

Intertek 731 Enterprise Drive Lexington, KY 40510

Tel 859 226 1000 Fax 859 226 1040

www.intertek.com

Computational Systems, Inc. SAR TEST REPORT

SCOPE OF WORK

SPECIFIC ABSORBTION RATE - AMS2140 MACHINERY HEALTH ANALYZER

REPORT NUMBER

103295173LEX-003

ISSUE DATE [REVISED DATE]

4/1/2018 4/1/2018

PAGES

35

DOCUMENT CONTROL NUMBER

Non-Specific EMC Report Shell Rev. December 2017 © 2017 INTERTEK

SPECIFIC ABSORBTION RATE TEST REPORT

Report Number: 103295173LEX-003

Project Number: G103295173

Report Issue Date: 4/1/2018

Product Name: AMS2140 Machinery Health Analyzer

Standards: FCC Part 2.1093

RSS-102 Issue 5

Tested by:

Intertek Testing Services NA, Inc. 731 Enterprise Drive Lexington, KY 40510 Client:

Computational Systems, Inc. 835 Innovation Drive Knoxville, TN 37932-2563

Report prepared by

Report reviewed by

Bryan Taylor, Team Leader

James Sudduth, Senior Staff Engineer

Janes T. Solutt

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

1.0	INTRODUCTION	4
2.0	TEST SITE DESCRIPTION	5
3.0	JOB DESCRIPTION	9
4.0	SYSTEM VERIFICATION	11
5.0	EVALUATION PROCEDURES	16
6.0	TEST CONFIGURATION	20
7.0	TEST RESULTS	24
8.0	REFERENCES	28
APP	ENDIX A – SYSTEM VALIDATION SUMMARY	29
APP	ENDIX B – WORST CASE BLUETOOTH SAR PLOT	30
APP	ENDIX C – WORST CASE WIFI SAR PLOT	32
APP	ENDIX D – DIPOLE VALIDATION SAR PLOTS	33

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer

Date: 4/1/2018

1.0 INTRODUCTION

At the request of Computational Systems, Inc. the AMS2140 Machinery Health Analyzer was evaluated for SAR in accordance with the requirements for FCC Part 2.1093 and RSS-102 Issue 5. Testing was performed in accordance with IEEE Std 1528:2013, IEC62209-2:2010, and the Office of Engineering and Technology KDB 447498. Testing was performed at the Intertek facility in Lexington, Kentucky.

For the evaluation, the dosimetric assessment system DASY52 was used. The total uncertainty for the evaluation of the spatial peak SAR values averaged over a cube of 1g tissue mass had been assessed for this system to be $\pm 22.3\%$.

The AMS2140 Machinery Health Analyzer was tested at the maximum output power measured by Intertek. Maximum output power measurements are tabulated under Section 7.0 Test Results. The maximum spatial peak SAR value for the sample device averaged over 1g (for body worn mode) and 10g (for hand held mode) is shown below.

Based on the worst-case data presented above, the AMS2140 Machinery Health Analyzer was found to be **compliant** with the 1.6 W/kg and 4W/kg requirements for general population / uncontrolled exposure.

Table 1: Worst Case Reported SAR per Transmit Mode

Appendix Number	Transmit Mode	Device Position	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Reported SAR _{1g} – Body Mode (W/kg)	Limit (W/kg)
Appendix C	802.11b (DSSS)	Top Side	2412MHz	18.9dBm	0.5916W/kg	1.6W/kg
Appendix B	Bluetooth	Back Side	2441MHz	8.5dBm	0.0051W/kg	1.6W/kg

Note: According to the manufacturer this device does not support simultaneous transmission for any of the radios listed above.

Evaluation For: Computational Systems, Inc.
Product: AMS2140 Machinery Health Analyzer
Date: 4/1/2018

2.0 TEST SITE DESCRIPTION

The SAR test site located at 731 Enterprise Drive, Lexington KY 40510 is comprised of the SPEAG model DASY 5.2 automated near-field scanning system, which is a package, optimized for dosimetric evaluation of mobile radios [3]. This system is installed in an ambient-free shielded chamber. The ambient temperature is controlled to $22.0 \pm 2^{\circ}$ C. During the SAR evaluations, the RF ambient conditions are monitored continuously for signals that might interfere with the test results. The tissue simulating liquid is also stored in this area in order to keep it at the same constant ambient temperature as the room.

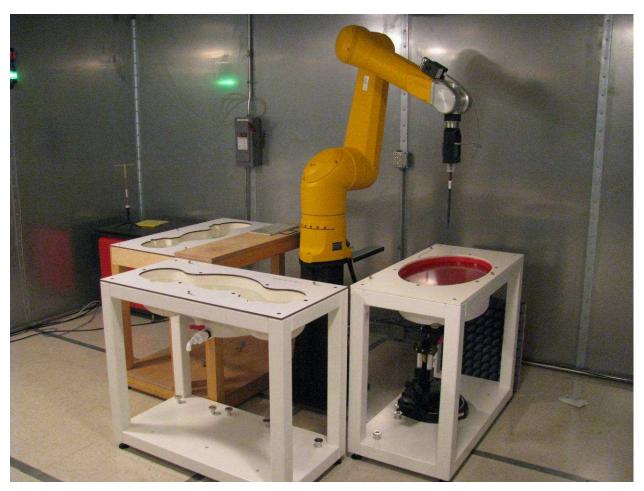


Figure 1: Intertek SAR Test Site

1.1 Measurement Equipment

The following major equipment/components were used for the SAR evaluation:

Table 2: Test Equipment Used for SAR Evaluation

Description	Serial Number	Manufacturer	Model	Cal. Date	Cal. Due
SAR Probe	3516	Speag	EXDV3	11/15/2017	11/15/2018
System Verification Dipole	718	Speag	D2450V2	11/7/2017	11/7/2018
DAE	358	Speag	DAE4	11/7/2017	11/7/2018
Vector Signal Generator	257708	Rohde & Schwarz	SMBV100A	9/20/2017	9/20/2018
Network Analyzer	US39173983	Agilent	8753ES	3/14/2017	3/14/2018
USB Power Sensor	100155	Rohde & Schwarz	NRP-Z81	9/20/2017	9/20/2018
USB Power Sensor	100705	Rohde & Schwarz	NRP-Z51	9/20/2017	9/20/2018
Dielectric Probe Kit	1111	Speag	DAK-3.5	NCR	NCR
Spectrum Analyzer	3099	Rohde & Schwarz	FSP7	10/18/2017	10/18/2018
SAM Twin Phantom	1663	Speag	QD 000 P40 C	NCR	NCR
Oval Flat Phantom ELI 5.0	1108	Speag	QD OVA 002 A	NCR	NCR
6-axis robot	F11/5H1YA/A/01	Staubli	RX-90	NCR	NCR
Thermometer	3181	Fluke	5311	3/6/2017	3/6/2018

^{*}NCR - No Calibration Required

Product: AMS2140 Machinery Health Analyzer
SAR Test Report
Date: 4/1/2018

Evaluation For: Computational Systems, Inc.

1.2 Measurement Uncertainty

The Table below includes the uncertainty budget suggested by the IEEE Std 1528-2013 and determined by SPEAG for the DASY5 measurement System.

		Prob.				Std.Unc.	Std.Unc.	(v _i)
Error Description	Uncertainty Value	Dist.	Div.	c _i (1g)	c _i (10g)	(1g)	(10g)	V _{eff}
			Measuremer	nt System				
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Modulation Response	±2.4%	R	√3	1	1	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
			Test sample	Related				
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	√3	1	1	±0%	±0%	∞
			Phantom ar	nd Setup				
Phantom Uncertainty	±6.1%	R	√3	1	1	±3.5%	±3.5%	∞
SAR Correction	±1.9%	R	√3	1	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	R	√3	0.78	0.71	±1.1%	±1.0%	∞
Liquid Permittivity(mea.)	±2.5%	R	√3	0.26	0.26	±0.3%	±0.4%	
Temp unc Conductivity	±2.3%	R	√3	0.20	0.20	±0.5%	±0.4% ±1.4%	
Temp unc Permittivity	±0.4%	R	√3	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty						±11.2%	±11.1%	361
Expanded STD Uncertainty						±22.3%	±22.2%	

Notes.

1. Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2013. The budget is valid for the frequency range 300 MHz – 3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer Date: 4/1/2018

		Prob.				Std.Unc.	Std.Unc.	(V _i)
Error Description	Uncertainty Value	Dist.	Div.	c _i (1g)	c _i (10g)	(1g)	(10g)	(V _i) V _{eff}
			Measuremer	nt System				
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effect	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Modulation Response	±2.4%	R	√3	1	1	±1.4%	±1.4%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	√3	1	1	±3.9%	±3.9%	∞
Max. SAR Eval.	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
			Test sample	Related				
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Power Scaling	±0.0%	R	√3	1	1	±0%	±0%	∞
<u> </u>			Phantom ar	nd Setup				
Phantom Uncertainty	±6.6%	R	√3	1	1	±3.8%	±3.8%	∞
SAR Correction	±1.9%	R	√3	1	0.84	±1.1%	±0.9%	∞
Liquid Conductivity (mea.)	±2.5%	R	√3	0.78	0.71	±1.1%	±1.0%	∞
Liquid Conductivity (mod.)	22.070		,0	0.70	0.7 1	21.170	21.070	
Liquid Permittivity(mea.)	±2.5%	R	√3	0.26	0.26	±0.3%	±0.4%	∞
Temp unc Conductivity	±3.4%	R	√3	0.78	0.71	±1.5%	±1.4%	∞
Temp unc Permittivity	±0.4%	R	√3	0.23	0.26	±0.1%	±0.1%	∞
Combined Standard Uncertainty						±12.3%	±12.2%	748
Expanded STD Uncertainty						±24.6%	±24.5%	

Notes.

Worst Case uncertainty budget for DASY5 assessed according to IEEE 1528-2013. The budget is valid for the frequency range 3~GHz-6~GHz and represents a worst-case analysis. Probe calibration error reflects uncertainty of the EX3D probe. For specific tests and configurations, the uncertainty could be considerably smaller.

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer Date: 4/1/2018

3.0 JOB DESCRIPTION

At the request of Computational Systems, Inc., SAR testing was performed on the AMS2140 Machinery Health Analyzer AMS2140. The AMS2140 Machinery Health Analyzer was a machinery health analyzer fitted with a Bluetooth / WiFi transmitter module. It can used with a strap which goes around the users neck, and allows the AMS2140 to hang against the body.

Table 3: Product Information

	Test Sample Information								
Manufacturer	Computational Systems, Inc.								
Product Name	AMS2140 Machinery Health Analyzer (Model:AMS2140)								
Serial Number	Test Sample 1								
Receive Date	1/11/2018								
Device Received Condition	Good								
Test Dates	1/11/2018 to 1/23/2018								
Device Category	Portable								
RF Exposure Category	General Population/Uncontrolled Environment								
Antenna Type	Internal								
Test sample Accessories	Test sample Accessories								
Accessory	None								

Table 4: Operating Bands

Operating Bands	Frequency Range (MHz)	Modulation	Max Output Power (dBm)	Duty Cycle
2.4GHz WiFi	2412 – 2462MHz	DSS, OFDM	18.9	1:1
Bluetooth (FHSS)	2402 – 2480MHz	GFSK, Pi/4- DQPSK, 8DPSK	8.5	1:1

Figure 2: Photograph of Test Sample

4.0 SYSTEM VERIFICATION

System Validation

Prior to the assessment, the system was verified to be within $\pm 10\%$ of the specifications by using the system validation kit. The system validation procedure tests the system against reference SAR values and the performance of probe, readout electronics and software. The test setup utilizes a phantom and reference dipole.

Figure 3: System Verification Setup

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer

Date: 4/1/2018

Table 5: Dipole Validations (1g)

	Reference Dipole Validation											
Ambient	Ambient Fluid Dipole											
Temp	Temp	Frequency		Fluid	Power	Cal. Lab	Measured	% Error				
(°C)	(°C)	(MHz)	Dipole	Type	Input	SAR (1g)	SAR (1g)	SAR (1g)	Date			
23.2	23.1	2450	D2450V2	MSL2450	1W	51.3	50.9	0.78	1/11/2018			

Table 6: Dipole Validations (10g)

	Reference Dipole Validation											
Ambient	Fluid				Dipole	Cal. Lab		% Error				
Temp	Temp	Frequency		Fluid	Power	SAR	Measured	SAR				
(°C)	(°C)	(MHz)	Dipole	Type	Input	(10g)	SAR (10g)	(10g)	Date			
23.2	23.1	2450	D2450V2	MSL2450	1W	24.1	23.9	0.83	1/11/2018			

SAR Test Report Product: A

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer Date: 4/1/2018

Measurement Uncertainty for System Validation

Source of Uncertainty	Value(dB)	Probability Distribution	Divisor	Ci	u _i (y)	(u _i (y))^2
Measurement System						
Probe Calibration	5.50	n1	1	1	5.50	30.250
Axial Isotropy	4.70	r	1.732	0.7	2.71	7.364
Hemispherical Isotropy	9.60	r	1.732	0.7	5.54	30.722
Boundary Effect	1.00	r	1.732	1	0.58	0.333
Linearity	4.70	r	1.732	1	2.71	7.364
System Detection Limits	1.00	r	1.732	1	0.58	0.333
Readout Electronics	0.30	n1	1	1	0.30	0.090
Response Time	0.80	r	1.732	1	0.46	0.213
Integration Time	2.60	r	1.732	1	1.50	2.253
RF Ambient Noise	3.00	r	1.732	1	1.73	3.000
RF Ambient Reflections	3.00	r	1.732	1	1.73	3.000
Probe Positioner	0.40	r	1.732	1	0.23	0.053
Probe Positioning	2.90	r	1.732	1	1.67	2.803
Max. SAR Eval.	1.00	г	1.732	1	0.58	0.333
Dipole / Generator / Power Meter Related						
Dipole positioning	2.90	n1	1	1	2.90	8.410
Dipole Calibration Uncertainty	0.68	r	1.732	1	0.39	0.154
Power Meter 1 Uncertainty (+20C to +25C)	0.13	n1	1	2	0.13	0.017
Power Meter 2 Uncertainty (+20C to +25C)	0.04	n1	1	3	0.04	0.002
Sig Gen VSWR Mismatch Error	1.80	n1	1	5	1.80	3.240
Sig Gen Resolution Error	0.01	n1	1	6	0.01	0.000
Sig Gen Level Error	0.90	n1	1	1	0.90	0.810
Phantom and Setup						
Phantom Uncertainty	4.00	r	1.732	1	2.31	5.334
Liquid Conductivity (target)	5.00	r	1.732	0.43	2.89	8.334
Liquid Conductivity (meas.)	2.50	n1	1	0.43	2.50	6.250
Liquid Permittivity (target)	5.00	r	1.732	0.49	2.89	8.334
Liquid Permittivity (meas.)	2.50	n1	1	0.49	2.50	6.250
Combined Standard Uncertainty		N1	1	1	11.63	135.247
Expanded Uncertainty		Normal k=	2		23.26	
Expanded Uncertainty	is	23.3	for	Normal	k=	2

Product: AMS2140 Machinery Health Analyzer
SAR Test Report
Date: 4/1/2018

Evaluation For: Computational Systems, Inc.

Tissue Simulating Liquid Description and Validation

The dielectric parameters were verified to be within 5% of the target values prior to assessment. The dielectric parameters (ε_r , σ) are shown in Table 7. A recipe for the tissue simulating fluid used is shown in Table 8.

Table 7: Dielectric Parameter Validations

Tissue Type	Frequen cy Measure (MHz)	c Constant Target	Conductivity Target	Measure	Imaginary Part	Conductivity Measure	Deviation	Conductivity % Deviation	Date
	2400	52.77	1.95	51.8	14.2	1.89	1.84	2.84	1/11/2018
	2450	52.7	1.95	51.5	14.6	1.9887	2.28	1.98	1/11/2018
2450MSL	2480	52.66	1.95	51.4	14.8	2.0406	2.39	4.65	1/11/2018
	_								
	Frequen			Diele etele			Diele ereie		
	су	С		Dielectric			Dielectric		
Tissue	Measure	Constant	Conductivity	Constant	Imaginary	Conductivity		Conductivity	
Type	(MHz)	Target	Target	Measure	Part	Measure	Deviation	% Deviation	Date
	2400	52.77	1.95	51.7	14.1	1.88	2.03	3.52	1/11/2018
	2450	52.7	1.95	51.7	14.2	1.9342	1.90	0.81	1/11/2018
2450MSL	2480	52.66	1.95	51.6	14.5	1.9992	2.01	2.52	1/11/2018

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer

Date: 4/1/2018

Table 8: Tissue Simulating Fluid Recipe

Compos	Composition of Ingredients for Liquid Tissue Phantoms (450MHz to 2450 MHz data only)											
Ingredient	f (MHz)											
(% by weight)	450		835		915		1900		2450		5500	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56	54.9	70.45	62.7	68.64	65.53	78.67
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.36	0.5	0	0	0
Sugar	56.32	46.78	56	45	56.5	41.76	0	0	0	0	0	0
HEC	0.98	0.52	1	1	1	1.21	0	0	0	0	0	0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0	0	0	0	0	0
Triton X-100	0	0	0	0	0	0	0	0	36.8	0	17.235	10.665
DGBE	0	0	0	0	0	0	44.92	29.18	0	31.37	0	0
DGHE	0	0	0	0	0	0	0	0	0	0	17.235	10.665
Dielectric Constant	43.42	58	42.54	56.1	42	56.8	39.9	53.3	39.8	52.7		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1	1.07	1.42	1.52	1.88	1.95		

Tissue Simulating Liquid for 5GHz, MBBL3500-5800V5 Manufactured by SPEAG (proprietary mixture)

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer

Date: 4/1/2018

Page 16 of 35

5.0 EVALUATION PROCEDURES

Prior to any testing, the appropriate fluid was used to fill the phantom to a depth of 15 cm +0.2cm. The fluid parameters were verified and the dipole validation was performed as described in the previous sections.

Test Positions:

The Device was positioned against the SAM and flat phantom using the exact procedure described in IEEE Std 1528:2013, IEC62209-2:2010, and the Office of Engineering and Technology KDB 447498.

Reference Power Measurement:

The measurement probe was positioned at a fixed location above the reference point. A power measurement was made with the probe above this reference position so it could used for the assessing the power drift later in the test procedure.

Area Scan:

A coarse area scan was performed in order to find the approximate location of the peak SAR value. This scan was performed with the measurement probe at a constant height in the simulating fluid. A two dimensional spline interpolation algorithm was then used to determine the peaks and gradients within the scanned area. The area scan resolution conformed to the requirements of KDB 865664 as shown in Table 9.

Zoom Scan:

A zoom scan was performed around the approximate location of the peak SAR as determined from the area scan. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure. The zoom scan resolution conformed to the requirements of KDB 865664 as shown in Table 9.

Report Number: 103295173LEX-003

Non-Specific EMC Report Shell Rev. December 2017

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer

Date: 4/1/2018

Table 9: SAR Area and Zoom Scan Resolutions

			≤3 GHz	> 3 GHz			
Maximum distance fro (geometric center of pr			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm			
Maximum probe angle surface normal at the n			30° ± 1°	20° ± 1°			
			≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm			
Maximum area scan sp	atial resolu	ution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test	on, is smaller than the above must be ≤ the corresponding device with at least one			
Maximum zoom scan s	patial reso	lution: Δx _{Zoom} , Δy _{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*			
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm			
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm			
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$				
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm			

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Product: AMS2140 Machinery Health Analyzer **SAR Test Report**

Date: 4/1/2018

Evaluation For: Computational Systems, Inc.

Interpolation, Extrapolation and Detection of Maxima:

The probe is calibrated at the center of the dipole sensors which is located 1 to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated.

In DASY5, the choice of the coordinate system defining the location of the measurement points has no influence on the uncertainty of the interpolation, Maxima Search and extrapolation routines. The interpolation, extrapolation and maximum search routines are all based on the modified Quadratic Shepard's method.

Thereby, the interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. The DASY5 routines construct a once-continuously differentiable function that interpolates the measurement values as follows:

- For each measurement point a trivariate (3-D) / bivariate (2-D) quadratic is computed. It interpolates the measurement values at the data point and forms a least-square fit to neighboring measurement values.
- The spatial location of the quadratic with respect to the measurement values is attenuated by an inverse distance weighting. This is performed since the calculated quadratic will fit measurement values at nearby points more accurate than at points located further away.
- After the quadratics are calculated for at all measurement points, the interpolating function is calculated as a weighted average of the quadratics.

There are two control parameters that govern the behavior of the interpolation method. One specifies the number of measurement points to be used in computing the least-square fits for the local quadratics. These measurement points are the ones nearest the input point for which the quadratic is being computed. The second parameter specifies the number of measurement points that will be used in calculating the weights for the quadratics to produce the final function. The input data points used there are the ones nearest the point at which the interpolation is desired. Appropriate defaults are chosen for each of the control parameters.

The trivariate quadratics that have been previously computed for the 3-D interpolation and whose input data are at the closest distance from the phantom surface, are used in order to extrapolate the fields to the surface of the phantom.

In order to determine all the field maxima in 2-D (Area Scan) and 3-D (Zoom Scan), the measurement grid is refined by a default factor of 10 and the interpolation function is used to evaluate all field values between corresponding measurement points. Subsequently, a linear search is applied to find all the candidate maxima. In a last step, non-physical maxima are removed and only those maxima which are within 2 dB of the global maximum value are retained.

Report Number: 103295173LEX-003

Product: AMS2140 Machinery Health Analyzer **SAR Test Report**

Date: 4/1/2018

Evaluation For: Computational Systems, Inc.

Averaging and Determination of Spatial Peak SAR

The interpolated data is used to average the SAR over the 1g and 10g cubes by spatially discretizing the entire measured volume. The resolution of this spatial grid used to calculate the averaged SAR is 1mm or about 42875 interpolated points. The resulting volumes are defined as cubical volumes containing the appropriate tissue parameters that are centered at the location. The location is defined as the center of the incremental volume.

The spatial-peak SAR must be evaluated in cubical volumes containing a mass that is within 5% of the required mass. The cubical volume centered at each location, as defined above, should be expanded in all directions until the desired value for the mass is reached, with no surface boundaries of the averaging volume extending beyond the outermost surface of the considered region. In addition, the cubical volume should not consist of more than 10% of air. If these conditions are not satisfied then the center of the averaging volume is moved to the next location. Otherwise, the exact size of the final sampling cube is found using an inverse polynomial approximation algorithm, leading to results with improved accuracy. If one boundary of the averaging volume reaches the boundary of the measured volume during its expansion, it will not be evaluated at all. Reference is kept of all locations used and those not used for averaging the SAR. All average SAR values are finally assigned to the centered location in each valid averaging volume.

All locations included in an averaging volume are marked to indicate that they have been used at least once. If a location has been marked as used, but has never been assigned to the center of a cube, the highest averaged SAR value of all other cubical volumes which have used this location for averaging is assigned to this location. Only those locations that are not part of any valid averaging volume should be marked as unused. For the case of an unused location, a new averaging volume must be constructed which will have the unused location centered at one surface of the cube. The remaining five surfaces are expanded evenly in all directions until the required mass is enclosed, regardless of the amount of included air. Of the six possible cubes with one surface centered on the unused location, the smallest cube is used, which still contains the required mass.

If the final cube containing the highest averaged SAR touches the surface of the measured volume, an appropriate warning is issued within the post processing engine.

Power Drift Measurement:

The probe was positioned at precisely the same reference point and the reference power measurement was repeated. The difference between the initial reference power and the final one is referred to as the power drift. This value should not exceed 5%. The power drift measurement was used to assess the output power stability of the test sample throughout the SAR scan.

RF Ambient Activity:

During the entire SAR evaluation, the RF ambient activity was monitored using a spectrum analyzer with an antenna connected to it. The spectrum analyzer was tuned to the frequency of measurement and with one trace set to max hold mode. In this way, it was possible to determine if at any point during the SAR measurement there was an interfering ambient signal. If an ambient signal was detected, then the SAR measurement was repeated.

Report Number: 103295173LEX-003

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer

Date: 4/1/2018

Criteria

The following FCC limits for SAR apply to portable devices operating in the General Population/Uncontrolled Exposure environment:

Exposure	SAR
(General Population/Uncontrolled Exposure environment)	(W/kg)
Average over the whole body	0.08
Spatial Peak (1g)	1.60
Spatial Peak for hands, wrists, feet and ankles (10g)	4.00

6.0 TEST CONFIGURATION

The AMS2140 Machinery Health Analyzer could be used with a strap which goes around the operators neck and allows it to hang against the body when transmitting. These devices provide an undetermined separation distance to the user. Therefore it was tested for body mode exposure with 0mm spacing to the SAR phantom in an effort to simulate the worst case body exposure condition likely to occur in this exposure situation.

The AMS2140 Machinery Health Analyzer could also be used whilst being held in the hand of the user. Therefore the 10g SAR was also measured and compared to the extremity limits for hands, feet, wrists, and ankles.

The device was evaluated according to the specific requirements found in the following KDBs and Standards:

- FCC KDB 447498D01 v06, General RF Exposure Guidance
- FCC KDB 865664D01 v01r04, SAR Measurement Requirements for 100MHz to 6GHz
- FCC KDB 248227D01 v02r02, SAR Guidance for 802.11 (WiFi) Transmitters
- RSS-102 Issue 5, Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

The worst case 1-g SAR value was less than the 1.6W/kg limit. The worst case 10-g SAR value was less than the 4.0W/kg limit for extremities.

According to the manufacturer, it is not possible for any of the radios onboard to simultaneously transmit. Therefore no simultaneous transmission conditions were considered.

Figure 4: Test Setup (Top Side)

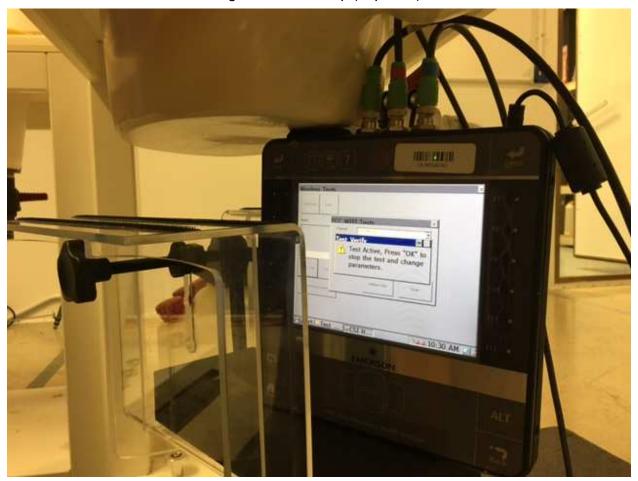


Figure 5: Test Setup (Side)

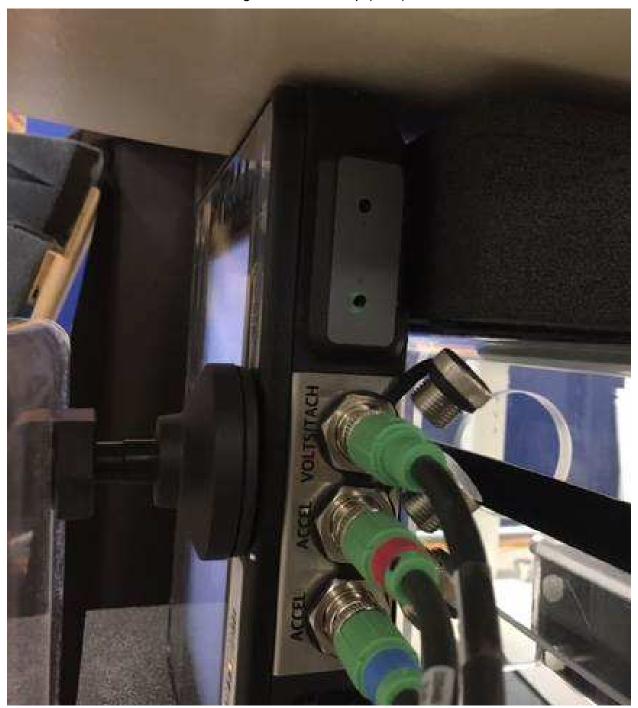


Figure 6: Test Setup (Back)

7.0 TEST RESULTS

The results on the following page(s) were obtained when the device was transmitting at maximum output power. Detailed measurement data and plots, which reveal information about the location of the maximum SAR with respect to the device, are referenced are shown in separate exhibits presented with this application. The measured conducted output power was compared to the power declared by the manufacturer and used for scaling the measured SAR values.

Table 10: WiFi Conducted Output Power

Mode	Data Rate	Channel	Freq. (MHz)	Average Power (dBm)
		1	2412	18.80
802.11b	1Mbps	6	2437	18.90
		11	2463	18.70
		1	2412	15.80
802.11g	6Mbps	6	2437	15.80
		11	2463	15.70
		1	2412	15.70
802.11n20	0MCS	6	2437	15.80
		11	2463	15.60
		3	2422	15.60
802.11n40	0MCS	6	2437	15.70
		9	2452	15.50

Table 11: Bluetooth Conducted Output Power

Mode	Data Rate	Channel	Freq. (MHz)	Average Power (dBm)
		0	2402	8.30
BT	GFSK	39	2441	8.50
		78	2480	8.40
	D:/4	0	2402	8.20
BT	Pi/4- DQPSK	39	2441	8.30
	DQFSK	78	2480	8.30
		0	2402	8.30
ВТ	8DPSK	39	2441	8.20
		78	2480	8.10

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer Date: 4/1/2018

2.4GHz WiFi SAR Results:

WiFi SAR reduction was applied per KDB 248227D01. DSSS SAR was first measured at the highest output power channel. When the reported SAR is ≤ 0.4 W/kg, SAR is not required for the remaining test configuration. When the reported SAR is >0.4W/kg, test the next highest configuration until the SAR value is ≤ 0.8 W/kg. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for OFDM in that configuration.

Table 12: Body Worn SAR Results, 802.11b (DSSS)

	US / Canada Body SAR Results Using 2450MHz MSL											
Date	TX Mode	Spacing	Position	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)				
		0mm	Back	0.00	0.2800	0.2865	18.90	19.00				
1/11/2018	802.11b Ch 6		Тор	0.05	0.5520	0.5649	18.90	19.00				
			Left Side	-0.08	0.0100	0.0102	18.90	19.00				
		1	g SAR Limit	(Head & Bod	y) = 1.6W/kg							

US / Canada Body SAR Results Using 2450MHz MSL Measured Maximum Conducted Conducted Measured Reported Output Output Power SAR 1g SAR 1g **Power Power Position Date** TX Mode **Spacing** Drift (dB) (W/kg) (W/kg) (dBm) (dBm) 1/11/2018 802.11b Ch 1 0mm Top -0.02 0.5650 0.5916 18.80 19.00 802.11b Ch 1/11/2018 0mm Top 0.5015 -0.04 0.4680 18.70 19.00 11 1g SAR Limit (Head & Body) = 1.6W/kg

Table 13: Extremity SAR Results, 802.11b (DSSS)

Date	TX Mode	Spacing	Position	Power Drift (dB)	Measured SAR 10g (W/kg)	Reported SAR 10g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)
		0mm	Back	0.00	0.1550	0.1586	18.90	19.00
1/11/2018	802.11b Ch 6		Тор	0.05	0.2250	0.2302	18.90	19.00
			Left Side	-0.08	0.0190	0.0194	18.90	19.00
			10a SAR Lir	mit (Extremity	/) = 4W/kg			

	US / Canada Extremity SAR Results Using 2450MHz MSL											
Date	TX Mode	Spacing	Position	Power Drift (dB)	Measured SAR 10g (W/kg)	Reported SAR 10g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)				
1/11/2018	802.11b Ch 1	0mm	Тор	-0.02	0.2350	0.2461	18.80	19.00				
1/11/2018	802.11b Ch 11	0mm	Тор	-0.04	0.1950	0.2089	18.70	19.00				
			10g SAR Lii	mit (Extremity	/) = 4W/kg							

Evaluation For: Computational Systems, Inc.

Product: AMS2140 Machinery Health Analyzer

SAR Test Report

Date: 4/1/2018

Bluetooth SAR Results:

Bluetooth SAR reduction was applied per KDB 447498D01. SAR was first measured at the highest output channel. Testing of other required channels within the operating mode of a frequency band is not required when the reported 1g or 10g SAR for the mid-band or highest output power channel is \leq 0.8W/kg or 2.0W/kg (for 1g or 10g respectively, when the transmission band is \leq 100MHz.

Table 14: Body Worn SAR Results, Bluetooth

		US / Canada Body SAR Results Using 2450MHz MSL										
Date	TX Mode	Spacing	Position	Power Drift (dB)	Measured SAR 1g (W/kg)	Reported SAR 1g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)				
1/12/2018	Mid Channel	0mm	Back	0.06	0.0051	0.0064	8.50	9.50				
1/12/2018	Mid Channel	0mm	Тор	0.05	0.0047	0.0059	8.50	9.50				
1/12/2018	Mid Channel	0mm	USB Side	-0.02	0.0044	0.0055	8.50	9.50				
	1g SAR Limit (Head & Body) = 1.6W/kg											

Table 15: Extremity SAR Results, Bluetooth

			US / Canada	Body SAR F	Results Using	2450MHz M	SL	
Date	TX Mode	Spacing	Position	Power Drift (dB)	Measured SAR 10g (W/kg)	Reported SAR 10g (W/kg)	Measured Conducted Output Power (dBm)	Maximum Conducted Output Power (dBm)
1/12/2018	Mid Channel	0mm	Back	0.06	0.0002	0.0003	8.50	9.50
1/12/2018	Mid Channel	0mm	Тор	0.05	0.0002	0.0002	8.50	9.50
1/12/2018	Mid Channel	0mm	USB Side	-0.02	0.0002	0.0002	8.50	9.50
			10g SAR L	.imit (Extrem	ity) = 4.0W/kg	9		

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer

Date: 4/1/2018

8.0 REFERENCES

- [1] ANSI, ANSI/IEEE C95.1-1991: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1992
- [2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), FCC, Washington, D.C. 20554, 1997
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, "Automated E-field scanning system for dosimetric assessments", *IEEE Transaction on Microwave Theory and Techniques*, vol. 44, pp. 105-113, Jan. 1996.
- [4] Niels Kuster, Ralph Kastle, and Thomas Schmid, "Dosimetic evaluation of mobile communications equipment with know precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp.645-652, May 1997.
- [5] NIS81, NAMAS, "The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddinton, Middlesex, England, 1994.
- [6] Barry N. Tayor and Chris E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994.
- [7] Federal Communications Commission, KDG 248227 "SAR Measurement Procedures for 802.11 a/b/g Transmitters"
- [8] Federal Communications Commission, KDB 648474 "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas".
- [9] Federal Communications Commission, KDB 447498 "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies".
- [10] Federal Communications Commission, KDB 616217 "SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens".
- [11] Federal Communications Commission, KDB 450824 "SAR Probe Calibration and System Verification Considerations for Measurements at 150MHz 3GHz".
- [12] Federal Communications Commission, KDB 865664 "SAR Measurement Requirements for 3-6GHz".
- [13] Federal Communications Commission, KDB 941225 "SAR Measurement Procedures for 3G Devices".
- [14] ANSI, ANSI/IEEE C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices.

Product: AMS2140 Machinery Health Analyzer **SAR Test Report**

Date: 4/1/2018

Evaluation For: Computational Systems, Inc.

APPENDIX A - SYSTEM VALIDATION SUMMARY

Per FCC KDB 865664, a tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters have been included in the summary table below. The validation was performed with reference dipoles using the required tissue equivalent media for system validation according to KDB 865664. Each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point. All measurements were performed using probes calibrated for CW signals. Modulations in the table above represent test configurations for which the SAR system has been validated. The SAR system was also validated with modulated signals per KDB 865664.

				Probe Calibi	ration Point	on Point Dielectric Properties		C	CW Validation			ılation Valid	ation
Frequency (MHz)	Date	Probe (SN#)	Probe (Model #)	Frequency (MHz)	Fluid Type	σ	€ _r	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	PAR
2450	1/13/2017	3516	EX3DV3	2450	Body	50.65	2.02	Pass	Pass	Pass	OFDM	N/A	Pass
5200	1/13/2017	3516	EX3DV3	5200	Body	48.71	5.54	Pass	Pass	Pass	OFDM	N/A	Pass
5500	1/13/2017	3516	EX3DV3	5500	Body	47.68	6.29	Pass	Pass	Pass	OFDM	N/A	Pass
5800	1/13/2017	3516	EX3DV3	5800	Body	48.71	5.54	Pass	Pass	Pass	OFDM	N/A	Pass

				Probe Calibi	Probe Calibration Point		Dielectric Properties		CW Validation			Modulation Validation		
Frequency		Probe	Probe	Frequency					Probe	Probe		Duty		
(MHz)	Date	(SN#)	(Model #)	(MHz)	Fluid Type	σ	€r	Sensitivity	Linearity	Isotropy	Mod. Type	Factor	PAR	
835	1/14/2017	3516	EX3DV3	835	Body	54.2	0.98	Pass	Pass	Pass	GMSK	Pass	N/A	
900	1/14/2017	3516	EX3DV3	900	Body	54	1.02	Pass	Pass	Pass	GMSK	Pass	N/A	
1750	1/14/2017	3516	EX3DV3	1800	Body	52.9	1.41	Pass	Pass	Pass	GMSK	Pass	N/A	
1900	1/14/2017	3516	EX3DV3	1900	Body	52.7	1.48	Pass	Pass	Pass	GMSK	Pass	N/A	

Table 16: SAR System Validation Summary

Report Number: 103295173LEX-003

Non-Specific EMC Report Shell Rev. December 2017 Page 29 of 35

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer Date: 4/1/2018

APPENDIX B – WORST CASE BLUETOOTH SAR PLOT

Date/Time: 1/12/2018 8:34:55 AM

Test Laboratory: Intertek

File Name: SAR Bluetooth.da52:4

1.2.1 SAR_Bluetooth

Procedure Notes:

DUT: Emerson AMS2140; Serial: Sample 1

Communication System: UID 0, Generic Bluetooth (0); Communication System Band: 2.4Ghz ISM; Frequency: 2442

MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2442 MHz; $\sigma = 2.02$ S/m; $\epsilon_r = 50.719$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV3 - SN3516; ConvF(8.43, 8.43, 8.43); Calibrated: 11/15/2017;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn358; Calibrated: 11/7/2017

Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

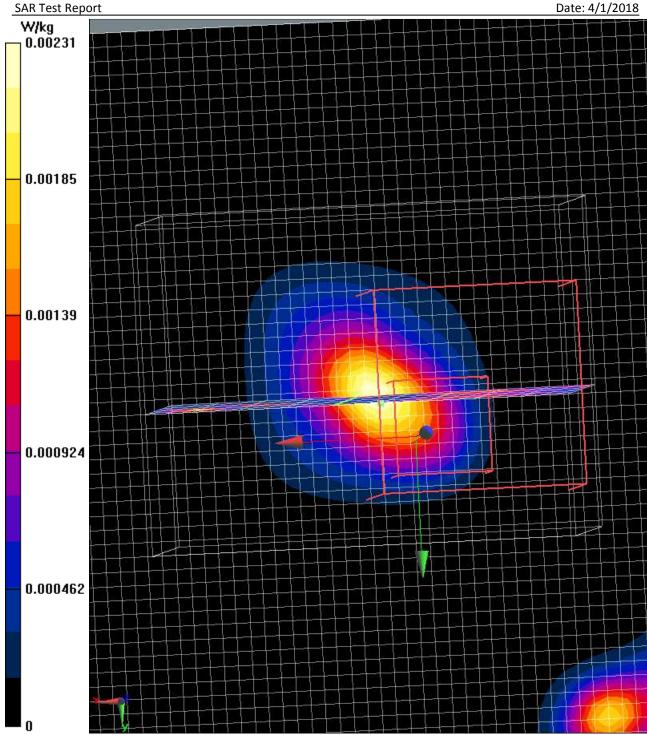
WWAN Flat-Section MSL Testing/Bluetooth Mid Channel, Direct Contact, Back Side/Area Scan 2 (51x71x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.00231 W/kg

WWAN Flat-Section MSL Testing/Bluetooth Mid Channel, Direct Contact, Back Side/Zoom Scan (10x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.863 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.00178 W/kg


SAR(1 g) = 0.000512 W/kg; SAR(10 g) = 0.000199 W/kg

Maximum value of SAR (measured) = 0.00126 W/kg

Report Number: 103295173LEX-003

Evaluation For: Computational Systems, Inc.
Product: AMS2140 Machinery Health Analyzer
Date: 4/1/2018

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer Date: 4/1/2018

APPENDIX C – WORST CASE WIFI SAR PLOT

Date/Time: 1/11/2018 12:23:59 PM

Test Laboratory: Intertek
File Name: SAR DSSS.da52:4

1.2.2 SAR_DSSS

Procedure Notes:

DUT: Emerson AMS2140; Serial: Sample 1

Communication System: UID 0, Generic 802.11b/g/n (0); Communication System Band: 2.4 GHz Band; Frequency:

2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.968$ S/m; $\varepsilon_r = 50.861$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV3 - SN3516; ConvF(8.43, 8.43, 8.43); Calibrated: 11/15/2017;

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn358; Calibrated: 11/7/2017

Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

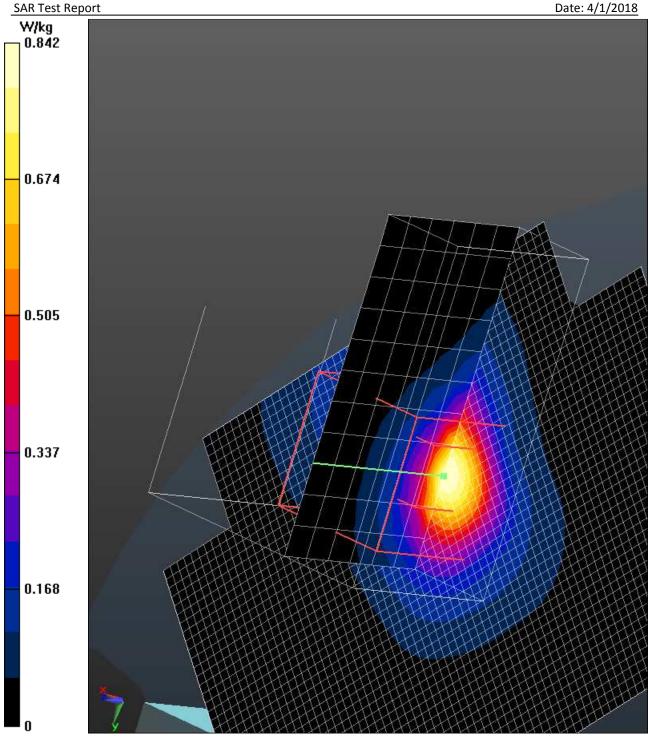
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

WWAN Flat-Section MSL Testing/DSSS Low Channel, Direct Contact, Top Side/Area Scan 2 (51x71x1):

Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.842 W/kg

WWAN Flat-Section MSL Testing/DSSS Low Channel, Direct Contact, Top Side/Zoom Scan (10x12x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 20.515 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.565 W/kg; SAR(10 g) = 0.235 W/kg

Maximum value of SAR (measured) = 1.03 W/kg

Report Number: 103295173LEX-003

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer Date: 4/1/2018

APPENDIX D - DIPOLE VALIDATION SAR PLOTS

Date/Time: 1/10/2018 11:14:10 AM

Product: AMS2140 Machinery Health Analyzer **SAR Test Report**

Date: 4/1/2018

Evaluation For: Computational Systems, Inc.

Test Laboratory: Intertek

File Name: dipole_2450.da52:0

dipole 2450

Procedure Notes: Ambient Temp: 22.8C, Fluid Temp: 22.2C

DUT: Dipole 2450 MHz D2450V2; Serial: D2450V2 - SN:xxx

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency:

2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 50.71$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV3 - SN3516; ConvF(8.43, 8.43, 8.43); Calibrated: 11/15/2017;

Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn358; Calibrated: 11/7/2017

Phantom: SAM 2 with CRP v5.0; Type: QD000P40CD; Serial: TP:1663

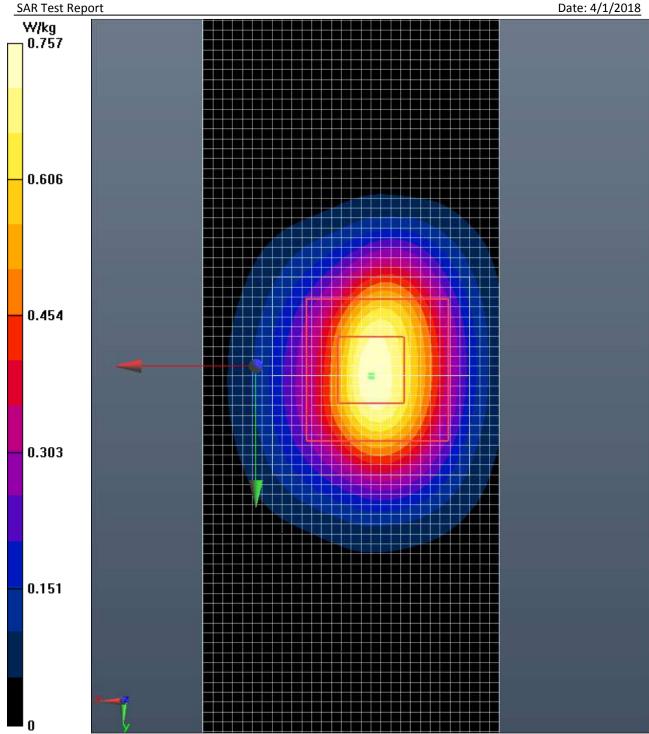
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Area Scan (31x121x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.757 W/kg

System Performance Check at Frequencies below 1 GHz/d=10mm, Pin=100 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.734 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 102 W/kg


SAR(1 q) = 50.9 W/kq; SAR(10 q) = 23.9 W/kq

Normalized to target power = 1 W and actual power = 0.01 W

Maximum value of SAR (measured) = 58.5 W/kg

Evaluation For: Computational Systems, Inc. Product: AMS2140 Machinery Health Analyzer Date: 4/1/2018

