

IMS2 module user manual

Project Name: IMS2

Author: Wistron NeWeb Corporation

Revision: 1.1

Revision Date: 2017/09/13

Contact Information

Technical Support Website	https://SupportIoT.wnc.com.tw
Company Website	www.wnc.com.tw

Revision History

Rev. #	Author	Summary of Changes	Date
1.0	WNC	First release	2017/07/14
1.1	WNC	Add FCC statement and manual information to the end user in the user manual	2017/09/13

© Wistron NeWeb Corporation

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROPRIETARY AND IS THE EXCLUSIVE PROPERTY OF WNC AND SHALL NOT BE DISTRIBUTED, REPRODUCED, OR DISCLOSED IN WHOLE OR IN PART WITHOUT PRIOR WRITTEN PERMISSION FROM WNC.

LIMITATION OF LIABILITY

THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PURELY FOR DESIGN REFERENCE AND SUBJECT TO REVISION BY WNC AT ANY TIME. NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY WARRANTY OR RIGHT TO USE THE MATERIAL CONTAINED HEREIN WITHOUT WNC'S PRIOR EXPRESS WRITTEN CONSENT. WNC SHALL NOT BE LIABLE FOR ANY USE, APPLICATION OR DEVELOPMENT DERIVED FROM THE MATERIAL WITHOUT SUCH PRIOR EXPRESS WRITTEN CONSENT.

FCC Statement

Please notice that if the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains FCC ID:NKRIMS2". Any similar wording that expresses the same meaning may be used.

Manual Information to the End User

The module is limited to OEM installation ONLY.

The OEM integrator is responsible for ensuring that the end-user has no manual instruction to remove or install module.

The module is limited to installation in mobile application; a separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and difference antenna configurations.

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20cm between the radiator & your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

WNC

Contents

Con	tact Information	2
Rev	ision History	2
1	Product Features	6
	1.1 Features Description	6
2	Pin Definitions	8
	2.1 LGA Module Pin Diagram	8
	2.2 LGA Module Pin Definitions	8
3	Electrical Specifications	.12
	3.1 Electrical Operating Conditions	.12
	3.1.1 Detailed Information	.12
	3.1.2 Power Tree	.12
	3.2 Control Interfaces	.13
	3.2.1 Power-on Signal (TBD)	.13
	3.2.2 Wake-up Interface (TBD)	.13
	3.2.3 Reset Signal	.14
	3.3 UART Interface	.14
	3.4 UIM Interface	.15
	3.5 I/O Characteristics	.15
	3.6 JTAG Interface	.17
	3.7 Power Consumption	.17
	3.8 RF Performance	.18
	3.8.1 RF Pad Design	.18
	3.8.2 RF Matching Guide	.21
	3.8.3 Interference and Sensitivity	.21
	3.8.4 Band Support	.22
	3.8.5 Bandwidth Support	.22
	3.8.6 RF Transmission Specifications	.22
	3.8.7 RF Receiver Specifications	.23
	3.9 Temperature	.23
	3.10 LTE Power Saving Mode	.23
	3.11 Serial Number and IMEI	.23
4	Mechanical Information	.25
	4.1 Physical Dimensions	.25
	4.2 Pin Dimensions	.25
	4.3 Marking Information	.27
5	Packing Information	.28
	5.1 Packing Information	.28
	5.2 Storage Conditions	.28
6	PCB Mounting Guidelines	.28
	6.1 Mounting Considerations	.28
7	Regulatory and Industry Approval	.28
	7.1 Certification Testing	.28

7.2 GP Compliance	
Initialisms	

1 Product Features

1.1 Features Description

The WNC IMS2 module includes the Sequans SQN3330 Cat. M1 baseband, a complete three LTE band (2/4/12) RF front-end, memory, and required circuitry to fulfill 3GPP E-UTRA (Long Term Evolution - LTE, Release 13 specifications) and AT&T Wireless LTE Cat. M1 UE specifications.

The architecture block diagram of the IMS2 is presented in Figure 1-1 below.

Figure 1-1. IMS2 block diagram

	• JTAG	
	• USIM	
General interfaces	• GPIO	
	• UART	
Supported frequency bands	LTE Band 2	
	• LTE Band 4	
	LTE Band 12	
Operating voltage	• V _{cc} (range from 3.3 V to 4.2 V)	
Packaging	LGA module	
	 104 pads (21.5 mm × 16.5 mm × 2.3 mm) 	
	RoHS compliant	
Operating temperature	 3GPP compliant: -20 °C to +60 °C (ambient) 	
Operating temperature	 Operational: –40 °C to +85 °C (functional) 	

Table 1-1. General features of the IMS2

Standards compliance	• 3GPP E-UTRA Release 13	
	One UL and one DL transceiver	
	Supports HD-FDD Duplexing	
	• Category M1 UE	
	Normal cyclic prefix	
	Supports MPDCCH	
	Modulation	
рну	- DL: QPSK, 16QAM	
	- UL: QPSK, 16QAM	
	 All coding schemes corresponding to modulations 	
	• All channel coding (turbo-coding with inter-leaver, tail biting convolutional coding, block and repetition coding) and CRC lengths	
	 All power control schemes and DL power allocation schemes 	
	• UEPCOP (from 3GPP Release 12) Power Saving Mode	
	 Random access procedure in normal sub-frames 	
	 Scheduling request, buffer status reporting, and power headroom reporting 	
MAC	• Discontinuous reception (DRX, eDRX) with long and short cycles	
	• Fast scanning	
	• IPv4, IPv6	
RLC	• ARQ modes: UM, AM, and TM	
	 Ciphering and deciphering: NULL, AES, SNOW 3G 	
PDCP	 Integrity and protection: AES, SNOW 3G 	
	MIB and new SIB1bis	
NNC .	 Supports up to eight data radio bearers 	
	• NAS	
NAS and above	• SMS over SG	
	• LWM2M client	

Table 1-2. LTE-related features of the IMS2

2 Pin Definitions

2.1 LGA Module Pin Diagram

The IMS2 LGA module pin layout is illustrated below.

Figure 2-1. IMS2 LGA module pin layout

2.2 LGA Module Pin Definitions

The signals and all the related details are listed in the below table.

Pin No.	Name	Description
7	GND	Ground
8	GND	Ground
9	NC	Not connected
10	GND	Ground
11	GND	Ground
12	GND	Ground
13	GND	Ground
14	GND	Ground

Table 2-1. IMS2 module pin definition

15	Main antenna	Main antenna port
16	GND	Ground
17	GND	Ground
18	GND	Ground
19	GND	Ground
20	GND	Ground
21	NC	Not connected
22	GND	Ground
23	GND	Ground
24	GND	Ground
25	GND	Ground
26	GND	Ground
27	NC	Not connected
28	GND	Ground
29	GND	Ground
30	GND	Ground
37	Power	Power
38	Power	Power
39	Power	Power
40	Power	Power
41	Power	Power
42	Power	Power
43	NC	Not connected
44	GND	Ground
45	GND	Ground
46	GPIO46	General purpose input/output
47	GPIO47	General purpose input/output
48	GPIO48	General purpose input/output
49	GPIO49	General purpose input/output
50	GND	Ground
51	GND	Ground
52	GPIO01	General purpose input/output
53	GPIO02	General purpose input/output
80	UART1_CTS	Clear to send for UART 1
81	UART1_RTS	Request to send for UART 1
82	UART1_Rx	Receive for UART 1
83	UART1_Tx	Transmit for UART 1
84	GND	Ground
85	GND	Ground

86	NC	Not connected
87	NC	Not connected
88	NC	Not connected
89	GND	Ground
90	GND	Ground
91	GND	Ground
92	UARTO_CTS	Clear to send for UART 0
93	UARTO_TX	Transmit for UART 0
94	UART2_TX	Transmit for UART 2
95	UARTO_RX	Receive for UART 0
96	UART2_RX	Receive for UART 2
97	UARTO_RTS	Request to send for UART 0
98	UART2_RTS	Request to send for UART 2
99	UART2_CTS	Clear to send for UART 2
100	FFF/FFH mode	FFF/FFH mode switch; FFF is normal mode; FFH is for
100	switch	design mode.
101	RFDATA5	RF control interface
102	RFDATA6	RF control interface
103	RFDATA7	RF control interface
130	ADC	Analog-to-digital converter
131	ADC	Analog-to-digital converter
132	GPIO08	General purpose input/output
133		SIM card power
134	UIM DATA	SIM card data line
135	UIM CLK	SIM card clock line
136	UIM RESET	SIM card reset line
137	UIM DETECT	SIM card detect line
138	NC	Not connected
139	GND	Ground
140	GND	Ground
141	WWAN_STATE	Wireless WAN radio state
142	Power on	Power on the module
143	WAKEUP_OUT	Module wakes up host.
144	WAKEUP_IN	Host wakes up module.
145	RESET	Main reset line
146	VREF	Reference logic voltage (1.8 V voltage)
201	ЈТАБ ТСК	ЈТАБ ТСК
202	JTAG TDI	JTAG TDI
203	JTAG TDO	JTAG TDO

204	JTAG_TMS	JTAG_TMS
205	JTAG_SRST_N	JTAG_SRST_N
206	NC	Not connected
208	GND	Ground
209	GND	Ground
210	GND	Ground
211	GND	Ground
212	GND	Ground
213	GND	Ground
214	GND	Ground
215	GND	Ground
216	GND	Ground
217	GND	Ground
218	GND	Ground
219	GND	Ground
220	GND	Ground
221	GND	Ground
222	GND	Ground
223	GND	Ground

3 Electrical Specifications

3.1 Electrical Operating Conditions

3.1.1 Detailed Information

Table 3-1. Electrical operating conditions for the IMS2.

	Direction	Minimum	Typical	Maximum
V _{cc}	In	3.3 V	3.8 V	4.2 V

IMS2 includes an integrated Power Manager enabling single and direct voltage supply from the battery and reducing the overall bill of materials.

Layout Suggestion: Each power trace should possess sufficient line width to withstand its respective current listed in Table 3-2 below.

Table 3-2. Power supply reference currency

Net Name	Current Value
VCC(1–6) total	TBD
UIM_VCC	TBD
VREF	TBD

Note: Routing under a 1 A design is desired as it will result in more stable power.

3.1.2 Power Tree

Figure 3-1 provides a representation of the power tree of the IMS2 LGA module

Figure 3-1. IMS2 power tree

3.2 Control Interfaces

This section describes the power-on/off, wake-up, and reset interface for controlling the module.

3.2.1 Power-on Signal (TBD)

The POWER_ON signal is an active low input signal used to enable or disable the module. Do not toggle the PERST# pin during power-on. This signal has the highest priority among the wakeup, the alarm signal, and the digital control pins.

There are three possible states of the module:

- Module Off: V_{CC} is not present.
- Module Enabled: V_{CC} is supplied, and the module is enabled.
- Module Disabled: V_{CC} is supplied, and the module is disabled.

The state transitions are defined as follows:

• When voltage is applied to V_{CC}, the module shall enter the Module Disabled state.

An input to the POWER_ON pin shall trigger the transition from the Module Disabled to the Module Enabled state. See Figure 6; a low pulse (tlow > 0s) on the POWER_ON pad will enable the module after V_{cc} is applied.

3.2.2 Wake-up Interface (TBD)

In applications where power consumption is a major factor in performance metrics (such as battery-operated sensors that are based on an IOT/M2M modem solution and also include a third-party host), definitions are necessary for a simple interface that will enable both the modem and the host to enter low-power states whenever possible and the other side to wake it up once required.

For example, if the host has no data to transmit or any other tasks, it may enter a low-power state according to its own capabilities and configurations. If during that period the host is in a low-power state and the modem suddenly receives data, it must wake-up the host.

A similar requirement exists in the reverse case. For example, if the modem is in a low-power state and suddenly the host must transmit data, it must be able to wakeup the modem.

The interface consists of two signals: One is triggered by the host and received by the modem; the other is triggered by the modem and received by the host.

Each side can wake the other by toggling a wakeup signal high and enabling the

other side to activate sleep mode when not needed by toggling it low.

- "WAKEUP_IN" (Host: Output, Modem: Input):
 - LOW: SoC does not require the MODEM (allowing it to sleep).
 - HIGH: SoC requires the MODEM or acknowledges it is ready following a wakeup request from the MODEM.
- "WAKEUP_OUT" (Host: Input, Modem: Output):
 - LOW: The MODEM does not require the Host (allowing it to sleep).
 - HIGH: The MODEM requires the Host or acknowledges it is ready following a wakeup request from the SoC.

When the IMS2 module functions as a modem, keep WAKEUP_IN high before the system boot process is complete. After the system boot, maintain WAKEUP_IN in a low state. The WAKEUP_IN and WAKEUP_OUT operation in host mode will be discussed according to product specifications.

3.2.3 Reset Signal

The Reset Signal is a hardware reset signal to control the system reset directly. The user can connect it to a key or a control signal. A low pulse after power on will reset the module.

3.3 UART Interface

There are three UART interfaces; these interfaces are 4 bit for high-speed data transfer, and the UART definitions of IMS2 are shown in Figure 3-2.

- 1. UARTO for data
- 2. UART1 for debugging the DM tool and software upgrade
- 3. UART2 for the console

3.4 UIM Interface

IMS2 modules provide a UIM_DETECT input pin for UIM connectors to detect a UIM card. When a UIM card is present, UIM_DETECT should be high (1.8 V). If the UIM card is absent, UIM_DETECT should be low. This is required to pull UIM_DETECT to VREF with a 470 k Ω resistor. A 0.1 μ F and a 33 pF capacitor are recommended to place between UIM_VCC and Ground in parallel. We recommend placing a 33 pF capacitor between UIM_RESET, UIM_CLK, and UIM_DATA and Ground in parallel. (Refer to Figure 5.)

An electrostatic discharge (ESD) protection circuit is also recommended to place near the UIM socket as close as possible, and the Ground pin of the ESD protection component must be well connected to the Ground plane.

The following figure illustrates an example UIM card circuit. The default configuration is active high.

Figure 3-3. Example UIM card circuit

3.5 I/O Characteristics

The voltage and current characteristics of the various IO pads of the IMS2 versus IO bank supply voltage are illustrated in Table 3-3 below.

Parameter	Drive Strength	Min.	Nom.	Max.	Unit
VIL Input low voltage		VSS		0.3 × PVDD_1V8	V
VIH Input high voltage		0.7 × PVDD_1V8		PVDD_1V8	V

Table 3-3. DC characteristics for digital IOs, voltage	e 1.8 V - BIDIR and IN types
--	------------------------------

VOL Output low voltage		VSS		0.2 × PVDD_1V8	V
VOH					
Output high		0.8 × PVDD 1V8		PVDD 1V8	V
voltage		_		_	
IRPU					
Input pull-up		15			μA
resistor current					
RPU					
Input pull-up				32.4	kΩ
resistance					
IRPD					
Input pull-down		15			μΑ
resistor current					
RPD					
Input pull-down				32.4	kΩ
resistance					
VH					V
Input hysteresis		0.1 × 1 100_110			v
IPAD					
Input leakage		-1		1	μА
current, non-		-		-	P** 1
tolerant					
IOZ					
Off-state leakage				1	μΑ
current					
IOL	2 mA		1.11		mA
Sink current at	4 mA		2.25		mA
VOL (max)	8 mA		4.48		mA
	12 mA		6.72		mA
	2 mA		1.1		mA
ЮН	4 mA		2.2		mA
Source current at	8 mA		4.4		mA
VOH (max)	12 mA				

3.6 JTAG Interface

The IMS2 series contains one JTAG interface; leave JTAG pins floating if they are not used.

Figure 3-4. JTAG schematic

3.7 Power Consumption

This section describes the typical power consumption of the IMS2 (for reference).

Table 3-4. LTE power consumption

Working Mode	Conditions	Result		
Airplane mode				
	Only the module; no other devices	TBD		
Power saving mode				
	TBD	TBD		
	TBD	TBD		
	TBD	TBD		
LTE Band2 working mode				
	TBD	TBD		
LTE Band4 working mode				
	TBD	TBD		
LTE Band12 working mode				
	TBD	TBD		
Powering on	Conditions	Result		
Peak power consumption				
	Power consumption peak when the module is powering on	TBD		

Power off	Power off Conditions		
Power off consumption			
	The module is powered off.	TBD	

3.8 RF Performance

Each IMS2 module has only one RF pad; developers must connect it via 50 Ω traces to the main board.

Main antenna pad (Pin15) – Primary RX/TX path

3.8.1 RF Pad Design

We recommended that a ground not be present under the surface of the RF pads in the layout. Details are included below. Layer2 has the same exclusion area as Layer1.

Figure 3-5. Sample RF pad layout

The RF trace between RF pads and antenna should as shorter as possible with 50ohm characteristic impedance.

The characteristic impedance depends on the dielectric of PCB, the track width and the ground plane spacing. Microstrip type is required. The detail simulation as below.

Length1=507mil Trace width=7.5mil

The antenna should be 50ohm characteristic impedance with the return loss of better than -10dB at the operation band. The antenna gain would affect the radiated power and regulator test result.

3.8.2 RF Matching Guide

Figure 3-6. RF matching guide

3.8.3 Interference and Sensitivity

This section includes tips to help developers identify interferences that may affect the IMS2 module when used in systems.

- Interference from other wireless devices
 - Harmonics, inter-modulated signals generated from wireless devices within the RX ranges of the modules may result in degraded RX performance.
 - We highly recommend checking the RX performance of entire systems within the shielding environment.
- Interference from the host interface
 - High-speed signal-switching elements in systems can easily couple noise into the module (ex.: DDR memory, LCD modules, DC-DC converters, PCM signals).
- Methods to avoid sources of interference
 - Antenna location is important; we recommend directing the antenna away from high-speed switching signals. Furthermore, the trace from the module to the antenna should be as short as possible and must be shielded by complete grounding.
 - The IMS2 module is well shielded; high-speed elements (Ex.: DDR memory, LCD modules, DC-to-DC converters, PCM signals) on a system should have shielding reserved during the early stages of development.

3.8.4 Band Support

Table 3-5. Band support

Band	Uplink (MHz)	Downlink (MHz)
LTE Band 2	1,850–1,910	1,930–1,990
LTE Band 4	1,710–1,755	2,110–2,155
LTE Band 12	699–716	729–746

3.8.5 Bandwidth Support

Table 3-6. Bandwidth support

Band	Bandwidth					
	1.4 MHz	3 MHz	5 MHz	10 MHz	15 MHz	20 MHz
LTE Band 2	-	-	~	~	~	√
LTE Band 4	-	-	✓	~	~	✓
LTE Band 12	-	-	\checkmark	\checkmark	-	-

Note: The IMS2 supports 1.4 MHz and 3 MHz (not default settings).

3.8.6 RF Transmission Specifications

Table 3-7. Conductive Tx output power

Band	ltems	Parameter	Unit	Min.	Тур.	Max.
LTE Band 2	Max. TX Power	20 MHz 1 RBs/QPSK	dBm	20.3	23	25.7
LTE Band 4	Max. TX Power	20 MHz 1 RBs/QPSK	dBm	20.3	23	25.7
LTE Band 12	Max. TX Power	10 MHz 1 RBs/QPSK	dBm	20.3	23	25.7

Notes: 1. The RF transmission specification is defined at the LGA pad.

2. IMS2 fulfills 3GPP test standards.

3.8.7 RF Receiver Specifications

Table 3-7.	Conductive R>	sensitivity-3GPP
------------	---------------	------------------

Band	Items	Parameter	Unit	Min.	Тур.	Max.
		5 M Hz wit h 4 RB s				-99.5
LTE Band 4	RX Sensitivity	5 MHz with 4 RBs	dBm			-101.5
LTE Band 12	RX Sensitivity	5 MHz with 4 RBs	dBm			-98.5

Notes: 1. The RF receiver specification is defined at the LGA pad.

2. IMS2 fulfills 3GPP test standards.

3.9 Temperature

- 3GPP compliance: -20 °C to +60 °C (ambient)
- Functional: -40 °C to +85 °C
- Storage: -40 °C to +85 °C

3.10 LTE Power Saving Mode

Note: Details will be provided in a future revision of this document.

3.11 Serial Number and IMEI

Serial number and IMEI data can be written to the module only once; these two data

points cannot be rewritten on the SQN3330 platform.

4 Mechanical Information

4.1 Physical Dimensions

Device dimensions illustrated in Figure 4-1 and Figure 4-2 below.

4.2 Pin Dimensions

The dimensions are illustrated in Figure 4-3, Figure 4-4, and Figure 4-5 below.

Figure 4-3. PIN dimensions (bottom view)

Figure 4-4. PIN dimensions

Figure 4-5. PIN dimensions

4.3 Marking Information

Note: Details will be provided in a future version of this document.

5 Packing Information

5.1 Packing Information

The module is delivered in tape-and-reel based on MPQ. **Note:** Module packing details will be provided in a future revision of this document.

5.2 Storage Conditions

Note: Details will be provided in a future revision of this document.

6 PCB Mounting Guidelines

6.1 Mounting Considerations

This section details the recommended reflow profile when the module is mounted onto other boards.

Note: Details will be provided in a future revision of this document.

7 Regulatory and Industry Approval

7.1 Certification Testing

PTCRB, FCC, and AT&T TA

7.2 GP Compliance

RoHS (2011/65/EU)

Initialisms

Initialisms and Definitions

Initialism	Definition
AC	Alternating Current
DC	Direct Current
ETSI	European Telecommunications Standards Institute
GND	Ground
GPIO	General Purpose Input Output
I/O	Input/Output
loT	Internet of Things
12C	Inter-Integrated Circuit
LGA	Land Grid Array
LTE	Long Term Evolution
N/A	Not/Applicable
OS	Operating System
PIN	Personal Identification Number
SIM	Subscriber Identity Module
SPI	Serial Peripheral Interface
UART	Universal Asynchronous Receiver-Transmitter
UIM	User Identity Module
USB	Universal Serial Bus
Vref	Voltage reference
WNC	Wistron NeWeb Corporation