

FCC TEST REPORT

REPORT NO.: RF120221E03

MODEL NO.: EFT-H4

FCC ID: NKREFT-H4

RECEIVED: Feb. 21, 2012

TESTED: Mar. 01 to 13, 2012

ISSUED: Mar. 16, 2012

APPLICANT: Wistron NeWeb Corp.

ADDRESS: 20 Park Avenue II, Hsinchu Science

Park, Hsinchu 308, Taiwan, R.O.C.

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

TEST LOCATION (1): No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

TEST LOCATION (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan,

R.O.C.

This test report consists of 40 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

RELE	ASE CONTROL RECORD	4
1.	CERTIFICATION	5
2.	SUMMARY OF TEST RESULTS	6
2.1	MEASUREMENT UNCERTAINTY	
3.	GENERAL INFORMATION	8
3.1	GENERAL DESCRIPTION OF EUT	8
3.2	DESCRIPTION OF TEST MODES	9
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	10
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	12
3.4	DESCRIPTION OF SUPPORT UNITS	13
3.5	CONFIGURATION OF SYSTEM UNDER TEST	14
4.	TEST TYPES AND RESULTS	15
4.1	CONDUCTED EMISSION MEASUREMENT	15
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	15
4.1.2	TEST INSTRUMENTS	15
4.1.3	TEST PROCEDURES	16
4.1.4	DEVIATION FROM TEST STANDARD	16
4.1.5	TEST SETUP	17
4.1.6	EUT OPERATING CONDITIONS	17
4.1.7	TEST RESULTS	18
4.2	RADIATED EMISSION AND BANDEDGE MEASUREMENT	20
4.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT.	20
4.2.2	TEST INSTRUMENTS	21
4.2.3	TEST PROCEDURES	23
4.2.4	DEVIATION FROM TEST STANDARD	23
	TEST SETUP	
4.2.6	EUT OPERATING CONDITIONS	24
	TEST RESULTS	
4.3	6dB BANDWIDTH MEASUREMENT	29
4.3.1	LIMITS OF 6dB BANDWIDTH MEASUREMENT	29
4.3.2	TEST INSTRUMENTS	29
4.3.3	TEST PROCEDURE	29
4.3.4	DEVIATION FROM TEST STANDARD	29
4.3.5	TEST SETUP	29
4.3.6	EUT OPERATING CONDITIONS	30
4.3.7	TEST RESULTS	30
4.4	CONDUCTED OUTPUT POWER	31

4.4.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	31
4.4.2	INSTRUMENTS	31
4.4.3	TEST PROCEDURES	31
4.4.4	DEVIATION FROM TEST STANDARD	31
4.4.5	TEST SETUP	32
4.4.6	EUT OPERATING CONDITIONS	32
4.4.7	TEST RESULTS	32
4.5	POWER SPECTRAL DENSITY MEASUREMENT	33
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	33
4.5.2	TEST INSTRUMENTS	33
4.5.3	TEST PROCEDURE	33
4.5.4	DEVIATION FROM TEST STANDARD	33
4.5.5	TEST SETUP	33
4.5.6	EUT OPERATING CONDITION	33
4.5.7	TEST RESULTS	34
4.6	CONDUCTED OUT-BAND EMISSION MEASUREMENT	35
4.6.1	LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT	35
4.6.2	TEST INSTRUMENTS	35
4.6.3	TEST PROCEDURE	35
4.6.4	DEVIATION FROM TEST STANDARD	
4.6.5	TEST SETUP	36
	EUT OPERATING CONDITION	
4.6.7	TEST RESULTS	36
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	38
6.	INFORMATION ON THE TESTING LABORATORIES	39
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING	
	CHANGES TO THE EUT BY THE LAB	40

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF120221E03	Original release	Mar. 16, 2012

1. CERTIFICATION

PRODUCT: Power control Outlet

BRAND NAME: SONY

MODEL NO.: EFT-H4

TEST SAMPLE: **ENGINEERING SAMPLE**

APPLICANT: Wistron NeWeb Corp.

TESTED: Mar. 01 to 13, 2012

STANDARDS: FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10-2009

The above equipment (Model: EFT-H4) has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY: Midol- Mar. 16, 2012

(Midoli Peng, Specialist)

APPROVED BY: _____, DATE: Mar. 16, 2012

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247)							
STANDARD SECTION	TEST TYPE	RESULT	REMARK				
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -15.48dB at 0.46641MHz				
15.247(d) 15.209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -3.3dB at 2390.0MHz				
15.247(d)	Band Edge Measurement	PASS	Meet the requirement of limit.				
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.				
15.247(b)	Conducted power	PASS	Meet the requirement of limit.				
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.				
15.203	Antenna Requirement	PASS	Antenna connector is IPEX not a standard connector.				

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.45 dB
Radiated emissions (30MHz -1GHz)	3.89 dB
Radiated emissions (1GHz -18GHz)	2.19 dB
Radiated emissions (18GHz - 40GHz)	2.56 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Power control Outlet
MODEL NO.	EFT-H4
POWER SUPPLY	Internal power supply
MODULATION TYPE	O-QPSK
MODULATION TECHNOLOGY	DSSS
TRANSFER RATE	250kbps
OPERATING FREQUENCY	2405 ~ 2470MHz
NUMBER OF CHANNEL	14
MAXIMUM OUTPUT POWER	93.3mW
ANTENNA TYPE	Please see note
DATA CABLE	NA
I/O PORTS	Refer to user's manual
ASSOCIATED DEVICES	NA

NOTE:

- 1. The EUT operates in the 2.4GHz frequency spectrum and complies with O-QPSK techniques.
- 2. The EUT must be supplied with power as following spec: AC 100-125V, 50/60Hz, 15A
- 3. The antenna provided to the EUT, please refer to the following table:

Brand	Model No.	Antenna Gain (dBi)	Antenna Type	Connecter Type
Master Wave	98P89MIPF000	4.89	PCB	IPEX

4. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

3.2 DESCRIPTION OF TEST MODES

Fourteen channels are provided to this EUT.

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
11	2405	15	2425	19	2445	23	2465
12	2410	16	2430	20	2450	24	2470
13	2415	17	2435	21	2455		
14	2420	18	2440	22	2460		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT		Al	DESCRIPTION			
CONFIGURE MODE	PLC	RE < 1G	RE 3 1G	APCM	ОВ	DESCRIPTION
-	√	√	\checkmark	\checkmark	\checkmark	-

Where **PLC:** Power Line Conducted Emission

RE < 1G: Radiated Emission below 1GHz

RE ³ 1G: Radiated Emission above 1GHz

APCM: Antenna Port Conducted Measurement

OB: Conducted Out-Band Emission Measurement

NOTE:

The EUT had been pre-tested on the positioned of each 2 axis. The worst case was found when positioned on Z-plane.

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(kbps)
11 to 24	18	DSSS	O-QPSK	250

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(kbps)
11 to 24	18	DSSS	O-QPSK	250

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(kbps)
11 to 24	11, 18, 24	DSSS	O-QPSK	250

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED	MODULATION	MODULATION	DATA RATE	
	CHANNEL	TECHNOLOGY	TYPE	(kbps)	
11 to 24	11, 18, 24	DSSS	O-QPSK	250	

CONDUCTED OUT-BAND EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE TESTED CHANNEL		MODULATION	MODULATION	DATA RATE	
		TECHNOLOGY	TYPE	(kbps)	
11 to 24	11, 18, 24	DSSS	O-QPSK	250	

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY	
PLC	23deg. C,75%RH	120Vac, 60Hz	Kyle Huang	
RE<1G	23deg. C, 69%RH	120Vac, 60Hz	Evan Huang	
RE ³ 1G	23deg. C, 70%RH	120Vac, 60Hz	Evan Huang	
APCM	25deg. C, 60%RH	120Vac, 60Hz	Kent Liu	
ОВ	25deg. C, 60%RH	120Vac, 60Hz	Kent Liu	

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2009

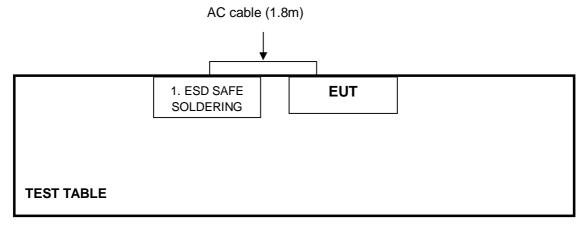
All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

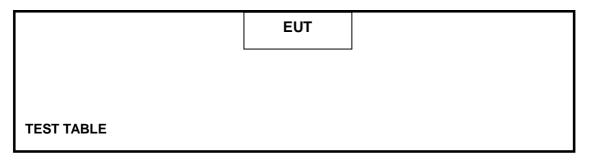
3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
	ESD SAFE				
1	SOLDERING	HAKKO	HAKKO 936	0001936108047072	NA
	STATION				


NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).


3.5 CONFIGURATION OF SYSTEM UNDER TEST

For conducted emission test:

NOTE: The test configuration was defined by the applicant requirement.

For other test items:

NOTE: The test configuration was defined by the applicant requirement.

4.TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56	56 to 46		
0.5-5	56	46		
5-30	60	50		

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

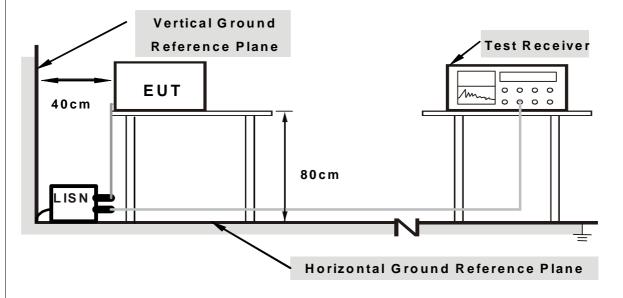
4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL	
ROHDE & SCHWARZ Test Receiver	ESCS 30	100287	Feb. 29, 2012	Feb. 28, 2013	
Line-Impedance Stabilization Network (for EUT)	NSLK 8127	8127-523	Sep. 20, 2011	Sep. 19, 2012	
Line-Impedance Stabilization Network (for Peripheral)	ENV-216	100072	June 10, 2011	June 09, 2012	
RF Cable (JYEBAO)	5DFB	CONCAB-003	Aug. 05, 2011	Aug. 04, 2012	
50 ohms Terminator	50	3	Nov. 02, 2011	Nov. 01, 2012	
Software	BV ADT_Cond_V7.3.7	NA	NA	NA	

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. A.
- 3 The VCCI Con A Registration No. is C-817.
- 4. Tested Date: Mar. 01, 2012

4.1.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.

4	1 4	DE/	$/I\Delta T$	ION	$FR \cap M$	TEST	STAND	ΔRD
4.	ı. 4	レレ	v 1/~ I	IVIV		$I \perp O I$	SIAIND	AIND

No deviation

4.1.5 TEST SETUP

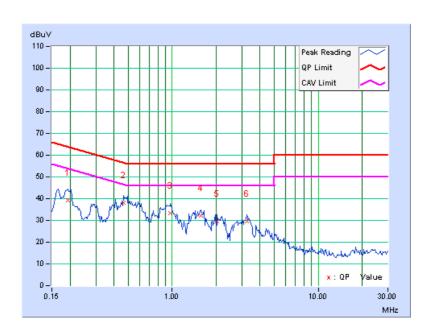
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.6 EUT OPERATING CONDITIONS

Set the EUT under transmission / receiver condition continuously at specific channel frequency.

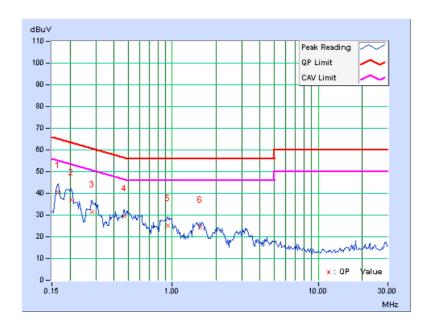

4.1.7 TEST RESULTS

PHASE Line (L)	6dB BANDWIDTH	9 kHz
----------------	---------------	-------

	Freq.	Corr.	Reading Value		- I I I I I I I I I I I I I I I I I I I		Mar	gin		
No		Factor	[dB (uV)]		[dB (uV)] [dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.19297	0.06	39.06	30.97	39.12	31.03	63.91	53.91	-24.79	-22.88
2	0.46641	0.08	38.17	31.02	38.25	31.10	56.58	46.58	-18.33	-15.48
3	0.97422	0.10	33.12	26.65	33.22	26.75	56.00	46.00	-22.78	-19.25
4	1.57422	0.16	31.90	26.16	32.06	26.32	56.00	46.00	-23.94	-19.68
5	2.03516	0.21	29.28	23.68	29.49	23.89	56.00	46.00	-26.51	-22.11
6	3.23438	0.30	29.23	23.84	29.53	24.14	56.00	46.00	-26.47	-21.86

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



	Freq.	Corr.	Reading Value		Emission Level		Limit		Mar	gin
No		Factor	[dB	[dB (uV)] [dB (uV)]		(uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16562	0.07	40.45	39.34	40.52	39.41	65.18	55.18	-24.65	-15.76
2	0.20469	0.08	36.78	27.10	36.86	27.18	63.42	53.42	-26.56	-26.24
3	0.28281	0.08	31.57	19.27	31.65	19.35	60.73	50.73	-29.08	-31.38
4	0.47031	0.09	29.53	23.53	29.62	23.62	56.51	46.51	-26.89	-22.89
5	0.93516	0.11	25.05	18.16	25.16	18.27	56.00	46.00	-30.84	-27.73
6	1.55078	0.17	24.18	19.47	24.35	19.64	56.00	46.00	-31.65	-26.36

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.2.2 TEST INSTRUMENTS

For below 1GHz test:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250253	Aug. 29, 2011	Aug. 28, 2012
Agilent Pre-Selector	N9039A	MY46520310	Aug. 29, 2011	Aug. 28, 2012
Agilent Signal Generator	N5181A	MY49060347	July 25, 2011	July 24, 2012
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-04	Nov. 15, 2011	Nov. 14, 2012
Agilent Pre-Amplifier	8449B	3008A02465	Feb. 27, 2012	Feb. 26, 2013
SPACEK LABS	SLKKa-48-6	9K16	Nov. 15, 2011	Nov. 14, 2012
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-361	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	0000220091110	Nov. 23, 2011	Nov. 22, 2012
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 07, 2011	Oct. 06, 2012
RF CABLE	NA	RF104-205 RF104-207 RF104-202	Dec. 27, 2011	Dec. 26, 2012
RF Cable	NA	CHHCAB_001	Oct. 08, 2011	Oct. 07, 2012
Software	ADT_Radiated_ V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in 966 Chamber No. H.

4. The FCC Site Registration No. is 797305.

5. The CANADA Site Registration No. is IC 7450H-3.

6. Tested Date: Mar. 01, 2012

For above 1GHz test:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Agilent Spectrum Analyzer	E4446A	MY48250254	July 12, 2011	July 11, 2012
Agilent Pre-Selector	N9039A	MY46520311	July 12, 2011	July 11, 2012
Agilent Signal Generator	N5181A	MY49060517	July 12, 2011	July 11, 2012
Mini-Circuits Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-03	Nov. 15, 2011	Nov. 14, 2012
Agilent Pre-Amplifier	8449B	3008A02578	July 04, 2011	July 03, 2012
SPACEK LABS	SLKKa-48-6	9K16	Nov. 15, 2011	Nov. 14, 2012
SCHWARZBECK Trilog Broadband Antenna	VULB 9168	9168-360	Apr. 14, 2011	Apr. 13, 2012
AISI Horn_Antenna	AIH.8018	0000320091110	Nov. 14, 2011	Nov. 13, 2012
SCHWARZBECK Horn_Antenna	BBHA 9170	9170-424	Oct. 07, 2011	Oct. 06, 2012
RF CABLE	NA	RF104-201 RF104-203 RF104-204	Dec. 26, 2011	Dec. 25, 2012
RF Cable	NA	CHGCAB_001	Oct. 07, 2011	Oct. 06, 2012
Software	ADT_Radiated_ V8.7.05	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna, preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

3. The test was performed in 966 Chamber No. G.

4. The FCC Site Registration No. is 966073.

5. The VCCI Site Registration No. is G-137.

6. The CANADA Site Registration No. is IC 7450H-2.

7. Tested Date: Mar. 13, 2012

4.2.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.5 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6

4.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

CHANNEL	TX Channel 18	DETECTOR	Ougoi Book (OB)
FREQUENCY RANGE	30MHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

								1		
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)		
1	82.30	16.4 QP	40.0	-23.6	2.00 H	272	6.91	9.48		
2	96.20	23.5 QP	43.5	-20.0	2.00 H	302	14.40	9.06		
3	118.11	18.7 QP	43.5	-24.8	2.00 H	299	6.41	12.28		
4	161.03	19.3 QP	43.5	-24.2	1.50 H	236	4.82	14.46		
5	831.01	28.9 QP	46.0	-17.1	1.00 H	83	2.95	25.97		
6	957.90	27.2 QP	46.0	-18.8	2.00 H	202	-0.61	27.77		
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)		
1	35.60	27.5 QP	40.0	-12.5	1.00 V	349	13.97	13.52		
2	47.53	23.0 QP	40.0	-17.0	1.00 V	226	8.65	14.34		
3	118.11	24.3 QP	43.5	-19.2	1.00 V	356	12.02	12.28		
4	153.70	27.0 QP	43.5	-16.5	1.00 V	355	12.41	14.61		
5	830.81	27.7 QP	46.0	-18.4	1.00 V	124	1.68	25.97		
6	940.62	31.7 QP	46.0	-14.3	1.00 V	240	4.18	27.54		

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

ABOVE 1GHz DATA

CHANNEL	TX Channel 11	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA I	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)
1	2390.00	60.7 PK	74.0	-13.3	1.16 H	202	29.11	31.59
2	2390.00	50.7 AV	54.0	-3.3	1.16 H	202	19.11	31.59
3	*2405.00	116.7 PK			1.15 H	203	85.06	31.64
4	*2405.00	113.2 AV			1.15 H	203	81.56	31.64
5	4810.00	58.5 PK	74.0	-15.5	1.70 H	195	19.48	39.02
6	4810.00	49.2 AV	54.0	-4.8	1.70 H	195	10.18	39.02
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)
1	2390.00	57.7 PK	74.0	-16.3	1.14 V	147	26.11	31.59
2	2390.00	46.5 AV	54.0	-7.5	1.14 V	147	14.91	31.59
3	*2405.00	110.0 PK			1.11 V	141	78.36	31.64
4	*2405.00	106.6 AV			1.11 V	141	74.96	31.64
5	4810.00	57.9 PK	74.0	-16.1	1.45 V	222	18.88	39.02
6	4810.00	48.4 AV	54.0	-5.6	1.45 V	222	9.38	39.02

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 18	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)		
1	*2440.00	115.4 PK			1.17 H	198	83.64	31.76		
2	*2440.00	111.6 AV			1.17 H	198	79.84	31.76		
3	4880.00	58.1 PK	74.0	-15.9	1.61 H	199	18.85	39.25		
4	4880.00	48.8 AV	54.0	-5.2	1.61 H	199	9.55	39.25		
5	7320.00	56.6 PK	74.0	-17.4	1.28 H	240	10.05	46.55		
6	7320.00	45.5 AV	54.0	-8.5	1.28 H	240	-1.05	46.55		
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	NO. FREQ. EMISSION LEVEL (dBuV/m) (d			MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)		
1	*2440.00	107.3 PK			1.14 V	148	75.54	31.76		
2	*2440.00	103.4 AV			1.14 V	148	71.64	31.76		
3	4880.00	57.3 PK	74.0	-16.7	1.42 V	219	18.05	39.25		
4	4880.00	47.8 AV	54.0	-6.2	1.42 V	219	8.55	39.25		
5	7320.00	60.9 PK	74.0	-13.1	1.35 V	219	14.35	46.55		
6	7320.00	50.5 AV	54.0	-3.5	1.35 V	219	3.95	46.55		

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

CHANNEL	TX Channel 24	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY 8	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)
1	*2470.00	115.0 PK			1.14 H	200	83.14	31.86
2	*2470.00	111.1 AV			1.14 H	200	79.24	31.86
3	2483.50	60.3 PK	74.0	-13.7	1.14 H	200	28.40	31.90
4	2483.50	50.4 AV	54.0	-3.6	1.14 H	200	18.50	31.90
5	4940.00	58.7 PK	74.0	-15.3	1.62 H	158	19.25	39.45
6	4940.00	49.2 AV	54.0	-4.8	1.62 H	158	9.75	39.45
7	7410.00	55.5 PK	74.0	-18.5	1.42 H	158	9.06	46.44
8	7410.00	44.6 AV	54.0	-9.4	1.42 H	158	-1.84	46.44
		ANTENNA	A POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTIO N FACTOR (dB/m)
1	*2470.00	105.7 PK			1.15 V	144	73.84	31.86
2	*2470.00	101.8 AV			1.15 V	144	69.94	31.86
3	2483.50	58.2 PK	74.0	-15.8	1.17 V	144	26.30	31.90
4	2483.50	45.4 AV	54.0	-8.6	1.17 V	144	13.50	31.90
5	4940.00	57.5 PK	74.0	-16.5	1.77 V	154	18.05	39.45
6	4940.00	47.9 AV	54.0	-6.1	1.77 V	154	8.45	39.45
7	7410.00	58.9 PK	74.0	-15.1	1.29 V	217	12.46	46.44
8	7410.00	48.5 AV	54.0	-5.5	1.29 V	217	2.06	46.44

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency.

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100060	May 11, 2011	May 10, 2012

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: Mar. 09, 2012

4.3.3 TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = approximately 1% of the emission bandwidth
- 2. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Sweep = auto couple.
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

4.3.5 TEST SETUP

4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
11	2405	1.49	0.5	PASS
18	2440	1.53	0.5	PASS
24	2470	1.44	0.5	PASS

4.4 CONDUCTED OUTPUT POWER

4.4.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400–2483.5 MHz band: 1 Watt (30dBm)

4.4.2 INSTRUMENTS

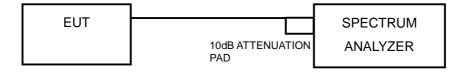
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100060	May 11, 2011	May 10, 2012

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. Tested date: Mar. 09, 2012

4.4.3 TEST PROCEDURES


- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3 MHz RBW and 10 MHz VBW.
- 4. Measure the captured power within the band and recording the plot.
- 5. Repeat above procedures until all frequencies measured were complete.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation

4.4.5 TEST SETUP

4.4.6 EUT OPERATING CONDITIONS

Same as Item 4.3.6

4.4.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	PEAK POWER (mW)	PEAK POWER (dBm)	LIMIT (dBm)	PASS/FAIL
11	2405	91.2	19.6	30	PASS
18	2440	93.3	19.7	30	PASS
24	2470	85.1	19.3	30	PASS

4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100060	May 11, 2011	May 10, 2012

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: Mar. 09, 2012

4.5.3 TEST PROCEDURE

- 1. Set the RBW = 100 kHz, VBW =300 kHz, Detector = peak.
- 2. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- 3. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.
- 4. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where BWCF = 10log(3 kHz/100kHz)

4.5.4 DEVIATION FROM TEST STANDARD

No deviation

4.5.5 TEST SETUP

4.5.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.5.7 TEST RESULTS

Channel	FREQ. (MHz)	PSD (dBm/100kHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS /FAIL
11	2405	16.4	1.2	8	PASS
18	2440	16.3	1.1	8	PASS
24	2470	16.1	0.8	8	PASS

4.6 CONDUCTED OUT-BAND EMISSION MEASUREMENT

4.6.1 LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
R&S Spectrum Analyzer	FSP 40	100060	May 11, 2011	May 10, 2012

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. Tested date: Mar. 09, 2012

4.6.3 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

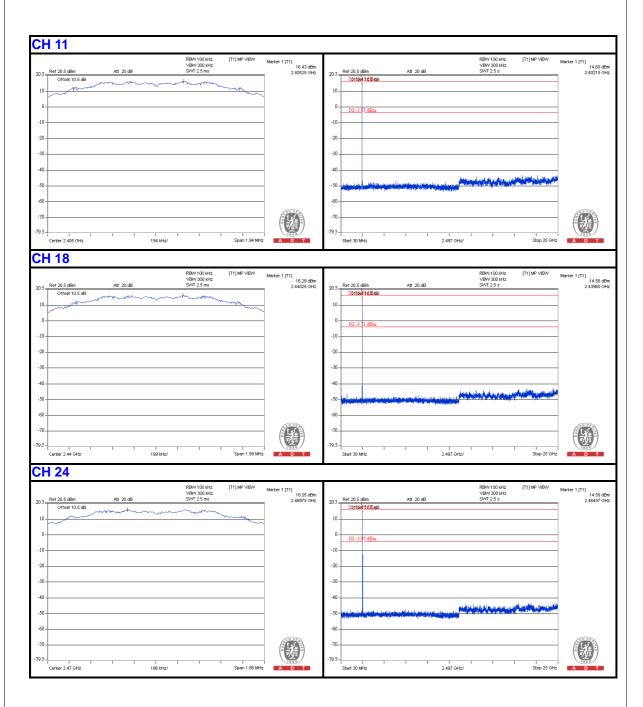
MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Set span to encompass the spectrum to be examined
- 4. Detector = peak.
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP


4.6.6 EUT OPERATING CONDITION

Same as Item 4.3.6

4.6.7 TEST RESULTS

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5. PHOTOGRAPHS OF THE TEST CONFIGURATION Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation and authorization certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5.phtml.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26052943 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Email: service.adt@tw.bureauveritas.com

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No modifications were made to the EU	T by the lab during the test.
END	