.00
3308.15	36.03	30.80	5.68	36.78	9.50	0.00	26.23	54.00	-27.77	A	1.00
4959.66	67.41	34.74	6.32	36.63	9.50	0.21	62.55	74.00	-11.45	P	1.00
4959.66	44.04	34.74	6.32	36.63	9.50	0.21	39.18	54.00	-14.82	A	1.00
7440.49	64.52	39.74	8.35	37.07	9.50	0.71	66.76	74.00	-7.24	P	1.00
7440.49	43.30	39.74	8.35	37.07	9.50	0.71	45.54	54.00	-8.46	A	1.00
9919.35	60.48	40.16	9.87	37.72	9.50	0.63	63.93	74.00	-10.07	P	1.00
9919.35	41.32	40.16	9.87	37.72	9.50	0.63	44.77	54.00	-9.23	A	1.00
12399.16	53.77	42.34	10.46	36.39	9.50	0.32	61.00	74.00	-13.00	P	1.00
12399.16	37.34	42.34	10.46	36.39	9.50	0.32	44.57	54.00	-9.43	A	1.00
14878.96	52.63	44.02	11.36	35.85	9.50	0.32	62.98	74.00	-11.02	P	1.00
14878.96	36.42	44.02	11.36	35.85	9.50	0.32	46.77	54.00	-7.23	A	1.00
			Measu	rement D	istanc	e at 1m		polarity			
	Reading (dBµV)	AF (dBμV)	Cable (dB)	Pre-amp (dB)	Dist (dB)	Filter (dB)	Level 1m (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Mark (P/Q/A)	Height (Meter)
1654.16	60.89	27.70	3.84	36.83	9.50	0.00	46.11	74.00	-27.89	P	1.00
1654.16	46.85	27.70	3.84	36.83	9.50	0.00	32.07	54.00	-21.93	A	1.00
3308.02	54.93	30.80	5.68	36.78	9.50	0.00	45.13	74.00	-28.87	P	1.00
3308.02	38.94	30.80	5.68	36.78	9.50	0.00	29.14	54.00	-24.86	A	1.00
4960.34	67.15	34.74	6.32	36.63	9.50	0.21	62.29	74.00	-11.71	P	1.00
4960.34	43.86	34.74	6.32	36.63	9.50	0.21	39.00	54.00	-15.00	A	1.00
7439.53	70.34	39.74	8.35	37.07	9.50	0.72	72.58	74.00	-1.42	P	1.00
	44.22	39.74	8.35	37.07	9.50	0.72	46.46	54.00	-7.54	A	1.00
7439.53	44.22	39.74	0.50								
7439.53 9920.70	66.51	40.16	9.87	37.72	9.50	0.63	69.96	74.00	-4.04	P	1.00
					9.50 9.50	0.63	69.96 47.45	74.00 54.00	-4.04 -6.55	P A	1.00
9920.70	66.51	40.16	9.87	37.72							
9920.70 9920.70	66.51 44.00	40.16 40.16	9.87 9.87	37.72 37.72	9.50	0.63	47.45	54.00	-6.55	A	1.00
9920.70 9920.70 12399.28	66.51 44.00 58.70	40.16 40.16 42.34	9.87 9.87 10.46	37.72 37.72 36.39	9.50 9.50	0.63 0.32	47.45 65.93	54.00 74.00	-6.55 -8.07	A P	1.00 1.00


- 1. The measurement was searched to 10th harmonic.
- 2. AF: Antenna Factor, Cable: Cable Loss, Pre-Amp: Preamplifier gain, Filter: High Pass Filter Insertion Loss (3.5GHz)
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz
- 4. Dist: correction to extra plate reading to 3m specification distance 1m measurement distance = -9.5dB
- 5. The result basic equation calculation is as follow:
 - Level = Reading + AF + Cable Preamp + Filter Dist, Margin = Level-Limit
- 6. The other emission levels were 20dB below the limit
- 7. The test limit distance is 3M limit.

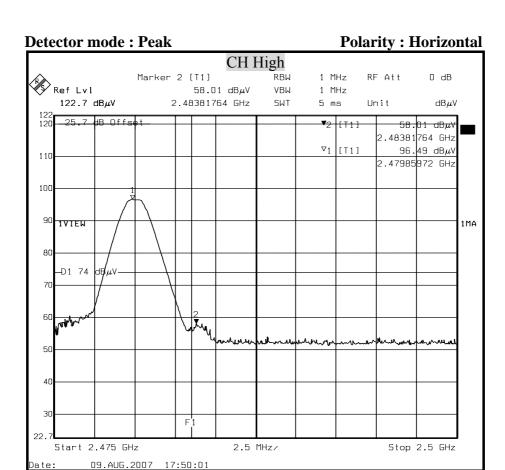
Report No.: 70806302-RP1 Page <u>38</u> of <u>52</u>

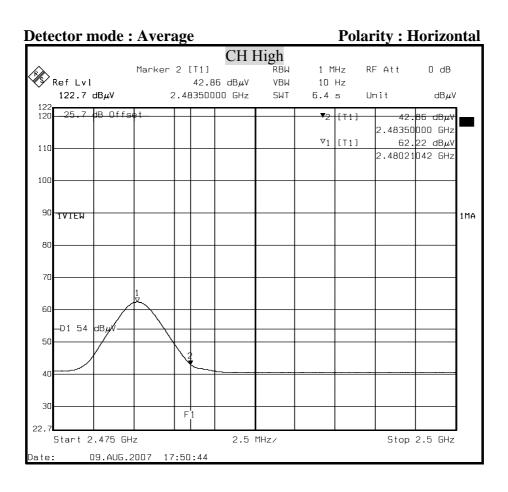
8.8.4 RESTRICTED BAND EDGES

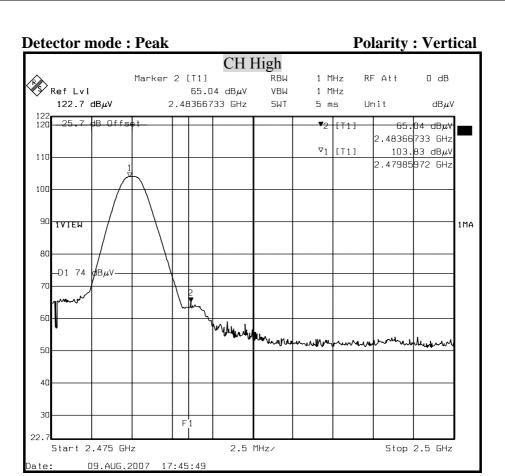

Polarity: Horizontal Detector mode: Peak

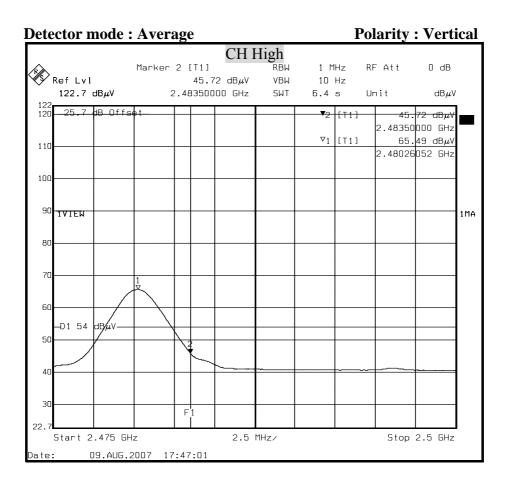


Report No.: 70806302-RP1 Page 39 of 52








Report No.: 70806302-RP1 Page 40 of 52

Report No.: 70806302-RP1 Page 41 of 52

Report No.: 70806302-RP1 Page 42 of 52

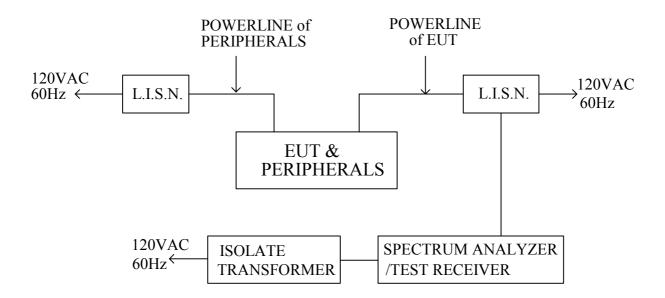
8.9 POWERLINE CONDUCTED EMISSIONS

LIMITS

 \S 15.207 (a) Except as shown in paragraph (b) and (c) this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted limit (dBµv)			
	Quasi-peak	Average		
0.15 - 0.5	66 to 56	56 to 46		
0.5 - 5	56	46		
5 - 30	60	50		


TEST EQUIPMENT

The following test equipment is used during the conducted powerline tests:

Manufacturer or Type	Model No.	Serial No.	Date of Calibration	Calibration Period	Remark
EMCO L.I.S.N.	3810/2	9801-1850	February 26, 2007	1 Year	FINAL
CHASE L.I.S.N	NNLK 8129	8129118	January 26, 2007	1 Year	FINAL
R & S TEST RECEIVER	ESHS30	838550/003	January 31, 2007	1 Year	FINAL
KEENE SHIELDED ROOM	5983	No.1	N/A	N/A	FINAL
R & S PULSE LIMIT	EHS3Z2	357.8810.52	July 10, 2007	1 Year	FINAL
N TYPE COAXIAL CABLE			August 21, 2007	1 Year	FINAL
50Ω TERMINATOR			July 10, 2007	1 Year	FINAL

Report No.: 70806302-RP1 Page 43 of 52

TEST SETUP

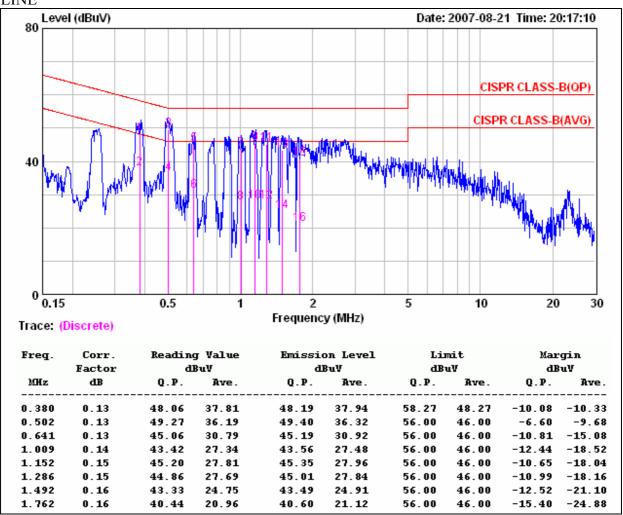
TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80cm above the horizontal ground plane. The EUT IS CONFIGURED IN ACCORDANCE WITH ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both quasi-peak detection and average detection measurements.

Line conducted data is recorded for both NEUTRAL and LINE.

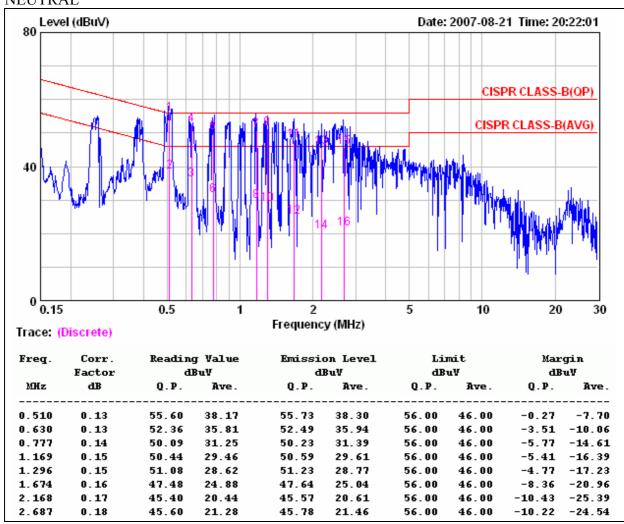
TEST RESULTS


No non-compliance noted

Report No.: 70806302-RP1 Page 44 of 52

CONDUCTED RF VOLTAGE MEASUREMENT

Product Name	Bluetooth Audio Transmitter with iPOD dock	Test Date	2007/08/21
Model	GBTIPODTR2	Test By	YJ. Jeng
Test Mode	Normal operating	TEMP & Humidity	24.5°C, 55%



- 1. $Correction\ Factor = Insertion\ loss + cable\ loss$
- 2. *Margin value* = *Emission level Limit value*


Report No.: 70806302-RP1 Page <u>45</u> of <u>52</u>

Product Name	Bluetooth Audio Transmitter with iPOD dock	Test Date	2007/08/21
Model	GBTIPODTR2	Test By	YJ. Jeng
Test Mode	Normal operating	TEMP & Humidity	24.5°C, 55%

NEUTRAL

- 1. $Correction\ Factor = Insertion\ loss + cable\ loss$
- 2. $Margin\ value = Emission\ level Limit\ value$

Report No.: 70806302-RP1 Page 46 of 52

9. ANTENNA REQUIREMENT

9.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

9.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is Dipole antenna. The maximum Gain of the antenna only 2dBi.