

SAR Evaluation Report

in accordance with the requirements of FCC Report and Order: ET Docket 93-62, and OET Bulletin 65 Supplement C

for

NoteBook PC With 802.11a/b/g Module

MODEL: BQ12

FCC ID: NKRBQ12AB

May 15, 2003

REPORT NO: 03T1780-1 (Additional test at worse case position for all data rates)

Prepared for

Wistron NeWeb Corporation No. 10-1, Li-Hsin Road I Science-Based Industrial Park Hsinchu, Taiwan, R. O. C.

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD MORGAN HILL, CA 95037 USA TEL: (408) 463-0885

1. MEASUREMENT RESULTS

1.1. SYSTEM VALIDATION

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

Frequency (MHz)	1 g SAR	10 g SAR	Local SAR at surface (Above feed point)	Local SAR at surface (y=2cm offset from feed point)
300	3.0	2.0	4.4	2.1
450	4.9	3.3	7.2	3.2
835	9.5	6.2	14.1	4.9
900	10.8	6.9	16.4	5.4
1450	29.0	16.0	50.2	6.5
1800	38.1	19.8	69.5	6.8
1900	39.7	20.5	72.1	6.6
2000	41.1	21.1	74.6	6.5
2450	52.4	24.0	104.2	7.7
3000	63.8	25.7	140.2	9.5

IEEE P1528 Recommer	ided Releience value

System Validation Results

Ambient conduction: Temperature <a>25.7°C; Relative humidity <a>35%System Validation Dipole: <a>D2450V2 SN: 706Date

Date of measured: May 15, 2003

Medium		Deremetere	Torgot	Maaaurad	Deviation[%]	Limited[%]	
Туре	Temp. [°C]	Depth [cm]	Parameters	Target	Measured	Deviation[%]	Limited[%]
Head			Permitivity:	39.2	39.0162	-0.47	± 10
2450 MHz	24.70	15.00	Conductivity:	1.8	1.8239	1.33	± 5
2450 10172			1g SAR:	52.4	55.2	5.34	± 10

1.2. TEST LIQUID CONFIRMATION

Simulated Tissue Liquid Parameter confirmation

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

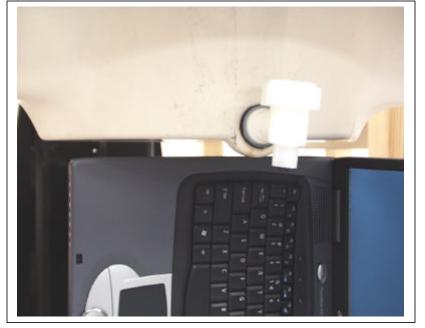
IEEE SCC-34/SC-2 P1528 recommended Tissue Dielectric Parameters

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency	He	ad	Bo	ody
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	45.3	5.27	48.2	6.00

 $(\varepsilon_r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m³)$

Liquid Confirmation Results


Ambient conduction – Temperature: <u>25.5</u>°C; Relative humidity: <u>35</u>% Date: May 15, 2003

Medium		Parameters	Target	Measured	Deviation[%]	Limited[%]	
Туре	Temp. [°C]			Measureu			
Muscle	24.5	Permitivity:	52.7	51.6364	-2.02	± 10	
2450 MHz	24.5	Conductivity:	1.95	1.9488	-0.06	± 5	

1.3. EUT SETUP PHOTOS

EUT Set-up Configuration 3 (Antenna B)

- 1. Installation conditions between EUT and phantom Right side of panel perpendicular to flat phantom.
- 2. Spacing between EUT and phantom 1.5 cm

1.4. SAR MEASUREMENT RESULTS

Modulation type: <u>DSSS</u> (Crest factor: <u>1)</u>								Depth of liquid:	<u>15.0</u> cm
EUT Setu	p Configur	ation 3	(Antenna	a B)				Date: May 1	5, 2003
EUT Set-up conditions			Frequency		Conducted Power [dBm] (Peak)		Liquid Temp	SAR	Limit
Sep. [cm]	Antenna	Ch.	MHz	Rate	Before	After	[°C]	(W/kg)	(W/kg)
				2	17.21	17.18	24.1	Cube 0: 0.139 Cube 1: 0.105	
1.5	Aux antenna	1	2412	5.5	17.23	17.19	23.8	Cube 0: 0.141 Cube 1: 0.103	1.6
				11	17.19	17.17	23.7	Cube 0: 0.135 Cube 1: 0.100	

1 4 1 802 11h

Please refer to attachment for each configuration presentation in plot format.

1.4.2. 802.11g

Modulation type: <u>OFDM</u> (Crest factor: <u>1)</u>								Depth of liquid:	<u>15.0</u> cm																	
EUT Setu	p Configur	ation 3	(Antenna	a B)				Date: May 1	5, 2003																	
EUT S cond	Set-up itions		Frequency			Conducted Power [dBm] (Peak)		SAR	Limit																	
Sep. [cm]	Antenna	Ch.	MHz	Rate	Before	After	Temp [°C]	(W/kg)	(W/kg)																	
				9	17.21	17.19	23.6	Cube 0: 0.0462 Cube 1: 0.0384																		
				12	17.20	17.17	23.5	Cube 0: 0.0455 Cube 1: 0.0388																		
		1	1	1	1	1	1	1	1	1	1		18	17.19	17.18	23.4	Cube 0: 0.0439 Cube 1: 0.035									
1.5	Aux antenna											1	1	1	1	1	1	1 2437	24	17.19	17.17	23.5	Cube 0: 0.0439 Cube 1: 0.0358	1.6		
																					36	17.20	17.18	23.5	Cube 0: 0.0454 Cube 1: 0.0346	
																					48	17.21	17.18	23.6	Cube 0: 0.0451 Cube 1: 0.0345	
				54	17.19	17.17	23.5	Cube 0: 0.0428 Cube 1: 0.0346																		

Please refer to attachment for each configuration presentation in plot format.

2. EQUIPMENTS LIST & CALIBRATION STATUS

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration		
Name of Equipment	Manufacturer	i ype/woder	Genarivaniber	last cal.	due date	
S-Parameter Network Analyzer	Agilent	8753ES	MY40001647	8/6/02	8/6/03	
Electronic Probe kit	Hewlett Packard	85070C	N/A	N/A	N/A	
3.5 mm Calibration Kit	Agilent	85033D	3423A07200	8/6/02	8/6/03	
Power Meter	Agilent	E5516A	GB41291160	8/9/02	8/9/03	
Power Sensor	Agilent	E9327A	US40440755	9/5/02	9/5/03	
Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	838114/032	2/14/03	2/14/04	
Amplifier	Mini-Circuit	ZHL-42W	D072701-5	N/A	N/A	
DC Power generator	Kenwood	PA36-3A	7060074	N/A	N/A	
Data Acquisition Electronics (DAE)	SPEAG	DAE3 V1	427	2/4/03	2/4/04	
Dosimetric E-Field Probe	SPEAG	ET3DV6	1577	2/7/02	2/7/04	
450 MHz System Validation Dipole	SPEAG	D450V2	1003	4/5/02	4/19/04	
900 MHz System Validation Dipole	SPEAG	D900V2	108	4/10/03	4/10/05	
1800 MHz System Validation Dipole	SPEAG	D1800V2	294	4/09/03	4/19/05	
2450 MHz System Validation Dipole	SPEAG	D2450V2	706	6/4/02	6/4/04	
Probe Alignment Unit	SPEAG	LB (V2)	261	N/A	N/A	
Robot	Staubli	RX90B L	F00/5H31A1/A/01	N/A	N/A	
Generic Twin Phantom	SPEAG	N/A	N/A	N/A	N/A	
SAM Phantom	SPEAG	N/A	N/A	N/A	N/A	
Devices Holder	SPEAG	N/A	N/A	N/A	N/A	
Head 450 MHz	CCS	H450A	N/A	Daily	N/A	
Muscle 450 MHz	CCS	M450A	N/A	Daily	N/A	
Head 835 MHz	CCS	H835A	N/A	Daily	N/A	
Muscle 835 MHz	CCS	M835A	N/A	Daily	N/A	
Head 900 MHz	CCS	H900A	N/A	Daily	N/A	
Muscle 900 MHz	CCS	M900A	N/A	Daily	N/A	
Head 1800 MHz	CCS	H1800A	N/A	Daily	N/A	
Muscle 1800 MHz	CCS	M1800A	N/A	Daily	N/A	
Head 1900 MHz	CCS	H1900A	N/A	Daily	N/A	
Muscle 1900 MHz	CCS	M1900A	N/A	Daily	N/A	
Head 2450 MHz	CCS	H2450A	N/A	Daily	N/A	
Muscle 2450 MHz	CCS	M2450A	N/A	Daily	N/A	

3. ATTACHMENTS

Exhibit	Contents	No. of page (s)
1	System Validation Plots	1
2	SAR Test Plots – 802.11b	6
3	SAR Test Plots – 802.11g	10
3	Dosimetric E-Field Probe - ET3DV6, S/N: 1577	14

End of Report