

FCC TEST REPORT

REPORT NO.: RF951124L01A

MODEL NO.: DCMA-82, DCMA-82 High Power, DCMA-IHP, DCMA-HP, CM11, CM10-HI, CM10-H, DCMA-SPI

RECEIVED: May 24, 2007

TESTED: June 06 to 27, 2007

ISSUED: July 04, 2007

APPLICANT: Wistron NeWeb Corp.

- ADDRESS: No. 10-1, Li-hsin Road I, Hsinchu Science Park, Hsinchu 300, Taiwan, R.O.C.
- **ISSUED BY:** Advance Data Technology Corporation
- LAB LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien, Taiwan, R.O.C.

This test report consists of 50 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by any government agencies. The test results in the report only apply to the tested

Table of Contents

1	CERTIFICATION
2	SUMMARY OF TEST RESULTS 5
2.1	MEASUREMENT UNCERTAINTY6
3	GENERAL INFORMATION7
3.1	GENERAL DESCRIPTION OF EUT
3.2	DESCRIPTION OF TEST MODES
3.3	TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS
3.5	DESCRIPTION OF SUPPORT UNITS
3.6	CONFIGURATION OF SYSTEM UNDER TEST
4	TEST TYPES AND RESULTS
4.1	RADIATED EMISSION MEASUREMENT
4.1.1	LIMITS OF RADIATED EMISSION MEASUREMENT
4.1.2	TEST INSTRUMENTS
4.1.3	TEST PROCEDURES
4.1.4	TEST SETUP 17
4.1.5	EUT OPERATING CONDITIONS
4.1.6	TEST RESULTS - ANTENNA A
4.1.7	TEST RESULTS - ANTENNA C
4.2	EMISSION BANDWIDTH MEASUREMENT
4.2.1	LIMITS OF 26dB BANDWIDTH MEASUREMENT
4.2.2	TEST INSTRUMENTS
4.2.3	TEST PROCEDURE
4.2.4	TEST SETUP
4.2.5	EUT OPERATING CONDITIONS
4.2.6	TEST RESULTS
4.3	MAXIMUM PEAK OUTPUT POWER
4.3.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT
4.3.2	TEST INSTRUMENTS
4.3.3	TEST PROCEDURES
4.3.4	TEST SETUP
4.3.5	EUT OPERATING CONDITIONS
4.3.6	TEST RESULTS – ANTENNA A
4.3.7	TEST RESULTS – ANTENNA C
4.4	AVERAGE POWER
4.4.1	LIMITS OF AVERAGE POWER MEASUREMENT

4.4.2	TEST INSTRUMENTS	33
4.4.3	TEST PROCEDURES	33
4.4.4	TEST SETUP	33
4.4.5	EUT OPERATING CONDITIONS	33
4.4.6	TEST RESULTS – ANTENNA A	34
4.4.7	TEST RESULTS – ANTENNA C	34
4.5	POWER SPECTRAL DENSITY MEASUREMENT	35
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	35
4.5.2	TEST INSTRUMENTS	36
4.5.3	TEST PROCEDURE	36
4.5.4	TEST SETUP	36
4.5.5	EUT OPERATING CONDITIONS	36
4.5.6	TEST RESULTS	37
4.6	EMISSION MASK AND CONDUCTED SPURIOUS MEASUREMENT	40
4.6.1	LIMITS OF EMISSION MASK MEASUREMENT	40
4.6.2	TEST INSTRUMENTS	40
4.6.3	TEST PROCEDURE	41
4.6.4	TEST SETUP	41
4.6.5	EUT OPERATING CONDITIONS	41
4.6.6	TEST RESULTS	42
4.7	FREQUENCY STABILITY	46
4.7.1	LIMITS OF FREQUENCY STABILITY MEASUREMENT	_
4.7.2	TEST INSTRUMENTS	46
4.7.3	TEST PROCEDURE	
4.7.4	DEVIATION FROM TEST STANDARD	47
4.7.5	TEST SETUP	47
4.7.6	EUT OPERATING CONDITION	47
4.7.7	TEST RESULTS	
5	INFORMATION ON THE TESTING LABORATORIES	49
6	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	

1 CERTIFICATION

PRODUCT :	High Powered 802.11a/g WLAN Mini-PCI 3A, Industry High Powered 802.11a/g WLAN Mini-PCI 3A Commercial High Powered 802.11a/g WLAN Mini-PCI 3A High Powered 802.11a/b/g WLAN Mini-PCI Module (Industrial Grade) High Powered 802.11a/b/g WLAN Mini-PCI Module Industry High-Power Safety-802.11p WLAN
BRAND NAME :	WNC
MODEL NO. :	DCMA-82, DCMA-82 High Power, DCMA-IHP,
	DCMA-HP, CM11, CM10-HI, CM10-H, DCMA-SPI
TESTED:	June 06 to 27, 2007
APPLICANT :	Wistron NeWeb Corp.
TEST ITEM:	ENGINEERING SAMPLE
STANDARDS :	47 CFR Part 90, Subpart Y
	ANSI C63.4-2003

The above equipment (Model: DCMA-82) has been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

-arol Liao, DATE: July 04, 2007 PREPARED BY Carol Liao, Specialist) **TECHNICAL** ACCEPTANCE **DATE:** July 04, 2007 Responsible for RF (Hank Chung, Deputy Manager) **APPROVED BY DATE:** July 04, 2007 2 (May Chen, Deputy Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: 47 CFR Part 90, Subpart Y								
Standard Section	Test Type and Limit	Result	REMARK					
90.210(l)	RADIATED EMISSION MEASUREMENT	PASS	Meet the requirement of limit Minimum passing margin is –1.06 dB at 4800.00 MHz					
-	EMISSION BANDWIDTH MEASUREMENT	N/A	For reporting purposes only					
90.1215(a)	MAXIMUM PEAK OUTPUT POWER	PASS	Meet the requirement of limit					
-	AVERAGE POWER MEASUREMENT	N/A	For reporting purposes only					
90.1215(a)	POWER SPECTRAL DENSITY MEASUREMENT Limit: max. 21dBm/MHz	PASS	Meet the requirement of limit					
90.210(l)	EMISSION MASK AND CONDUCTED SPURIOUS MEASUREMENT	PASS	Meet the requirement of limit					
90.213	FREQUENCY STABILITY	N/A	For reporting purposes only					

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Radiated emissions (30MHz-1GHz)	3.89 dB
Radiated emissions (1GHz ~18GHz)	2.21 dB
Radiated emissions (18GHz ~40GHz)	1.88 dB

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	High Powered 802.11a/g WLAN Mini-PCI 3A,
	Industry High Powered 802.11a/g WLAN Mini-PCI 3A
	Commercial High Powered 802.11a/g WLAN Mini-PCI 3A
	High Powered 802.11a/b/g WLAN Mini-PCI Module
	(Industrial Grade)
	High Powered 802.11a/b/g WLAN Mini-PCI Module
	Industry High-Power Safety-802.11p WLAN
MODEL NO.	DCMA-82, DCMA-82 High Power, DCMA-IHP, DCMA-HP, CM11, CM10-HI, CM10-H, DCMA-SPI
FCC ID	NKRDCMA82
POWER SUPPLY	DC 3.3V from host equipment
MODULATION	CCK, DQPSK, DBPSK for DSSS
ТҮРЕ	64QAM, 16QAM, QPSK, BPSK for OFDM
MODULATION	DSSS, OFDM
TECHNOLOGY	
TRANSFER RATE	802.11b:11/5.5/2/1Mbps
	802.11g: 54/48/36/24/18/12/9/6Mbps
	802.11a: 54/48/36/24/18/12/9/6Mbps
	802.11j: 54/48/36/24/18/12/9/6Mbps
	(Turbo mode: up to 108Mbps *see Note 2)
FREQUENCY	802.11b & 802.11g: 2412 ~ 2462MHz
RANGE	802.11a: 5.15 ~ 5.25GHz and 5.725 ~ 5.850GHz
	802.11j: 4940 ~ 4990MHz
NUMBER OF	802.11b & 802.11g: 11 (1 for 802.11g Turbo mode)
CHANNEL	802.11a: 9 (3 for 802.11a Turbo mode)
	802.11j: 18 (5 for 10MHz System;3 for 20MHz System;10
	for 5MHz System)
CHANNEL	802.11b & 802.11g: 5MHz
SPACING	802.11a: 20MHz for Normal mode
	802.11j: 5MHz, 5MHz and 15MHz
OUTPUT POWER	Please see note 6 (on next page)
ANTENNA TYPE	Please see note 4 (on next page)

NOTE:

- 1. This report is prepared for FCC class II permissive change. The difference compared with the Report No.:RF951124L01 design is as the following:
 - u 802.11j add 5MHz bandwidth channel.

- 2. The EUT operates in 4.9GHz and both the 5GHz and 2.4GHz Bands and compatibility with 802.11a and 802.11b, 802.11g technology.
- 3. This EUT is capable of providing data rates of up to 108 Mbps in 802.11a and 802.11g Turbo mode depending upon reception quality.
- 4. There are three antennas provided to this EUT, please refer to the following table:

No.	Brand Name	Model No.	Gain (dBi)	Cable Loss (dB)	Net Gain (dB)	Antenna Type	Connector
A	Wistron Neweb Corp.	DBA-SSMA-01	2.06	0.9	1.16	dipole	RSMA
В	CUSHCRUFT	SRSM5150MRA	2	0.9	1.1	dipole	RSMA
С	** HUBER+ SUHNER	SPA 5500/40/14/O/V_C	13.5	0.9	12.6	panel	SMA

Note: 1. For 4.9GHz antennas, antenna A and C were selected as representative antennas for the test.
2. "**'" is an Outdoor Antenna it can only be used in point-to-point applications.

5. Peak output power (Unit : mW) :

Nie	Model No.	Operating Frequency (MHz)
No.		4942.5 ~ 4987.5
А	DBA-SSMA-01	157.036
В	SRSM5150MRA	179.061
С	SPA 5500/40/14/O/V_C	172.982

- 6. The EUT has two samples, one is for MMCX connector the other is for U.FL. connector.
- 7. The two samples were pre-tested in chamber, EUT with MMCX connector, the worse case one, was chosen for final test.

8. The EUT has eight product names and model names, which are identical to each other in all aspects except for the followings:

Product name	Model name	Description
High Powered 802.11a/g WLAN Mini-PCI 3A	DCMA-82	
High Powered 802.11a/g WLAN Mini-PCI 3A	DCMA-82 High Power	
Industry High Powered 802.11a/g WLAN Mini-PCI 3A	DCMA-IHP	
Commercial High Powered 802.11a/g WLAN Mini-PCI 3A	DCMA-HP	
High Powered 802.11a/g WLAN Mini-PCI 3A	CM11	for market
High Powered 802.11a/b/g WLAN Mini-PCI Module (Industrial Grade)	CM10-HI	
High Powered 802.11a/b/g WLAN Mini-PCI Module	СМ10-Н	
Industry High-Power Safety-802.11p WLAN	DCMA-SPI	

From the above models, model: **DCMA-82** was selected as representative model for the test and its data was recorded in this report.

9. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Operated in 4940 ~ 4990MHz band:

For normal mode: Ten channels are provided to this EUT.

Frequency	Channel Bandwidth
4942.5MHz	5MHz
4947.5MHz	5MHz
4952.5MHz	5MHz
4957.5MHz	5MHz
4962.5MHz	5MHz
4967.5MHz	5MHz
4972.5MHz	5MHz
4977.5MHz	5MHz
4982.5MHz	5MHz
4987.5MHz	5MHz

3.3 TEST MODE APPLICABLITY AND TESTED CHANNEL DETAIL:

configure	A	pplicab	le to			Description		
mode	MPOP P	SD	RE	EM&CE		Desc	inption	
-					NA			
Where MP0	DP: Maximum F	eak Outp	ut Power		PSD	Power Spectrur	n Density	
RE:	Radiated Emis	sion			EM&	CE: Emission M	ask and Conduct	d Em
						Measureme	nt	
oted Emicei	an Taat .							
ated Emissi Bro Scop bo		luctod to	dotorr	nina tha	word	casa mada i	rom all possik	
							na ports (if E	
antenna dive			module	ations, u				51 11
			select	ed for th	e fina	l test as listed	l below.	
Available	Channel			Modula				
Channel	Bandwidt		nnel				Data Rate (Mbps)	
10	5		3	Techno OFD		Type BPSK	1.5	
				UFD	IVI	DF SK	1.5	
				nina tha	wore	-case mode t	rom all possit	ما
							•	
combinations between available modulations, data rates and a				auons, u				51 0
antenna diversity architecture).								
			select	ed for th	e final	i test as listed	I DEIOW.	
		s (were)		ed for the Modula		Modulation		
Following ch	annel(s) wa	s (were) Total		Modula	ation	Modulation		
Following ch Available Channel 10 VER SPECT Pre-Scan ha	Channel Bandwidtl 5 RAL DENSI s been cond	s (were) Total ⁻ n Cha <u>Cha</u> TY :	Tested nnel 3	Modula Techno OFD	ation logy M worst	Modulation Type BPSK -case mode f	Data Rate (Mbps) 1.5	
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been conc s between a ersity archite	s (were) Total The Chart of Ch	Fested nnel 3 o deterr modula	Modula Techno OFD nine the ations, d	ation logy M worst ata ra	Modulation Type BPSK t-case mode t tes and anter	Data Rate (Mbps) 1.5 from all possibilities inna ports (if E	
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been cond s between a ersity archite annel(s) wa	s (were) Total T Cha Cha TY : lucted to vailable cture). s (were)	Tested nnel 3 o deterr modula selecto	Modula Techno OFD nine the ations, d	ation logy M worst ata ra e fina	Modulation Type BPSK case mode t tes and anter	Data Rate (Mbps) 1.5 from all possibilities ina ports (if E below.	
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been cond s between a ersity archite annel(s) wa Channel	s (were) Total T Cha Cha Cha Cha Cha Cha Cha Cha Cha Cha	Fested nnel 3 o deterr modula selecto Fested	Modula Techno OFD nine the ations, d ed for th Modula	ation logy M worst ata ra e final ation	Modulation Type BPSK t-case mode t tes and anter test as listed Modulation	Data Rate (Mbps) 1.5 from all possibilities ina ports (if E below. Data Rate	
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available Channel	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been conc s between a ersity archite annel(s) wa Channel Bandwidtl	s (were) Total ⁻ Cha Uucted to vailable cture). s (were) Total ⁻ n Cha	Tested nnel 3 o deterr modula selectr Tested nnel	Modula Techno OFD nine the ations, da ed for the Modula Techno	ation logy M worst ata ra e fina ation logy	Modulation Type BPSK t-case mode to tes and anter test as listed Modulation Type	Data Rate (Mbps) 1.5 from all possibilities ina ports (if E below. Data Rate (Mbps)	
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been cond s between a ersity archite annel(s) wa Channel	s (were) Total ⁻ Cha Uucted to vailable cture). s (were) Total ⁻ n Cha	Fested nnel 3 o deterr modula selecto Fested	Modula Techno OFD nine the ations, d ed for th Modula	ation logy M worst ata ra e fina ation logy	Modulation Type BPSK t-case mode t tes and anter test as listed Modulation	Data Rate (Mbps) 1.5 from all possibilities ina ports (if E below. Data Rate	
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available Channel 10	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been conc s between a ersity archite annel(s) wa Channel Bandwidtl 5	s (were) Total T Cha Uucted to vailable cture). s (were) Total T h Cha	Tested nnel 3 a b deterr modula selecto Tested nnel 3	Modula Techno OFD nine the ations, d ed for the Modula Techno OFD	ation Norst worst ata ra e fina ation Nogy	Modulation Type BPSK -case mode t tes and anter test as listed Modulation Type BPSK	Data Rate (Mbps) 1.5 from all possibilities ina ports (if E below. Data Rate (Mbps)	
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available Channel 10 SION MASH	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been cond s between a ersity archite annel(s) wa Channel Bandwidtl 5	s (were) Total T Cha TY : lucted to vailable cture). s (were) Total T DUCTEI	Tested nnel 3 o deterr modula selectr Tested nnel 3 D SPUE	Modula Techno OFD nine the ations, d ed for th Modula Techno OFD	ation M Worst ata ra e fina ation logy M	Modulation Type BPSK t-case mode f tes and anter test as listed Modulation Type BPSK UREMENT:	Data Rate (Mbps) 1.5 from all possibilities ina ports (if E below. Data Rate (Mbps)	JT v
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available Channel 10 SION MASP Pre-Scan ha	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been cond s between a ersity archite annel(s) wa Channel Bandwidtl 5 CAND CONI s been cond	s (were) Total ⁻ Cha Cha TY : lucted to vailable cture). s (were) Total ⁻ n Cha DUCTEI lucted to	Tested nnel 3 a b deterr modula selectr Tested nnel 3 b D SPUIP	Modula Techno OFD nine the ations, d ed for the Modula Techno OFD RIOUS M nine the	ation logy M worst ata ra e fina ation logy M M MEAS worst	Modulation Type BPSK t-case mode f tes and anter test as listed Modulation Type BPSK UREMENT: t-case mode f	Data Rate (Mbps) 1.5 irom all possibilities ina ports (if E below. Data Rate (Mbps) 1.5	JT w
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available Channel 10 SION MASH Pre-Scan ha combination antenna dive	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been conc s between a ersity archite annel(s) wa Channel Bandwidtl 5 CAND CONI s been conc s between a ersity archite	s (were) Total Total To	Tested nnel 3 a) b) b)	Modula Techno OFD nine the ations, d ed for the Modula Techno OFD RIOUS M nine the ations, d	ation logy M worst ata ra e final ation logy M M MEAS ata ra	Modulation Type BPSK t-case mode f tes and anter test as listed Modulation Type BPSK UREMENT: t-case mode f tes and anter	Data Rate (Mbps) 1.5 from all possibilities below. Data Rate (Mbps) 1.5	JT w
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available Channel 10 SION MASH Pre-Scan ha combination antenna dive Following ch	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been cond s between a ersity archite annel(s) wa Channel Bandwidtl 5 CAND CON s been cond s between a ersity archite annel(s) wa	s (were) Total T Cha TY : lucted to vailable cture). s (were) Total T Cha DUCTEI lucted to vailable cture). s (were). s (were).	Tested nnel 3 a b deterr modula selector Tested nnel 3 b D SPUI a b deterr modula selector selector selector	Modula Techno OFD nine the ations, d ed for the Modula Techno OFD RIOUS M nine the ations, d ed for th	ation logy M worst ata ra e fina ation logy M M M M M M M M M M M M M M M M M M M	Modulation Type BPSK -case mode f tes and anter test as listed Modulation Type BPSK UREMENT: tes and anter test as listed	Data Rate (Mbps) 1.5 from all possibilities below. Data Rate (Mbps) 1.5 from all possibilities in a ports (if E	JT w
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available Channel 10 SION MASH Pre-Scan ha combination antenna dive Following ch Available	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been cond s between a ersity archite annel(s) wa Channel Bandwidtl 5 CAND CONI s been cond s between a ersity archite annel(s) wa Channel	s (were) Total Total To	Tested nnel 3 o deterr modula selecta Tested nnel 3 D SPUI o deterr modula	Modula Techno OFD nine the ations, d ed for th Modula Techno OFD RIOUS M nine the ations, d ed for th Modula	ation logy M worst ata ra e fina logy M <u>IEAS</u> worst ata ra e fina ation	Modulation Type BPSK -case mode f tes and anter tes and anter BPSK UREMENT: t-case mode f tes and anter tes and anter tes and anter	Data Rate (Mbps) 1.5 irom all possibilities ina ports (if E below. Data Rate (Mbps) 1.5 irom all possibilities below. 1.5 irom all possibilities ina ports (if E ina ports (if E ina ports (if E below. Data Rate ina ports (if E below. Data Rate	JT w
Following ch Available Channel 10 VER SPECT Pre-Scan ha combination antenna dive Following ch Available Channel 10 SION MASH Pre-Scan ha combination antenna dive Following ch	Annel(s) wa Channel Bandwidtl 5 RAL DENSI s been cond s between a ersity archite annel(s) wa Channel Bandwidtl 5 CAND CON s been cond s between a ersity archite annel(s) wa	s (were) Total Total To	Tested nnel 3 a b deterr modula selector Tested nnel 3 b D SPUI a b deterr modula selector selector selector	Modula Techno OFD nine the ations, d ed for the Modula Techno OFD RIOUS M nine the ations, d ed for th	ation logy M worst ata ra e fina ation logy M <u>/IEAS</u> worst ata ra e fina ation logy	Modulation Type BPSK -case mode f tes and anter test as listed Modulation Type BPSK UREMENT: tes and anter test as listed	Data Rate (Mbps) 1.5 from all possibilities below. Data Rate (Mbps) 1.5 from all possibilities in a ports (if E	JT v

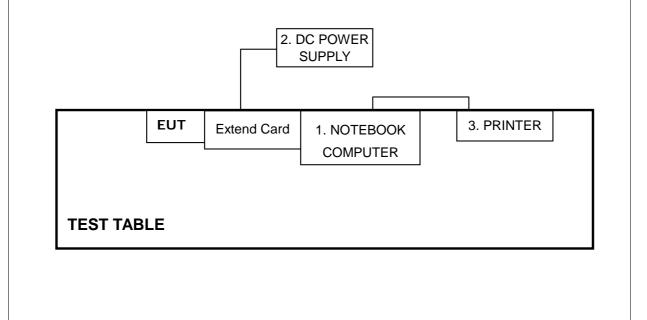
3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a High Powered 802.11a/g WLAN Mini-PCI 3A. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

47 CFR Part 90, Subpart Y ANSI C63.4 : 2003

All tests have been performed and recorded as per the above standards.

3.5 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1	NOTEBOOK COMPUTER	DELL	C600	6DRV601	FCC DoC
2	DC POWER SUPPLY	GOOD WILL INSTRUMENT CO., LTD.	GPC-3030D	7700087	B94C2642X
3	PRINTER	EPSON	LQ-300+	DCGY047261	B94C2642X
4	Extend Card	ADT	NA	NA	NA

No.	Signal cable description
1	NA
2	NA
3	1.8m braid shielded wire, terminated with DB25 and Centronics connector via metallic frame,
	w/o core
4	NA

Note: 1. All power cords of the above support units are unshielded (1.8m).

3.6 CONFIGURATION OF SYSTEM UNDER TEST

4 TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

§90.210(M) Emission Mask M. For high power transmitters (greater that 20 dBm) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows: On any frequency removed from the assigned frequency above 150 % of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

The Radiated Spurious Emission Limit is obtained by the following:

Channel 4942.5MHz: Measured Average Power Output of EUT:13.25dBm Spur limit=13.25dBm-50dB=-36.75dBm

Channel 4967.5MHz: Measured Average Power Output of EUT:13.47dBm Spur limit=13.47dBm-50dB =-36.53dBm

Channel 4987.5MHz: Measured Average Power Output of EUT:13.66dBm Spur limit=13.66dBm-50dB=-36.34dBm

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
ADVANTEST Spectrum Analyzer	R3271A	85060311	July 03, 2007
HP Pre_Amplifier	8449B	3008A01922	Sep. 18, 2007
ROHDE & SCHWARZ Test Receiver	ESCS30	100375	Sep. 20, 2007
CHASE Broadband Antenna	VULB 9168	138	July 17, 2007
Schwarzbeck Horn_Antenna	BBHA9120	D124	Jan. 01, 2008
Schwarzbeck Horn_Antenna	BBHA 9170	BBHA9170153	Jan. 05, 2008
SCHWARZBECK Biconical Antenna	VHBA9123	459	Jun. 08, 2009
SCHWARZBECK Periodic Antenna	UPA6108	1148	Jun. 08, 2009
R&S Loop Antenna	HFH2-Z2	881058/15	Nov. 29, 2007
RF Switches (ARNITSU)	CS-201	1565157	NA
RF CABLE (Chaintek)	SF102	22054-2	Nov. 14. 2007
RF Cable(RICHTEC)	9913-30M N-N Cable	STCCAB-30M-1 GHz	Jul. 15, 2007
Software	ADT_Radiated_V 7.6.15.7	NA	NA
CHANCE MOST Antenna Tower	AT-100	0203	NA
CHANCE MOST Turn Table	TT-100	0203	NA

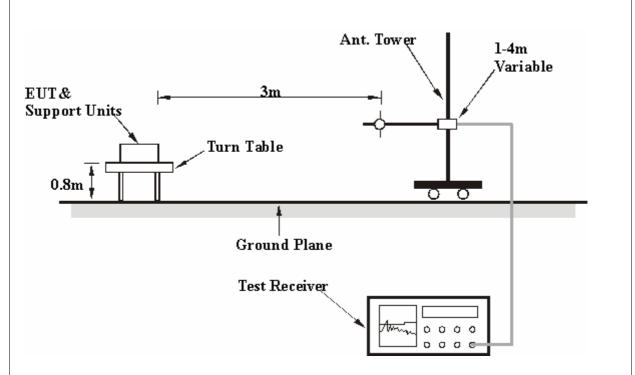
Note: 1. The calibration interval of the above test instruments is 12 months (36 months for Biconical and Periodic Antenna)and the calibrations are traceable to NML/ROC and NIST/USA.

2. The horn antenna, HP preamplifier (model: 8449B) and Spectrum Analyzer (model: R3271A) are used only for the measurement of emission frequency above 1GHz if tested.

The test was performed in ADT Open Site No. C.
 The FCC Site Registration No. is 656396.
 The VCCI Site Registration No. is R-1626.
 The CANADA Site Registration No. is IC 4824A-3.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The maximum EIRP of the emission was calculated by adding the forward power to the calibrated source plus its appropriate gain value. These steps were carried out with the receiving antenna in both vertical and horizontal polarization. Harmonic emissions up to the 10thor40GHz,which ever was the lesser, were investigated.


NOTE:

1. The resolution bandwidth of at least one percent of the occupied bandwidth of the

fundamental emission and a video bandwidth of 30 kHz.

4.1.4 TEST SETUP

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

4.1.5 EUT OPERATING CONDITIONS

- a. Connect the EUT with the support unit 1 (Notebook computer) which placed on a testing table.
- b. The support unit 1 (Notebook computer) ran a test program "Art 53 b 5" to enable EUT under transmission condition continuously.
- c. Notebook computer sends "H" messages to printer, and the printer prints them on paper.

TEST RESULTS - ANTENNA A 4.1.6

MODE	Channel Frequency 4942.5MHz	FREQUENCY RANGE	1000~40000MHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak (PK) 300KHz/30KHz
ENVIRONMENTAL CONDITIONS	26 deg. C, 66%RH, 960 hPa	TESTED BY	Wen Yu

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Raw Value (dBm)	Correction Factor (dBm)	
1	4800.00	-48.98	-36.75	-12.23	-84.62	35.64	
2	6590.00	-44.69	-36.75	-7.94	-85.00	40.31	
3	14827.50	-47.13	-36.75	-10.38	-96.92	49.79	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Raw Value (dBm)	Correction Factor (dBm)
1	4800.00	-42.10	-36.75	-5.35	-77.74	35.64
2	6590.00	-41.40	-36.75	-4.65	-81.71	40.31
3	14827.50	-46.04	-36.75	-9.29	-95.83	49.79
REMA	REMARKS : 1. Emission level(dBm) <eirp>=SG reading-CL+Gain(dBi)</eirp>					

Emission level(dBm)<EIRP>=SG reading-CL+Gain(dBi)
 The other emission levels were very low against the limit.
 Margin value = Emission level – Limit value.
 The limit value is defined as per 90.210
 " * " : Fundamental frequency

MODE	Channel Frequency 4967.5MHz	FREQUENCY RANGE	1000~40000MHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak (PK) 300KHz/30KHz
ENVIRONMENTAL CONDITIONS	26 deg. C, 66%RH, 960 hPa	TESTED BY	Wen Yu

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Raw Value (dBm)	Correction Factor (dBm)	
1	4800.00	-47.78	-36.53	-11.25	-83.42	35.64	
2	6623.30	-45.02	-36.53	-8.49	-85.42	40.40	
3	14902.50	-46.48	-36.53	-9.95	-96.38	49.90	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Raw Value (dBm)	Correction Factor (dBm)
1	4800.00	-40.95	-36.53	-4.42	-76.59	35.64
2	6623.30	-41.83	-36.53	-5.30	-82.23	40.40
3	14902.50	-45.40	-36.53	-8.87	-95.30	49.90
REMA	REMARKS : 1. Emission level(dBm) <eirp>=SG reading-CL+Gain(dBi)</eirp>					

Emission level(dBm)<EIRP>=SG reading-CL+Gain(dBi)
 The other emission levels were very low against the limit.
 Margin value = Emission level – Limit value.
 The limit value is defined as per 90.210
 " * " : Fundamental frequency

MODE	Channel Frequency 4987.5MHz	FREQUENCY RANGE	1000~40000MHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak (PK) 300KHz/30KHz
ENVIRONMENTAL CONDITIONS	26 deg. C, 66%RH, 960 hPa	TESTED BY	Wen Yu

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
	Freq.	Emission	Limit	Margin	Raw	Correction
No.	(MHz)	Level	(dBm)	(dB)	Value	Factor
	(10172)	(dBm)	(ubiii)	(UD)	(dBm)	(dBm)
1	4800.00	-50.77	-36.34	-14.43	-86.41	35.64
2	6650.00	-47.21	-36.34	-10877	-87.67	40.46
3	14962.50	-46.61	-36.34	-10.27	-96.60	49.99

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
	Freq.	Emission	Limit	Margin	Raw	Correction	
No.	(MHz)	Level	(dBm)		(dB)	Value	Factor
	(10172)	(dBm)		(UD)	(dBm)	(dBm)	
1	4800.00	-44.06	-36.34	-7.72	-79.70	35.64	
2	6650.00	-44.23	-36.34	-7.89	-84.69	40.46	
3	14962.50	-46.00	-36.34	-9.66	-95.99	49.99	

 1. Emission level(dBm)<EIRP>=SG reading-CL+Gain(dBi)

 2. The other emission levels were very low against the limit.

 3. Margin value = Emission level – Limit value.

 4. The limit value is defined as per 90.210

 5. " * " : Fundamental frequency

 REMARKS:

4.1.7 TEST RESULTS - ANTENNA C

MODE	Channel Frequency 4942.5MHz	FREQUENCY RANGE	1000~40000MHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak (PK) 300KHz/30KHz
ENVIRONMENTAL CONDITIONS	26 deg. C, 66%RH, 960 hPa	TESTED BY	Wen Yu

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Raw Value (dBm)	Correction Factor (dBm)
1	4800.00	-45.61	-36.75	-8.86	-81.25	35.64
2	6590.00	-42.55	-36.75	-5.80	-82.86	40.31
3	14827.50	-43.60	-36.75	-6.85	-93.39	49.79

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
No.	Freq. (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Raw Value (dBm)	Correction Factor (dBm)
1	4800.00	-37.88	-36.75	-1.13	-73.52	35.64
2	6590.00	-40.15	-36.75	-3.40	-80.46	40.31
3	14827.50	-44.97	-36.75	-8.22	-94.76	49.79

REMARKS:

Emission level(dBm)<EIRP>=SG reading-CL+Gain(dBi)
 The other emission levels were very low against the limit.
 Margin value = Emission level – Limit value.
 The limit value is defined as per 90.210
 " * " : Fundamental frequency

MODE	Channel Frequency 4967.5MHz	FREQUENCY RANGE	1000~40000MHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak (PK) 300KHz/30KHz
ENVIRONMENTAL CONDITIONS	26 deg. C, 66%RH, 960 hPa	TESTED BY	Wen Yu

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
NL.	Freq.	Emission	Limit	Margin	Raw	Correction
No.	(MHz)	Level (dBm)	(dBm)	(dB)	Value (dBm)	Factor (dBm)
		()			()	(
1	4800.00	-45.36	-36.53	-8.83	-81.00	35.64
2	6623.30	-43.52	-36.53	-6.99	-83.92	40.40
3	14902.50	-43.71	-36.53	-7.18	-93.61	49.90

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M						
No.	Freq. (MHz)	Emission Level (dBm)	Limit (dBm)	Margin (dB)	Raw Value (dBm)	Correction Factor (dBm)
1	4800.00	-37.59	-36.53	-1.06	-73.23	35.64
2	6623.30	-42.98	-36.53	-6.45	-83.38	40.40
3	14902.50	-44.30	-36.53	-7.77	-94.20	49.90
REMA	REMARKS: 1. Emission level(dBm) <eirp>=SG reading-CL+Gain(dBi)</eirp>					

Emission level(dBm)<EIRP>=SG reading-CL+Gain(dBi)
 The other emission levels were very low against the limit.
 Margin value = Emission level – Limit value.
 The limit value is defined as per 90.210
 " * " : Fundamental frequency

MODE	Channel Frequency 4987.5MHz	FREQUENCY RANGE	1000~40000MHz
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION & BANDWIDTH	Peak (PK) 300KHz/30KHz
ENVIRONMENTAL CONDITIONS	26 deg. C, 66%RH, 960 hPa	TESTED BY	Wen Yu

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M					
No.	Freq. (MHz)	Emission Level	Limit	Margin	Raw Value	Correction Factor
	(10172)	(dBm)	(dBm)	(dB)	(dBm)	(dBm)
1	4800.00	-45.82	-36.34	-9.48	-81.46	35.64
2	6650.00	-44.18	-36.34	-7.84	-84.64	40.46
3	14962.50	-45.06	-36.34	-8.72	-95.05	49.99

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M					
	Freq.	Emission	Limit	Margin	Raw	Correction
No.	(MHz)	Level	(dBm)	(dB)	Value	Factor
		(dBm) (dBm)	(ubili)	(UD)	(dBm)	(dBm)
1	4800.00	-38.03	-36.34	-1.69	-73.67	35.64
2	6650.00	-43.36	-36.34	-7.02	-83.82	40.46
3	14962.50	-45.21	-36.34	-8.87	-95.20	49.99

 1. Emission level(dBm)<EIRP>=SG reading-CL+Gain(dBi)

 2. The other emission levels were very low against the limit.

 3. Margin value = Emission level – Limit value.

 4. The limit value is defined as per 90.210

 5. " * " : Fundamental frequency

 REMARKS:

4.2 EMISSION BANDWIDTH MEASUREMENT

4.2.1 LIMITS OF 26dB BANDWIDTH MEASUREMENT

For reporting purposes only.

4.2.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 15, 2007

NOTE:

1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.2.3 TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 26dB bandwidth and /or the 99% bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled.

4.2.4 TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

4.2.5 EUT OPERATING CONDITIONS

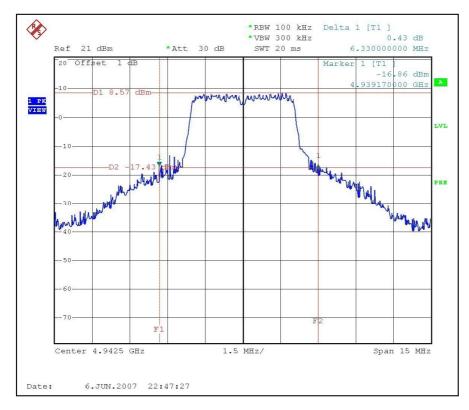
The software provided by client to enable the EUT under transmission condition continuously at channel frequencies individually.

4.2.6 TEST RESULTS

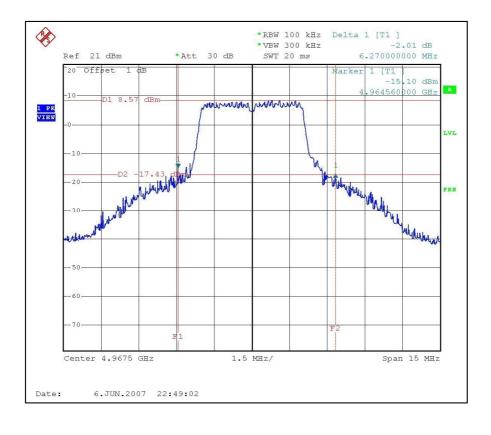
INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL	25 deg. C, 67%RH,
(SYSTEM)		CONDITIONS	960 hPa
TESTED BY	Wen Yu		

26dB Bandwidth

CHANNEL FREQUENCY (MHz)	26 dB BANDWIDTH (MHz)	10 Log B (dB)
4942.5	6.33	8.01
4967.5	6.27	7.97
4987.5	6.30	7.99

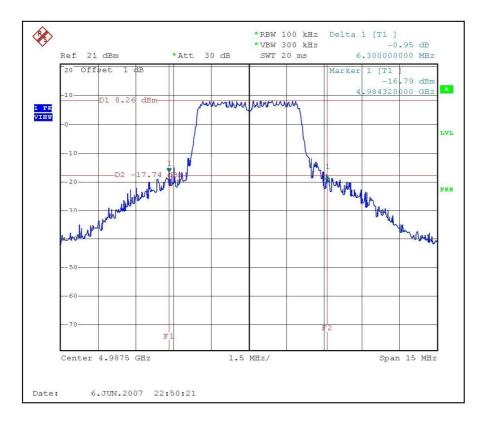

99% Bandwidth

CHANNEL FREQUENCY (MHz)	99% BW (MHz)
4942.5	4.23
4967.5	4.23
4987.5	4.23

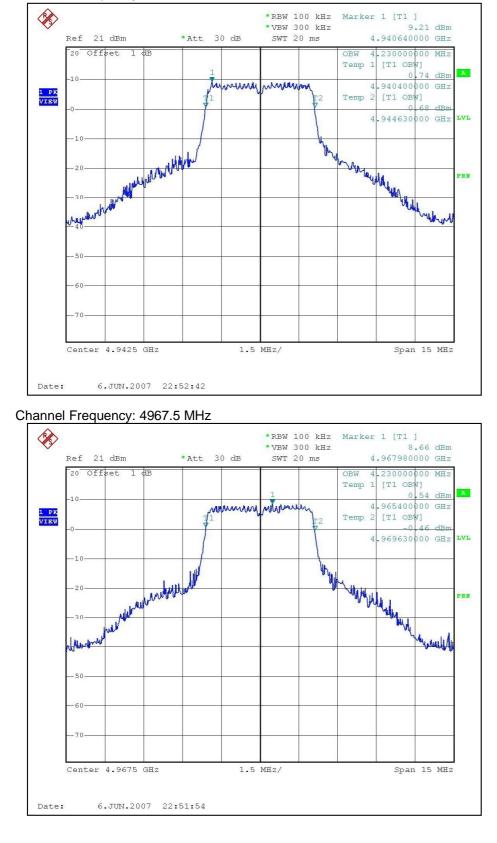


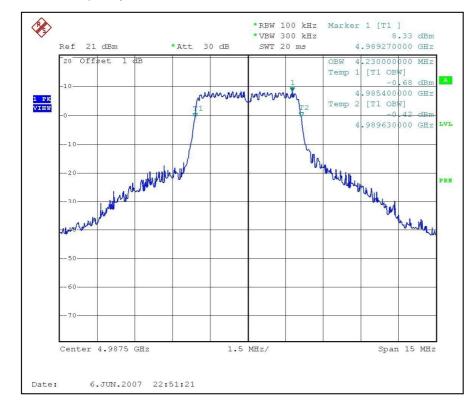
26dB Bandwidth

Channel Frequency: 4942.5 MHz



Channel Frequency: 4967.5 MHz


Channel Frequency: 4987.5 MHz


99% Bandwidth

Channel Frequency: 4942.5 MHz

Channel Frequency: 4987.5 MHz

4.3 MAXIMUM PEAK OUTPUT POWER

4.3.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

§90.1215 The transmitting power of stations operating in the 4940-4990 MHz band must not exceed the maximum limits in this section.

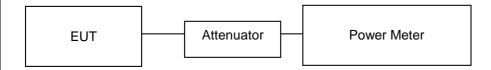
(a) The peak transmit power should not exceed:

Channel bandwidth (MHz)	Low power device peak transmitter power (dBm)	High power device peak transmitter power (dBm)
1	7	20
5	14	27
10	17	30
15	18.8	31.8
20	20	33

4.3.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
Power Meter	ML2487A	6K00001472	Jan. 18, 2008
Power Meter Sensor (Wide Bandwidth Sensor)	MA2491A	030951	Jan. 18, 2008

NOTE:


The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.3.3 TEST PROCEDURES

- 1. An attenuator was used on the output port of the EUT. Power meter was used and set peak function to measurement the Peak power.
- 2. The EUT power was adjusted maximum output power.
- 3. The output power was then recorded with peak reading.

4.3.4 TEST SETUP

4.3.5 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at channel frequencies individually and power was adjusted Maximum output power by software.

4.3.6 TEST RESULTS - ANTENNA A

INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL	25 deg. C, 67%RH,
(SYSTEM)		CONDITIONS	960 hPa
TESTED BY	Wen Yu		

CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
4942.5	157.036	21.96	27	PASS
4967.5	179.061	22.53	27	PASS
4987.5	172.982	22.38	27	PASS

4.3.7 TEST RESULTS - Antenna C

INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL	25 deg. C, 67%RH,
(SYSTEM)		CONDITIONS	960 hPa
TESTED BY	Wen Yu		

CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
4942.5	157.036	21.96	27	PASS
4967.5	179.061	22.53	27	PASS
4987.5	172.982	22.38	27	PASS

4.4 AVERAGE POWER

4.4.1 LIMITS OF AVERAGE POWER MEASUREMENT

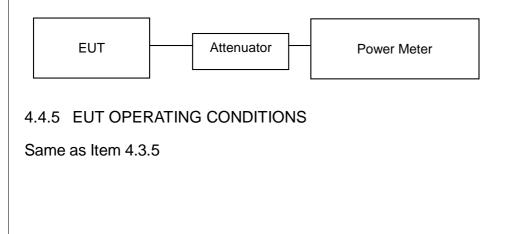
None; for reporting purposes only.

4.4.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
Power Meter	ML2487A	6K00001472	Jan. 18, 2008
Power Meter Sensor (Wide Bandwidth Sensor)	MA2491A	030951	Jan. 18, 2008

NOTE:

The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.


4.4.3 TEST PROCEDURES

1.An attenuator was used on the output port of the EUT. Power meter was used

and set average function to measurement the Average power.

- 2. The EUT power was adjusted maximum output power.
- 3. The output power was then recorded with peak and average reading.

4.4.4 TEST SETUP

4.4.6 TEST RESULTS - ANTENNA A

INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL	25 deg. C, 67%RH,
(SYSTEM)		CONDITIONS	960 hPa
TESTED BY	Wen Yu		1

CHANNEL FREQUENCY (MHz)	AVERAGE POWER (mW)	AVERAGE POWER (dBm)
4942.5	21.135	13.25
4967.5	22.233	13.47
4987.5	23.227	13.66

4.4.7 TEST RESULTS - Antenna C

INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL	25 deg. C, 67%RH,
(SYSTEM)		CONDITIONS	960 hPa
TESTED BY	Wen Yu		

CHANNEL FREQUENCY (MHz)	AVERAGE POWER (mW)	AVERAGE POWER (dBm)
4942.5	21.135	13.25
4967.5	22.233	13.47
4987.5	23.227	13.66

4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

Complies § 90.1215 (a) High power devices.

System	Limit
For high power device	21dBm/MHz

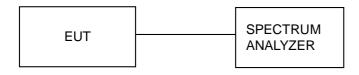
Note:

If transmitting antennas of directional gain greater than 9dBi are used, both the peak transmit power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to point or point-to-multipoint operation (both fixed and temporary-fixed rapid deployment) may employ transmitting antennas with directional gain up to 26dBi without any corresponding reduction in the transmitter power or spectral density. Corresponding reduction in the peak transmit power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26dBi.

4.5.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 15, 2007

NOTE:


1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

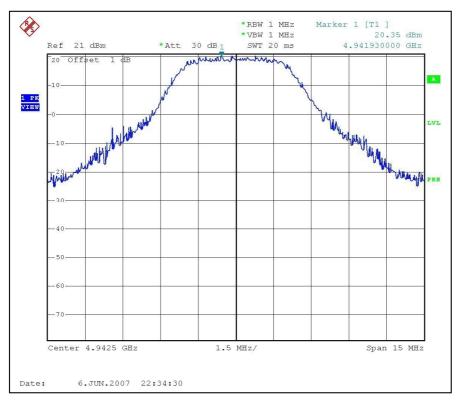
4.5.3 TEST PROCEDURE

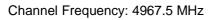
The transmitter output is connected to a spectrum analyzer. The measured with the spectrum analyzer using RBW=1MHz and VBW 1MHz. The EUT power was adjusted at the maximum output power level. Set max hold to capture the modulated envelope of the EUT. The peak power spectrum density was recorded.

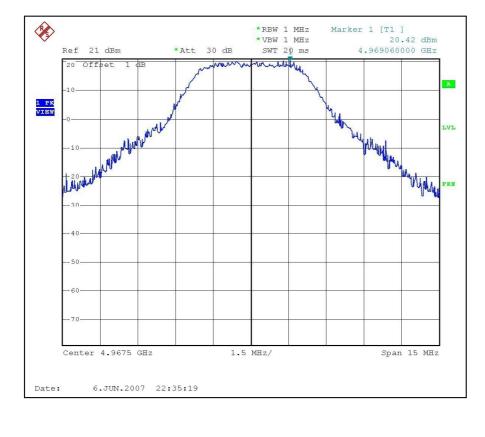
4.5.4 TEST SETUP

4.5.5 EUT OPERATING CONDITIONS

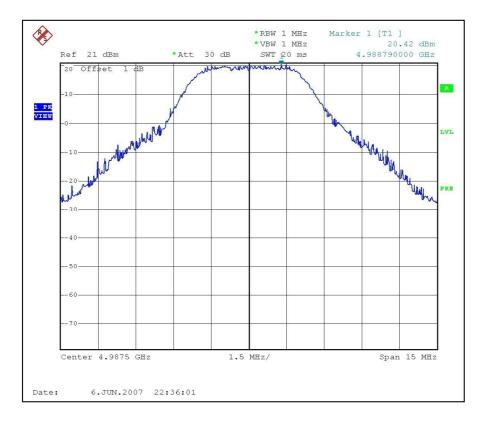
Same as 4.2.5


4.5.6 TEST RESULTS


INPUT POWER	120Vac, 60 Hz	ENVIRONMENTAL	25 deg. C, 67%RH,	
(SYSTEM)		CONDITIONS	960 hPa	
TESTED BY	Wen Yu			


CHANNEL FREQUENCY (MHz)	POWER SPECTRAL DENSIYT (dBm/MHz)	MAXIMUM LIMIT (dBm/MHz)	PASS/FAIL
4942.5	20.35	21	PASS
4967.5	20.42	21	PASS
4987.5	20.42	21	PASS

Channel Frequency: 4942.5 MHz



Channel Frequency: 4987.5 MHz

4.6 EMISSION MASK AND CONDUCTED SPURIOUS MEASUREMENT

4.6.1 LIMITS OF EMISSION MASK MEASUREMENT

Compliance §90.210(M) Emission Mask M (For High power device) . PSD of the emission on any frequency removed from the assigned frequency must be attenuated below the output power of the transmitter as follows:

Authorized bandwidth(BW)	Limit
0-45%	0dB
45-50%	568 log (% of (BW) / 45) dB
50-55%	26 + 145 log (% of BW / 50) dB
55-100%	32 + 31 log (% of (BW) / 55) dB
100-150%	40 + 57 log (% of (BW) / 100) dB
Above 150%	50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

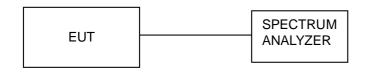
Note: The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz.

4.6.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 15, 2007

NOTE:

1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

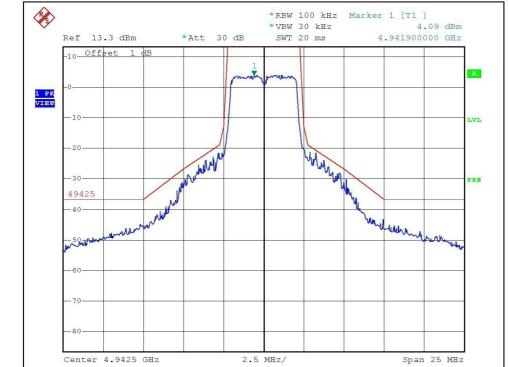

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

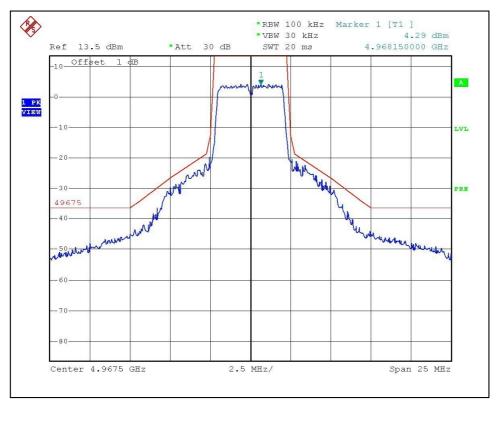
4.6.3 TEST PROCEDURE

The EUT is connected to the spectrum analyzer. The measured highest Average Power was set relative to zero dB reference. The RBW was set to at least 1% of the channel bandwidth with a VBW set to 30kHz. The EUT power was adjusted at the maximum output power level. Set max hold to capture the modulated envelope of the EUT. The Emission Mask was recorded.

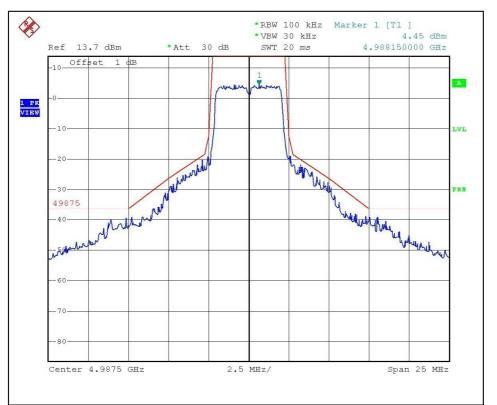
4.6.4 TEST SETUP

4.6.5 EUT OPERATING CONDITIONS

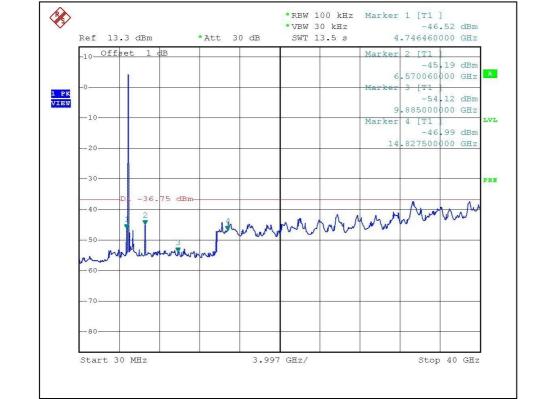

Same as 4.2.5

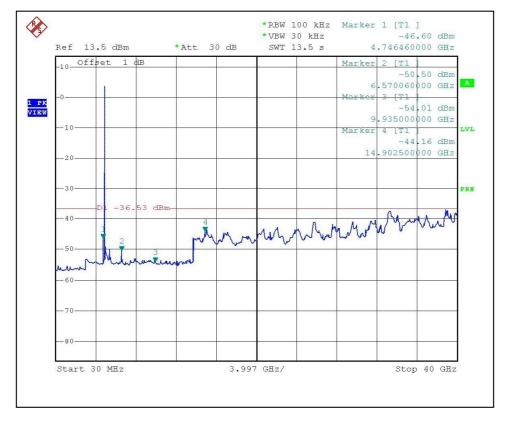

4.6.6 TEST RESULTS

EMISSION MASK :



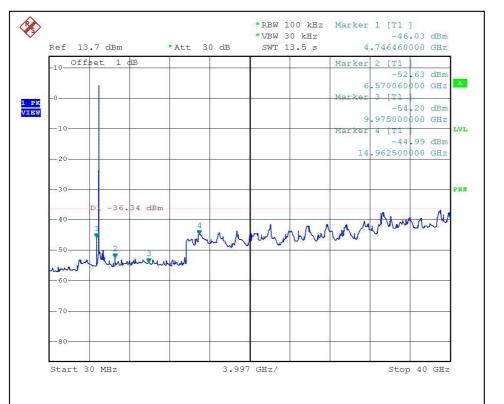
Channel Frequency: 4967.5 MHz


Channel Frequency: 4987.5 MHz



CONDUCTED SPURIOUS:

Channel Frequency: 4942.5 MHz



Channel Frequency: 4967.5 MHz

Channel Frequency: 4987.5 MHz

4.7 FREQUENCY STABILITY

4.7.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

For reporting purposes only.

4.7.2 TEST INSTRUMENTS

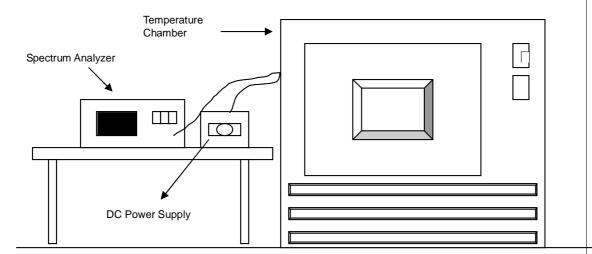
Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 15, 2007

NOTE:

1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.7.3 TEST PROCEDURE


- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.7.4 DEVIATION FROM TEST STANDARD

No deviation

4.7.5 TEST SETUP

4.7.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.7.7 TEST RESULTS

OPERATING FREQUENCY: 4967.5MHZ							
Temp.	Power	2 minute		5 minute		10 minute	
(°C)	supply (VAC)	(MHz)	(%)	(MHz)	(%)	(MHz)	(%)
	138	4967.4811	0.000380	4967.4811	0.000380473	4967.4821	0.000360
50	120	4967.481	0.000382	4967.481	0.000382486	4967.4820	0.000362
	102	4967.4809	0.000384	4967.481	0.000382486	4967.4818	0.000366
	138	4967.4802	0.000399	4967.4812	0.00037846	4967.4812	0.000378
40	120	4967.48	0.000403	4967.481	0.000382486	4967.4811	0.000381
	102	4967.4799	0.000405	4967.48106	0.000381278	4967.4808	0.000387
	138	4967.479547	0.000412	4967.48105	0.00038148	4967.4805	0.000393
30	120	4967.47927	0.000417	4967.481124	0.00037999	4967.4802	0.000399
	102	4967.478992	0.000423	4967.481124	0.00037999	4967.4799	0.000405
	138	4967.478715	0.000428	4967.481135	0.000379768	4967.4796	0.000411
20	120	4967.478438	0.000434	4967.481025	0.000381983	4967.4793	0.000417
	102	4967.478161	0.000440	4967.481174	0.000378983	4967.4790	0.000422
	138	4967.477884	0.000445	4967.481156	0.000379345	4967.4787	0.000428
10	120	4967.477607	0.000451	4967.481171	0.000379034	4967.4784	0.000434
	102	4967.47733	0.000456	4967.481187	0.000378723	4967.4782	0.000440
	138	4967.477052	0.000462	4967.481202	0.000378412	4967.4779	0.000446
0	120	4967.476775	0.000468	4967.481218	0.000378101	4967.4776	0.000452
	102	4967.476498	0.000473	4967.481233	0.00037779	4967.4773	0.000457
	138	4967.476221	0.000479	4967.481249	0.000377479	4967.4770	0.000463
-5	120	4967.475944	0.000484	4967.481264	0.000377168	4967.4767	0.000469
	102	4967.475667	0.000490	4967.48128	0.000376856	4967.4764	0.000475

5 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025:

USA	FCC, NVLAP, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	CNLA, BSMI, NCC
Netherlands	Telefication
Singapore	PSB, GOST-ASIA (MOU)
Russia	CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232

Fax: 886-3-3185050

Email: <u>service@adt.com.tw</u> Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

6 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.