

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC Part 20 Industrial Signal Booster (CMRS)

Applicant Name:

Wistron Neweb Corporation 20 Park Avenue II, Hsinchu Science Park, Hsinchu 308, Taiwan

Date of Testing:

7/12/2021-08/16/2021 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 1M2106230069-01-R3.NKR

FCC ID:

NKR-TR2V1-IDU

APPLICANT:

Wistron Neweb Corporation

Application Type:	Certification
Model:	TR2V1
EUT Type:	5G Extender Gen 2
FCC Classification:	Part 20 Industrial Booster (CMRS) (B2I)
FCC Rule Part(s):	2, 20, 30
Test Procedure(s):	ANSI C63.26-2015, KDB 935210 D02 v04r02, KDB935210 D05 v01r04,
	KDB971168 D01 v03r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and has been tested in accordance with the measurement procedures specified in 2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 1M2106230069-01-R3.NKR) supersedes and replaces the previously issued test report (S/N: 1M2106230069-01-R2.NKR) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: NKR-TR2V1-IDU	PCTEST Proud to be part of @ element Proud to be part of @ element		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 1 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 1 of 51
© 2021 PCTEST	•	•	V 9.0 02/01/2019

TABLE OF CONTENTS

1.0	Intro	duction	. 3
	1.1	Scope	.3
	1.2	PCTEST Test Location	.3
	1.3	Test Facility / Accreditations	.3
2.0	PRC	DUCT INFORMATION	. 4
	2.1	Equipment Description	.4
	2.2	Software and Firmware	.4
	2.3	Test Configuration	.4
	2.4	EMI Suppression Device(s)/Modifications	.4
3.0	DES	CRIPTION OF TESTS	. 5
	3.1	Measurement Procedure	.5
	3.2	Industrial Booster Test Cases	.5
	3.3	Environmental Conditions	.5
4.0	Mea	surement Uncertainty	. 6
5.0	TES	T EQUIPMENT CALIBRATION DATA	. 7
6.0	TES	T RESULTS	. 8
	6.1	Summary	.8
	6.2	Input-Versus-Output Signal Comparison	.9
	6.3	Out-of-band Rejection	30
	6.4	Measuring AGC Threshold Level, Mean Output Power and Amplifier/Booster Gain	33
7.0	CON	ICLUSION	51

FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 2 of 51
© 2021 PCTEST			V 9.0 02/01/2019

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO/IEC 17025:2017 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 3 of 51
© 2021 PCTEST			V 0 0 02/01/2010

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **5G Extender Gen 2 FCC ID: NKR-TR2V1-IDU**. The test data contained in this report covers the requirements for the operation of an industrial booster per FCC Part 20.21, KDB 935210 D02, and KDB 935210 D05.

The EUT contains two modules for mmWave: Donor and Relay modules. The EUT supports any combination of bandwidths, number of carriers, and modulations as input signals in the n261 (28GHz) band and n260 (39GHz) band.

Test Device Serial No.: 4711-2075, 4011-2078

2.2 Software and Firmware

The test was conducted with firmware version 1.0 installed on the EUT.

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015 and KDB 935210 D05 in a radiated setup. The EUT allowed direct injection of an input signal into the antennas for measurement. See Section 6.0 of this test report for a description of the tests.

All testing was performed using a signal generator connected to a horn antenna, the input signal sends to EUT via horn antenna. The signal generator was set to transmit a representative 5G mmWave NR signal in various sized bandwidths and modulations. All booster testing was performed on both the relay and the donor sides.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 4 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 4 of 51
© 2021 PCTEST			V 9 0 02/01/2019

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services" (ANSI C63.26-2015) and KDB 935210 D05 were used in the measurement of the EUT. KDB 842590 D01 v01 was referenced for testing the EUT as well.

3.2 Industrial Booster Test Cases

Per the requirements of KDB 935210 D05, the following test cases shall be investigated for Industrial Boosters under FCC Part 20.21:

- 1. AGC Threshold Level
- 2. Out-of-Band Rejection
- 3. Input-versus-Output Signal Comparison
- 4. Mean Output Power and Amplifier/Booster Gain
- 5. Out-of-Band/Out-of-Block Emissions and Spurious Emissions
- 6. Frequency Stability
- 7. Radiated Spurious Emissions

3.3 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo E of E1
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 5 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: NKR-TR2V1-IDU	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo C of E1
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 6 of 51
© 2021 PCTEST			V 9 0 02/01/2019

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Megaphase	FAC mmWave	AP FAC mmWave 10ft 40GHz	3/3/2021	Annual	3/3/2022	20033008-002
Megaphase	FAC mmWave	AP FAC mmWave 18ft 40GHz	3/3/2021	Annual	3/3/2022	20033003
Narda	180-442-KF	Wide Band Horn Antenna 18.0 - 40.0 GHz	9/14/2020	Annual	9/14/2021	2172481
Narda	180-442-KF	Wide Band Horn Antenna 18.0 - 40.0 GHz	11/5/2020	Biennial	11/5/2022	U157403-01
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	8/10/2020	Annual	9/10/2021	103200
Rohde & Schwarz	SMW200A	Signal Generator		N/A		190456

Table 5-1. Annual Test Equipment Calibration Schedule

Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. The calibration due date for the FSW67 was extended by one month to accommodate the required testing. The equipment has since returned from calibration within specification.

FCC ID: NKR-TR2V1-IDU	PCTEST°		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 7 of 51
© 2021 PCTEST		•	V 9 0 02/01/2019

6.0 TEST RESULTS

6.1 Summary

Company Name:	Wistron Neweb Corporation

FCC ID: <u>NKR-TR2V1-IDU</u>

FCC Classification:

Part 20 Industrial Booster (CMRS) (B2I)

FCC Part Section(s)	KDB 935210 D05 Section(s)	Test Description	Test Limit	Test Result	Reference
2.1049, 20.21	3.4	Occupied Bandwidth / Input-Versus-Output Signal Comparison	N/A	PASS	Section 6.2
2.1051, 30.203, 20.21	3.8	Radiated Spurious Emissions	-13dBm/MHz for all out-of-band emissions	PASS	See Part 30 Report
2.1051, 30.203, 20.21	3.6	Out-of-Band/Out of Block Emissions	-13dBm/MHz for all out-of-band emissions, -5dBm/MHz from the band edge up to 10% of the channel BW	PASS	See Part 30 Report
2.1055, 20.21	3.7	Frequency Stability	Fundamental emissions stay within authorized frequency block	PASS	See part 30 Report
20.21	3.3	Out-of-Band Rejection	N/A	PASS	Section 6.3
2.1046, 30.202, 20.21	3.2, 3.5	Measuring AGC Threshold Level / Mean Output Power and Amplifier/Booster Gain	N/A	PASS	Section 6.4

 Table 6-1. Summary of Radiated Test Results

Notes:

Since the EUT can only operate as a Booster, some of the test requirements specified in KDB 935210 D05 are already addressed in the Part 30 report in this filing.

FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 9 of 51	
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 8 of 51	
© 2021 PCTEST	•	•	V 9.0 02/01/2019	

6.2 Input-Versus-Output Signal Comparison §2.1049, §20.21

Test Overview

The Input-versus-Output Signal Comparison checks for the change in occupied bandwidth of the output signal from the booster at 3dB above the AGC threshold level and just below the AGC threshold level while not more than 0.5dB below the threshold level. All modes of operation were investigated and the worst case configuration results are reported in this section. Per KDB 935210 D05 clause 3.4, this is to be measured on both the input signal and the output signal.

Test Procedure Used

ANSI C63.26-2015 - Section 5.4.3, KDB 935210 D05 - Section 3.4

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \ge 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize

Test Notes

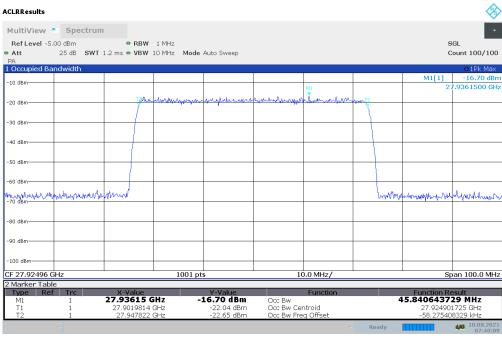
Per FCC guidance, a 50MHz 5G NR mmWave signal was used as the input signal as opposed to the 4.1MHz AWGN required in KDB 935210 D05.

FCC ID: NKR-TR2V1-IDU	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N: Test Dates:		EUT Type:	Dage 0 of 51	
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 9 of 51	
© 2021 PCTEST			V 9 0 02/01/2019	

n261 – Donor Side

AGC Threshold Level	EUT Antenna Polarization	Channel	Bandwidth	Modulation	Input Signal OBW [MHz]	Output Signal OBW [MHz]
0.5dB below Threshold	H Beam	Mid	50	QPSK	45.90	45.81
3dB above Threshold	H Beam	Mid	50	QPSK	45.84	45.90
0.5dB below Threshold	V Beam	Mid	50	QPSK	45.75	45.91
3dB above Threshold	V Beam	Mid	50	QPSK	45.83	46.09

Table 6-2. n261 Occupied Bandwidth by AGC Threshold Level – Donor Side

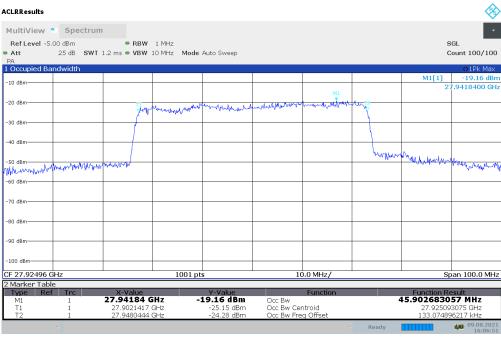

FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 51	
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 10 of 51	
© 2021 PCTEST		-	V 9 0 02/01/2019	

ACLRResults	s									
MultiViev	v = Spectrum									•
Ref Level	-5.00 dBm	RBW	1 MHz						s	GL
 Att 	25 dB SWT	1.2 ms 🗢 VBW 🗄	10 MHz Mode	Auto Sweep					С	ount 100/100
PA 1 Occupied	Bandwidth									o1Pk Max
									M1[1]	-19.82 dBm
-10 dBm									27	.9322500 GHz
-20 dBm					M1					
-20 ubiii		- And	Umaturation	have an a	why wy der	when many	nm2			
-30 dBm										
-40 dBm										
-50 dBm										
								1		
-60 dBm								+		
shown	water Mary marked	marshan						homen	agone who have	Maha Marka Maka
-70 dBm-	T the second sec									111
-80 dBm										
-90 dBm										
50 abiii										
-100 dBm										
CF 27.9249			1001 - 1).0 MHz/			6-	an 100.0 MHz
2 Marker T			1001 pt	5	Π	J.U MHZ/			sp	an 100.0 MHz
	Ref Trc	X-Value		Y-Value		Function			Function Re	sult
M1	1	27.93225 G		L9.82 dBm	Occ Bw				45.9041419	96 MHz
T1 T2	1	27.9019442 (27.9478483 (-24.62 dBm -24.94 dBm	Occ Bw Cer Occ Bw Fre				27.924896 -63.74177	
	~					~	R	eady		10.08.2021 07:39:30

07:39:31 10.08.2021

07:40:09 10.08.2021

Plot 6-2. n261 Occupied Bandwidth Input at 3dB above AGC Threshold – Donor Side – H Beam

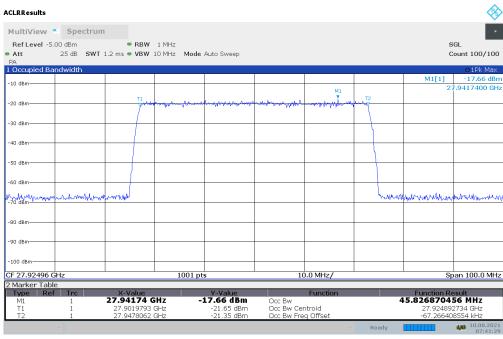

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 11 of 51
© 2021 PCTEST	-	•	V 9.0 02/01/2019

CLRResults										~
MultiView	 Spectru 	m								-
Ref Level -5	5.00 dBm	= RBW	1 MHz						s	GL
Att	25 dB SW1	1.2 ms 🖷 VBW	10 MHz Mode	Auto Sweep					С	ount 100/100
PA										
Occupied B	andwidth			1		1				O1Pk Max
10 dBm		-							M1[1]	-20,49 dB
						M1			Z.	.9421400 GI
20 dBm						-				
		т1	. A Aller and	uthernerwyhh	entry www.	myanna	mg2			
30 dBm		- Zwu	Mr. welling	in an orthe Mount			X X			
00 0011							1 1			
40 dBm										
40 abiii							(
50 dBm								White work	ALL L	
AMAMA AND IN	anna anna	dp. manardd							Maryanado	moul as she
60 dBm										111147-1/014
70 dBm										
80 dBm		-								
90 dBm							<u> </u>			
100 dBm										
F 27.92496			1001 pt	s	10	0.0 MHz/			Sp	an 100.0 M⊦
Marker Tab							_			
Type Re M1	ef Trc	X-Value 27.94214 (Hz -	Y-Value 20.49 dBm	Occ Bw	Function			Function Re 45.8107812	
T1	1	27.9021819		-28.98 dBm	Occ Bw Cer	ntroid			27.92508	
T2	i	27.9479927		-27.54 dBm	Occ Bw Fre				127.30145	
								eady		09.08.202

16:05:43 09.08.2021

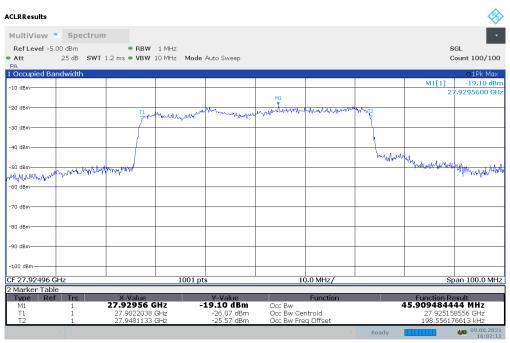
16:06:51 09.08.2021

Plot 6-4. n261 Occupied Bandwidth Output at 3dB above AGC Threshold – Donor Side – H Beam


FCC ID: NKR-TR2V1-IDU	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 12 of 51
© 2021 PCTEST	·	·	V 9.0 02/01/2019

ACLRResult	5									
MultiViev	v - Spectrum	1								.
Ref Level	-5.00 dBm	RBW	1 MHz						s	GL
• Att	25 dB SWT	1.2 ms 🖷 VBW	10 MHz Mode	Auto Sweep					С	ount 100/100
PA 1 Occupied	l Bandwidth									o 1Pk Max
-10 dBm									M1[1]	-20.64 dBm
10 0.011									27	.9323500 GHz
-20 dBm		т.	1		M1					
			mount	and all a second and the second	www.whatabaray	manusa	~~WC2			
-30 dBm		+ (-								
10.45.0										
-40 dBm										
-50 dBm										
-60 dBm		+ +								
M. North Marcan	haber har har and har and	human						white the second	mumuquality	repartmention
-70 dBm										
-80 dBm										
oo abiii										
-90 dBm										
-100 dBm										
CF 27.9249		1	1001 pt	s	10	0.0 MHz/			Sp	an 100.0 MHz
2 Marker T	able Ref Trc	X-Value		Y-Value		Function			Function Re	oult
M1		27.93235 0		20.64 dBm	Occ Bw			4	5.74560078	32 MHz
T1 T2	1	27.9020454		-25.28 dBm -27.12 dBm	Occ Bw Cer Occ Bw Fre				27.924918 -41.79320	
	1	27.947791	21.12	27.12 UDITI	OCC DW FIE	iq Onset	Po	adv	41.79520	10.08.2021
							10	ady .		07:40:54

07:40:55 10.08.2021



07:41:29 10.08.2021

Plot 6-6. n261 Occupied Bandwidth Input at 3dB above AGC Threshold – Donor Side – V Beam

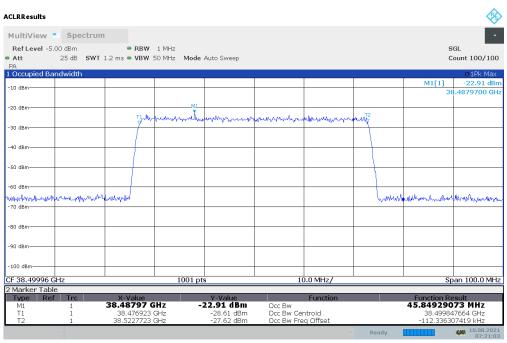
FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 13 of 51
© 2021 PCTEST		•	V 9.0 02/01/2019

16:02:11 09.08.2021

16:02:54 09.08.2021

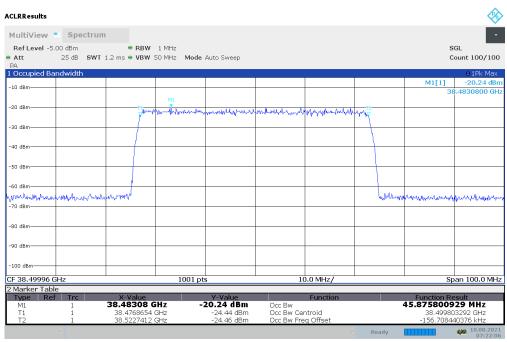
Plot 6-8. n261 Occupied Bandwidth Output at 3dB above AGC Threshold – Donor Side – V Beam

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 14 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 14 of 51
© 2021 PCTEST	-		V 9.0 02/01/2019


n260 – Donor Side

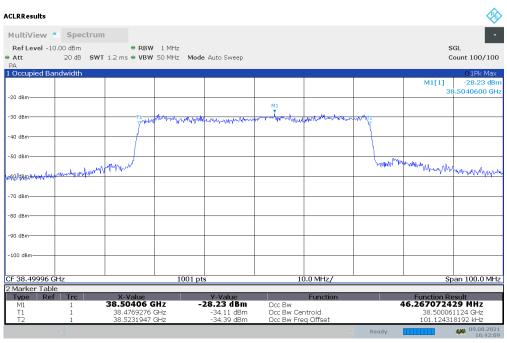
AGC Threshold Level	EUT Antenna Polarization	Channel	Bandwidth	Modulation	Input Signal OBW [MHz]	Output Signal OBW [MHz]
0.5dB below Threshold	H Beam	Mid	50	QPSK	45.85	46.27
3dB above Threshold	H Beam	Mid	50	QPSK	45.88	46.15
0.5dB below Threshold	V Beam	Mid	50	QPSK	45.83	46.14
3dB above Threshold	V Beam	Mid	50	QPSK	45.93	46.20

Table 6-3. n260 Occupied Bandwidth by AGC Threshold Level – Donor Side


FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 15 of 51
© 2021 PCTEST		-	V 9 0 02/01/2019

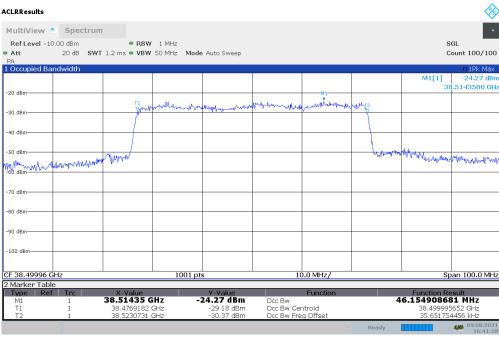
07:21:04 10.08.2021

Plot 6-9. n260 Occupied Bandwidth Input at 0.5dB below AGC Threshold – Donor Side – H Beam



07:22:07 10.08.2021

Plot 6-10. n260 Occupied Bandwidth Input at 3dB above AGC Threshold – Donor Side – H Beam


FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 16 of 51
© 2021 PCTEST	•	·	V 9.0 02/01/2019

16:42:09 09.08.2021

16:41:19 09.08.2021

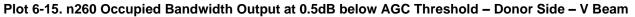
Plot 6-12. n260 Occupied Bandwidth Output at 3dB above AGC Threshold – Donor Side – H Beam

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 17 of 51
© 2021 PCTEST	•	·	V 9.0 02/01/2019

ACLRResults										
MultiView	Spectrum	1								•
Ref Level -5	00 dBm	RBW	1 MHz						s	GL
 Att 	25 dB SWT	1.2 ms 🖷 VBW	50 MHz Mode	Auto Sweep					с	ount 100/100
PA 1 Occupied Ba	n duuidth									o1Pk Max
1 Occupied Ba	nawiaan				1				M1[1]	-22.07 dBm
-10 dBm										3,4979600 GHz
				M1						
-20 dBm				· · · · · · · · · · · · · · · · · · ·						
		- Frank	moundary	y www.weller	Mulmahan	manner	my -			
-30 dBm										
							\			
-40 dBm										
-50 dBm		Í								
-60 dBm								1		
	e shawada shawada anayo	hann						purchase	monthour	where where where the second
-70 dBm										
-80 dBm										
-90 dBm										
100 10										
-100 dBm										
CF 38.49996 0			1001 pt	S	1	0.0 MHz/			Sp	an 100.0 MHz
2 Marker Tab						_				
Type Rel M1		X-Value 38.49796 0	iHz -	Y-Value 22.07 dBm	Occ Bw	Function			Function Re 45.8273788	
T1	1	38.4769045	GHz	-27.83 dBm	Occ Bw Ce	ntroid			38.49981	8167 GHz
T2	1	38.5227319	GHz	-27.81 dBm	Occ Bw Fre	eq Offset			-141.8326	
							R	eady		10.08.2021 07:23:54

07:23:55 10.08.2021

07:23:15 10.08.2021


Plot 6-14. n260 Occupied Bandwidth Input at 3dB above AGC Threshold – Donor Side – V beam

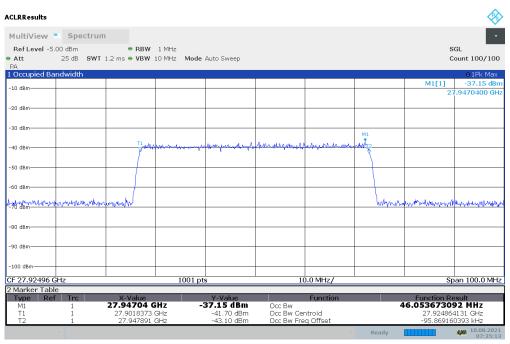
FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 18 of 51
© 2021 PCTEST	·	•	V 9.0 02/01/2019

ACLRResults					
MultiView Spec	trum				•
Ref Level -10.00 dBm	RBW 1 MHz				SGL
Att 20 dB	SWT 1.2 ms 🖷 VBW 50 MHz	Mode Auto Sweep			Count 100/100
PA 1 Occupied Bandwidth					o 1Pk Max
1 Occupied Bandwidth					M1[1] -20.90 dBn
			M1		38,5169400 GH
-20 dBm					
	Thursdantanta	Munder marker and the second	werent hun war had have	W by	
-30 dBm					
-40 dBm					
					<i>i</i> h
-50 dBm	Marine Marine			Munichan	Mar Mar Marken Marke
-60 dBm	Maring				or contract of
-60 dBm					
-70 dBm					
-70 UBII					
-80 dBm					
oo abiir					
-90 dBm					
-100 dBm					
CF 38,49996 GHz		01 pts	10.0 MHz/		Span 100.0 MH:
2 Marker Table	10	01 pts	10.0 MHZ/		apan 100.0 Min
Type Ref Trc	X-Value	Y-Value	Function	F	-unction Result
M1 1	38.51694 GHz	-20.90 dBm	Occ Bw		38893032 MHz
T1 1 T2 1	38.4769509 GHz 38.5230898 GHz	-29.54 dBm -28.19 dBm	Occ Bw Centroid Occ Bw Freg Offset		38.500020351 GHz 60.351483032 kHz
12 1	30.3230090 GHz	20.19 dbm	occ bir neg onset		09.08.2021
~			~	Ready	16:28:04

16:28:45 09.08.2021

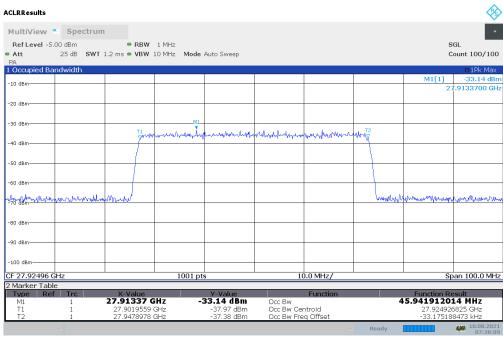
Plot 6-16. n260 Occupied Bandwidth Output at 3dB above AGC Threshold – Donor Side – V Beam

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 19 of 51
© 2021 PCTEST	·	•	V 9.0 02/01/2019


<u>n261 – Relay Side</u>

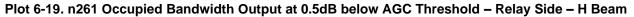
AGC Threshold Level	EUT Antenna Polarization	Channel	Bandwidth	Modulation	Input Signal OBW [MHz]	Output Signal OBW [MHz]
0.5dB below Threshold	H Beam	Mid	50	QPSK	46.05	45.82
3dB above Threshold	H Beam	Mid	50	QPSK	45.94	46.20
0.5dB below Threshold	V Beam	Mid	50	QPSK	45.93	45.91
3dB above Threshold	V Beam	Mid	50	QPSK	45.97	46.25

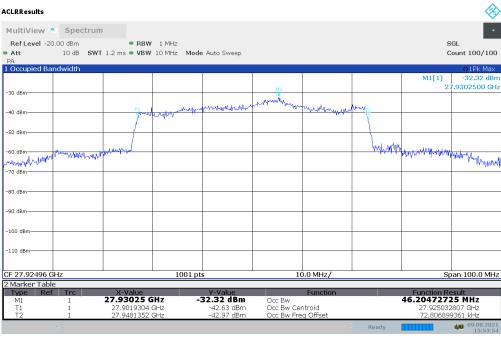
Table 6-4. n261 Occupied Bandwidth by AGC Threshold Level – Relay Side


FCC ID: NKR-TR2V1-IDU	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 20 of 51
© 2021 PCTEST			V 9 0 02/01/2019

07:35:13 10.08.2021

07:36:10 10.08.2021

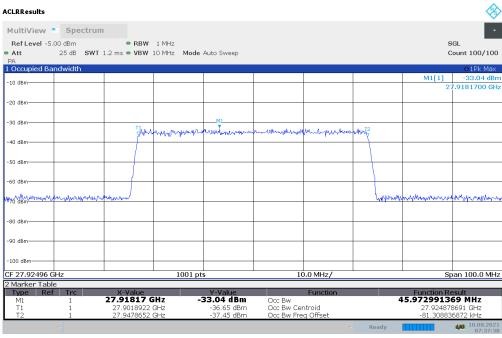

Plot 6-18. n261 Occupied Bandwidth Input at 3dB above AGC Threshold – Relay Side – H Beam


FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 21 of 51
© 2021 PCTEST	•	•	V 9.0 02/01/2019

15:53:25 09.08.2021

15:53:54 09.08.2021

Plot 6-20. n261 Occupied Bandwidth Output at 3dB above AGC Threshold – Relay Side – H Beam


FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 22 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 22 of 51
© 2021 PCTEST	-	•	V 9.0 02/01/2019

CLRResults	•					
fultiView Spec						
	RBW 1 MHz				SGL	
Att 25 dB : PA	SWT 1.2 ms • VBW 10 MHz	Mode Auto Sweep			Count 100	3/10
Occupied Bandwidth					0 1 Pl	k Ma>
					M1[1] -35.3	
10 dBm					27.94114	00 GI
20 dBm						
30 dBm			M1			
	T1		mohner and provided	0. Jun MA T2		
40 dBm	Junearladar	and a second of the second of	March March March March March 1990	and the second se		
50 dBm						
60 dBm						
70 BBM MAN MANNAN	Mar and Marine			Junior	Mun an marken Mangager	NAMA /I
30 dBm						
90 dBm						
100 dBm						
F 27.92496 GHz		001 pts	10.0 MHz/		Span 100.	0.14
Marker Table	1	001 pts	10.0 MHZ/		Span 100.	
Type Ref Trc	X-Value	Y-Value	Function		Function Result	
M1 1	27.94114 GHz	-35.38 dBm	Occ Bw		5.925240536 MHz	
T1 1	27.9019245 GHz	-40.39 dBm	Occ Bw Centroid		27.924887119 GHz	
T2 1	27.9478497 GHz	-40.11 dBm	Occ Bw Freq Offset		-72.88117598 kHz	Z 08.20:

07:36:47 10.08.2021

07:37:38 10.08.2021

Plot 6-22. n261 Occupied Bandwidth Input at 3dB above AGC Threshold – Relay Side – V Beam

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 23 of 51
© 2021 PCTEST		·	V 9.0 02/01/2019

15:17:11 09.08.2021

15:20:10 09.08.2021

Plot 6-24. n261 Occupied Bandwidth Output at 3dB above AGC Threshold – Relay Side – V Beam

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 24 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 24 of 51
© 2021 PCTEST	-	•	V 9.0 02/01/2019

<u>n260 – Relay Side</u>

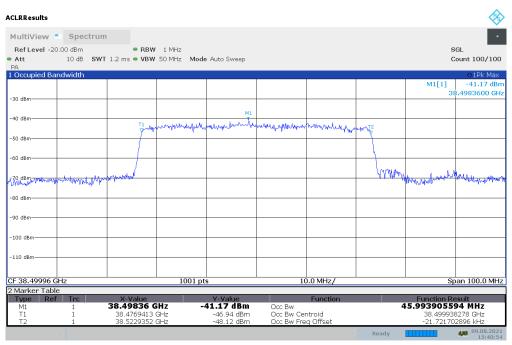
AGC Threshold Level	Antenna Polarization	Channel	Bandwidth	Modulation	Input Signal OBW [MHz]	Output Signal OBW [MHz]
0.5dB below Threshold	Н	Mid	50	QPSK	45.97	45.99
3dB above Threshold	н	Mid	50	QPSK	45.95	45.91
0.5dB below Threshold	V	Mid	50	QPSK	46.02	45.90
3dB above Threshold	V	Mid	50	QPSK	45.88	45.90

Table 6-5. n260 Occupied Bandwidth by AGC Threshold Level - Relay Side

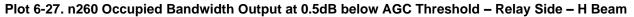
FCC ID: NKR-TR2V1-IDU	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 25 of 51
© 2021 PCTEST			V 9 0 02/01/2019

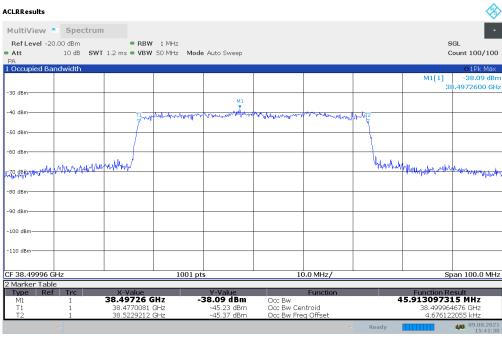
07:25:21 10.08.2021

Plot 6-25. n260 Occupied Bandwidth Input at 0.5dB below AGC Threshold – Relay Side – H Beam



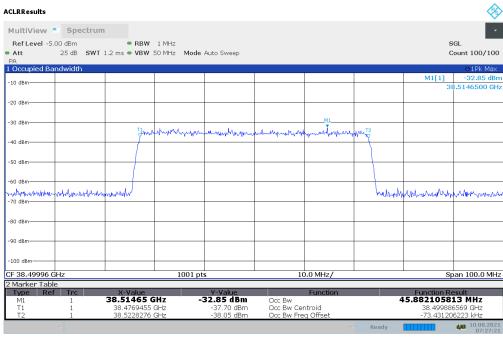
07:26:01 10.08.2021


Plot 6-26. n260 Occupied Bandwidth Input at 3dB above AGC Threshold – Relay Side – H Beam


FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 26 01 51
© 2021 PCTEST			V 9.0 02/01/2019

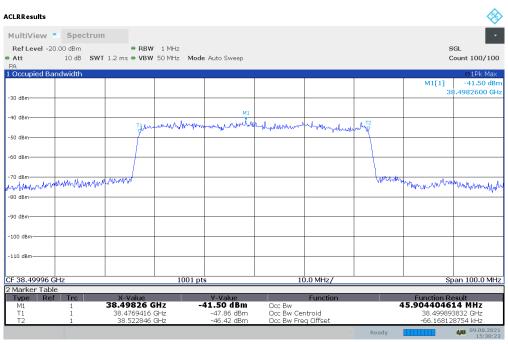
15:41:31 09.08.2021

Plot 6-28. n260 Occupied Bandwidth Output at 3dB above AGC Threshold – Relay Side – H Beam


FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 07 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 27 of 51
© 2021 PCTEST	•	·	V 9.0 02/01/2019

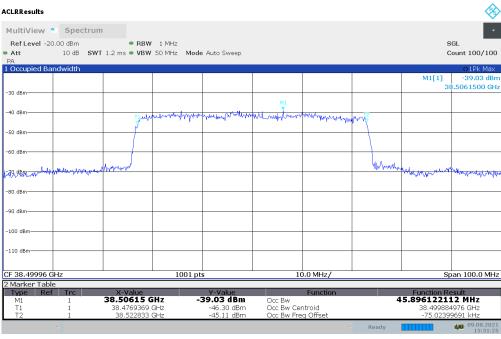
CLRResults					4
MultiView Sp	ectrum				
Ref Level -5.00 dBm	RBW 1 M	Ηz			SGL
	SWT 1.2 ms - VBW 50 M	Hz Mode Auto Sweep			Count 100/10
PA Occupied Bandwidt	n				o 1Pk Ma
					M1[1] -36.03 dE
10 dBm					38.5062500 G
20 dBm					
30 dBm			M1		
40 dBm	TIMANUM	makenting and the way	morther Agamenter and the second second	T2	
+U dBm	y l"		······································	1° X	
50 dBm					
SU UBIII	ſ				
60 dBm					
anapollowheatream	and the second of			1 Same	with Anguin and reamons
70 dBm	Materialia anabal			, martine (m. Mar	dered and the statement of new argumentation
80 dBm					
90 dBm					
100 dBm					
F 38,49996 GHz		1001 pts	10.0 MHz/		Span 100.0 Mi
Marker Table		1001 pts	10.0 Milizy		3part 100.0 Mi
Type Ref Trc		Y-Value	Function		Function Result
M1 1	38.50625 GHz	-36.03 dBm	Occ Bw		46.02083808 MHz
T1 1 T2 1	38.4768428 GHz 38.5228637 GHz	-41.96 dBm -40.37 dBm	Occ Bw Centroid Occ Bw Frea Offset		38.499853248 GHz -106.751910423 kHz
14 1	30.3220037 GHz	-40.37 UBIII	occibilitied Offset		10.08.20

07:26:50 10.08.2021



07:27:22 10.08.2021

Plot 6-30. n260 Occupied Bandwidth Input at 3dB above AGC Threshold – Relay Side – V Beam


FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 28 of 51
© 2021 PCTEST	•	·	V 9.0 02/01/2019

15:30:24 09.08.2021

15:31:26 09.08.2021

Plot 6-32. n260 Occupied Bandwidth Output at 3dB above AGC Threshold – Relay Side – V Beam

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 29 of 51
© 2021 PCTEST	-	•	V 9.0 02/01/2019

6.3 Out-of-band Rejection

Test Overview

Per KDB 935210 D05 Section 3.3, the signal generator will sweep a CW signal to \pm 250 % of the passband. Per FCC Part 20, an industrial booster shall have its 20dB bandwidth analyzed in order to assess the pass band of the booster.

Test Procedure Used

KDB 935210 D05 v01r04 - Section 3.3

Test Settings

- 1. Start and stop frequency of the signal generator shall be \pm 250 % of the passband, for each applicable CMRS band
- 2. Span same as the frequency range of the signal generator
- 3. RBW \geq 1 % to 5 % of the EUT passband
- 4. VBW \geq 3 x RBW
- 5. Detector = Peak/Max Hold
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

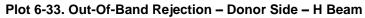
The EUT and measurement equipment were set up as shown in the diagram below.

Figure 6-1. Test Instrument & Measurement Setup

Test Notes

In the plots on the following page, a spectrum plot is shown with a CW signal sweeping across the input of the EUT for both antennas. The sweep is set based on $\pm 250\%$ of the passband which is equal to $\pm 2.5 \times (28.35 \text{GHz} - 27.5 \text{GHz}) = \pm 2.125 \text{GHz}$. Therefore, the following plots demonstrate the frequency response of the EUT when a CW signal is sweeping from 25.375GHz to 30.475GHz.

The "D1" and "D2" markers in the plots are provided to demonstrate the approximate OBW of the output frequency response.


FCC ID: NKR-TR2V1-IDU	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 30 of 51
© 2021 PCTEST			V 9 0 02/01/2019

Donor Side

13:23:53 03.08.2021

13:38:56 03.08.2021

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 31 of 51
© 2021 PCTEST		·	V 9.0 02/01/2019

Relay Side

11:21:33 12.08.2021

10:58:25 12.08.2021

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 32 of 51
© 2021 PCTEST	·	•	V 9.0 02/01/2019

6.4 Measuring AGC Threshold Level, Mean Output Power and Amplifier/Booster Gain §2.1046, §30.202

Test Overview

The AGC threshold level is measured by output power of the EUT until a 1dB increase in the input signal power no longer causes a 1dB increase in the output signal power. The Booster Gain is measured by calculating the gain between the input and the output power of the EUT at the signal generator level just below the AGC threshold level, but not more than 0.5dB below.

Test Procedures Used

KDB 935210 D05 V01R04 – Section 3.2 - Measuring AGC threshold level KDB 935210 D05 V01R04 – Section 3.5 - Mean output power and amplifier/booster gain

Test Settings

- 1. Conducted power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 2x to 3x the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.

continuous operation.

- 8. Trace mode = trace averaging (RMS) over 100 sweeps
- 9. The trace was allowed to stabilize

Test Notes

Per FCC guidance, a 50MHz and a 100MHz NR mmWave signal was used as the input signal as opposed to the 4.1MHz AWGN required in KDB 935210 D05.

FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 51	
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2		
© 2021 PCTEST			V 9 0 02/01/2019	

Sample Calculations

Input Power Level [dBm] = Signal Generator Level [dBm] + Cable Loss [dB] + Antenna Gain [dB] + Free Space Path Loss[dB]

Free Space Path Loss[dBm] = $20\log_{10} (d) + 20\log_{10} (f) + 20\log_{10} (4\pi/c) - G_{Tx} - G_{Rx}$

d = Distance between the antennas.

f = Frequency

- G(Tx) = The Gain of the Transmitting Antenna.
- G(Rx) = The Gain of the Receiving Antenna.
- c = Speed of light in vacuum (Meters per Second)

Free Space Path Loss[dBm] = $20\log_{10}(0.5m) + 20\log_{10}(27924.96MHz) + 20\log_{10}(4\pi/c) - 0dB - 0dB = 55.34dB$

Input Power Level [dBm] = -26dBm + (-4.53)dB + 18.39dB + (-55.34)dB = -67.48 dBm

FCC ID: NKR-TR2V1-IDU	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 51	
1M2106230069-01-R3.NKR 07/12/2021-08/16/2021		5G Extender Gen 2	Page 34 of 51	
© 2021 PCTEST	•		V 0 0 02/01/2010	

n261 – Donor Side

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
50	27924.96	Mid	QPSK	Full RB	-60.48	29.67	-	90.15
50	27924.96	Mid	QPSK	Full RB	-59.48	30.71	1.04	90.19
50	27924.96	Mid	QPSK	Full RB	-58.48	31.78	1.07	90.26
50	27924.96	Mid	QPSK	Full RB	-57.48	32.85	1.07	90.33
50	27924.96	Mid	QPSK	Full RB	-56.48	33.85	1.00	90.33
50	27924.96	Mid	QPSK	Full RB	-55.48	34.86	1.01	90.34
50	27924.96	Mid	QPSK	Full RB	-54.48	35.88	1.02	90.36
50	27924.96	Mid	QPSK	Full RB	-53.48	36.82	0.94	90.30
50	27924.96	Mid	QPSK	Full RB	-52.48	37.79	0.97	90.27
50	27924.96	Mid	QPSK	Full RB	-51.48	38.72	0.93	90.20
50	27924.96	Mid	QPSK	Full RB	-50.48	39.64	0.92	90.12
50	27924.96	Mid	QPSK	Full RB	-49.48	40.36	0.72	89.84
50	27924.96	Mid	QPSK	Full RB	-48.48	41.09	0.73	89.57
50	27924.96	Mid	QPSK	Full RB	-47.48	41.85	0.76	89.33
50	27924.96	Mid	QPSK	Full RB	-46.48	42.49	0.64	88.97

Table 6-6. n261 50MHz 1CC Full RB AGC Threshold and Booster Gain – Donor Side – H Beam

Note: AGC Level is found at -49.48dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dana 05 at 54	
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 35 of 51	
© 2021 PCTEST			V 9.0 02/01/2019	

n261 – Donor Side

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
100	27924.96	Mid	QPSK	Full RB	-60.48	28.98	-	89.46
100	27924.96	Mid	QPSK	Full RB	-59.48	29.99	1.01	89.47
100	27924.96	Mid	QPSK	Full RB	-58.48	30.99	1.00	89.47
100	27924.96	Mid	QPSK	Full RB	-57.48	32.06	1.07	89.54
100	27924.96	Mid	QPSK	Full RB	-56.48	33.07	1.01	89.55
100	27924.96	Mid	QPSK	Full RB	-55.48	34.10	1.03	89.58
100	27924.96	Mid	QPSK	Full RB	-54.48	35.10	1.00	89.58
100	27924.96	Mid	QPSK	Full RB	-53.48	36.02	0.92	89.50
100	27924.96	Mid	QPSK	Full RB	-52.48	37.01	0.99	89.49
100	27924.96	Mid	QPSK	Full RB	-51.48	37.97	0.96	89.45
100	27924.96	Mid	QPSK	Full RB	-50.48	38.93	0.96	89.41
100	27924.96	Mid	QPSK	Full RB	-49.48	39.65	0.72	89.13
100	27924.96	Mid	QPSK	Full RB	-48.48	40.28	0.63	88.76
100	27924.96	Mid	QPSK	Full RB	-47.48	41.05	0.77	88.53
100	27924.96	Mid	QPSK	Full RB	-46.48	41.74	0.69	88.22

Table 6-7. n261 100MHz 4CC Full RB AGC Threshold and Booster Gain – Donor Side – H Beam

Note: AGC Level is found at -49.48dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 51	
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2		
© 2021 PCTEST	•	·	V 9 0 02/01/2019	

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
50	27924.96	Mid	QPSK	Full RB	-63.48	29.04	-	92.52
50	27924.96	Mid	QPSK	Full RB	-62.48	30.11	1.07	92.59
50	27924.96	Mid	QPSK	Full RB	-61.48	31.20	1.09	92.68
50	27924.96	Mid	QPSK	Full RB	-60.48	32.24	1.04	92.72
50	27924.96	Mid	QPSK	Full RB	-59.48	33.28	1.04	92.76
50	27924.96	Mid	QPSK	Full RB	-58.48	34.31	1.03	92.79
50	27924.96	Mid	QPSK	Full RB	-57.48	35.31	1.00	92.79
50	27924.96	Mid	QPSK	Full RB	-56.48	36.26	0.95	92.74
50	27924.96	Mid	QPSK	Full RB	-55.48	37.26	1.00	92.74
50	27924.96	Mid	QPSK	Full RB	-54.48	38.23	0.97	92.71
50	27924.96	Mid	QPSK	Full RB	-53.48	39.21	0.98	92.69
50	27924.96	Mid	QPSK	Full RB	-52.48	40.06	0.85	92.54
50	27924.96	Mid	QPSK	Full RB	-51.48	40.88	0.82	92.36
50	27924.96	Mid	QPSK	Full RB	-50.48	41.64	0.76	92.12
50	27924.96	Mid	QPSK	Full RB	-49.48	42.40	0.76	91.88

Table 6-8. n261 50MHz 1CC Full RB AGC Threshold and Booster Gain – Donor Side – V Beam

Note: AGC Level is found at -52.48dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 27 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 37 of 51
© 2021 PCTEST	•	•	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
100	27924.96	Mid	QPSK	Full RB	-63.48	29.18	-	92.66
100	27924.96	Mid	QPSK	Full RB	-62.48	30.24	1.06	92.72
100	27924.96	Mid	QPSK	Full RB	-61.48	31.27	1.03	92.75
100	27924.96	Mid	QPSK	Full RB	-60.48	32.33	1.06	92.81
100	27924.96	Mid	QPSK	Full RB	-59.48	33.36	1.03	92.84
100	27924.96	Mid	QPSK	Full RB	-58.48	34.37	1.01	92.85
100	27924.96	Mid	QPSK	Full RB	-57.48	35.38	1.01	92.86
100	27924.96	Mid	QPSK	Full RB	-56.48	36.40	1.02	92.88
100	27924.96	Mid	QPSK	Full RB	-55.48	37.34	0.94	92.82
100	27924.96	Mid	QPSK	Full RB	-54.48	38.26	0.92	92.74
100	27924.96	Mid	QPSK	Full RB	-53.48	39.18	0.92	92.66
100	27924.96	Mid	QPSK	Full RB	-52.48	39.90	0.72	92.38
100	27924.96	Mid	QPSK	Full RB	-51.48	40.67	0.77	92.15
100	27924.96	Mid	QPSK	Full RB	-50.48	41.40	0.73	91.88
100	27924.96	Mid	QPSK	Full RB	-49.48	42.06	0.66	91.54

Table 6-9. n261 100MHz 4CC Full RB AGC Threshold and Booster Gain – Donor Side – V Beam

Note: AGC Level is found at -52.48dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of (e) element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 38 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
50	38499.96	Mid	QPSK	Full RB	-62.53	28.78	-	91.31
50	38499.96	Mid	QPSK	Full RB	-61.53	29.86	1.08	91.39
50	38499.96	Mid	QPSK	Full RB	-60.53	30.99	1.13	91.52
50	38499.96	Mid	QPSK	Full RB	-59.53	32.20	1.21	91.73
50	38499.96	Mid	QPSK	Full RB	-58.53	33.39	1.19	91.92
50	38499.96	Mid	QPSK	Full RB	-57.53	34.60	1.21	92.13
50	38499.96	Mid	QPSK	Full RB	-56.53	35.76	1.16	92.29
50	38499.96	Mid	QPSK	Full RB	-55.53	37.02	1.26	92.55
50	38499.96	Mid	QPSK	Full RB	-54.53	38.19	1.17	92.72
50	38499.96	Mid	QPSK	Full RB	-53.53	39.32	1.13	92.85
50	38499.96	Mid	QPSK	Full RB	-52.53	40.16	0.84	92.69
50	38499.96	Mid	QPSK	Full RB	-51.53	41.01	0.85	92.54
50	38499.96	Mid	QPSK	Full RB	-50.53	41.88	0.87	92.41
50	38499.96	Mid	QPSK	Full RB	-49.53	42.68	0.80	92.21
50	38499.96	Mid	QPSK	Full RB	-48.53	43.25	0.57	91.78

Table 6-10. n260 50MHz 1CC Full RB AGC Threshold and Booster Gain – Donor Side – H Beam

Note: AGC Level is found at -52.53dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 af 54
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 39 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
100	38499.96	Mid	QPSK	Full RB	-62.53	28.59	-	91.12
100	38499.96	Mid	QPSK	Full RB	-61.53	29.70	1.11	91.23
100	38499.96	Mid	QPSK	Full RB	-60.53	30.85	1.15	91.38
100	38499.96	Mid	QPSK	Full RB	-59.53	32.13	1.28	91.66
100	38499.96	Mid	QPSK	Full RB	-58.53	33.31	1.18	91.84
100	38499.96	Mid	QPSK	Full RB	-57.53	34.59	1.28	92.12
100	38499.96	Mid	QPSK	Full RB	-56.53	35.78	1.19	92.31
100	38499.96	Mid	QPSK	Full RB	-55.53	36.96	1.18	92.49
100	38499.96	Mid	QPSK	Full RB	-54.53	38.04	1.08	92.57
100	38499.96	Mid	QPSK	Full RB	-53.53	39.07	1.03	92.60
100	38499.96	Mid	QPSK	Full RB	-52.53	40.10	1.03	92.63
100	38499.96	Mid	QPSK	Full RB	-51.53	40.93	0.83	92.46
100	38499.96	Mid	QPSK	Full RB	-50.53	41.81	0.88	92.34
100	38499.96	Mid	QPSK	Full RB	-49.53	42.61	0.80	92.14
100	38499.96	Mid	QPSK	Full RB	-48.53	43.19	0.58	91.72

Table 6-11. n260 100MHz 4CC Full RB AGC Threshold and Booster Gain – Donor Side – H Beam

Note: AGC Level is found at -51.53dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 40 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
50	38499.96	Mid	QPSK	Full RB	-62.53	29.01	-	91.54
50	38499.96	Mid	QPSK	Full RB	-61.53	30.15	1.14	91.68
50	38499.96	Mid	QPSK	Full RB	-60.53	31.30	1.15	91.83
50	38499.96	Mid	QPSK	Full RB	-59.53	32.46	1.16	91.99
50	38499.96	Mid	QPSK	Full RB	-58.53	33.74	1.28	92.27
50	38499.96	Mid	QPSK	Full RB	-57.53	34.95	1.21	92.48
50	38499.96	Mid	QPSK	Full RB	-56.53	36.17	1.22	92.70
50	38499.96	Mid	QPSK	Full RB	-55.53	37.24	1.07	92.77
50	38499.96	Mid	QPSK	Full RB	-54.53	38.28	1.04	92.81
50	38499.96	Mid	QPSK	Full RB	-53.53	39.33	1.05	92.86
50	38499.96	Mid	QPSK	Full RB	-52.53	40.23	0.90	92.76
50	38499.96	Mid	QPSK	Full RB	-51.53	40.83	0.60	92.36
50	38499.96	Mid	QPSK	Full RB	-50.53	41.51	0.68	92.04
50	38499.96	Mid	QPSK	Full RB	-49.53	42.12	0.61	91.65
50	38499.96	Mid	QPSK	Full RB	-48.53	42.76	0.64	91.29

Table 6-12. n260 50MHz 1CC Full RB AGC Threshold and Booster Gain – Donor Side – V Beam

Note: AGC Level is found at -51.53dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of (e) element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 41 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 41 of 51
© 2021 PCTEST	•	-	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
100	38499.96	Mid	QPSK	Full RB	-62.53	29.71	-	92.24
100	38499.96	Mid	QPSK	Full RB	-61.53	30.96	1.25	92.49
100	38499.96	Mid	QPSK	Full RB	-60.53	32.24	1.28	92.77
100	38499.96	Mid	QPSK	Full RB	-59.53	33.52	1.28	93.05
100	38499.96	Mid	QPSK	Full RB	-58.53	34.67	1.15	93.20
100	38499.96	Mid	QPSK	Full RB	-57.53	35.88	1.21	93.41
100	38499.96	Mid	QPSK	Full RB	-56.53	36.98	1.10	93.51
100	38499.96	Mid	QPSK	Full RB	-55.53	38.04	1.06	93.57
100	38499.96	Mid	QPSK	Full RB	-54.53	39.02	0.98	93.55
100	38499.96	Mid	QPSK	Full RB	-53.53	39.96	0.94	93.49
100	38499.96	Mid	QPSK	Full RB	-52.53	40.64	0.68	93.17
100	38499.96	Mid	QPSK	Full RB	-51.53	41.32	0.68	92.85
100	38499.96	Mid	QPSK	Full RB	-50.53	41.92	0.60	92.45
100	38499.96	Mid	QPSK	Full RB	-49.53	42.43	0.51	91.96
100	38499.96	Mid	QPSK	Full RB	-48.53	42.86	0.43	91.39

Table 6-13. n260 100MHz 4CC Full RB AGC Threshold and Booster Gain – Donor Side – V Beam

Note: AGC Level is found at -52.53dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 40 at 54
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 42 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
50	27924.96	Mid	QPSK	Full RB	-76.48	14.55	-	91.03
50	27924.96	Mid	QPSK	Full RB	-75.48	15.78	1.23	91.26
50	27924.96	Mid	QPSK	Full RB	-74.48	16.92	1.14	91.40
50	27924.96	Mid	QPSK	Full RB	-73.48	18.09	1.17	91.57
50	27924.96	Mid	QPSK	Full RB	-72.48	19.28	1.19	91.76
50	27924.96	Mid	QPSK	Full RB	-71.48	20.40	1.12	91.88
50	27924.96	Mid	QPSK	Full RB	-70.48	21.54	1.14	92.02
50	27924.96	Mid	QPSK	Full RB	-69.48	22.52	0.98	92.00
50	27924.96	Mid	QPSK	Full RB	-68.48	23.56	1.04	92.04
50	27924.96	Mid	QPSK	Full RB	-67.48	24.40	0.84	91.88
50	27924.96	Mid	QPSK	Full RB	-66.48	25.17	0.77	91.65
50	27924.96	Mid	QPSK	Full RB	-65.48	25.84	0.67	91.32
50	27924.96	Mid	QPSK	Full RB	-64.48	26.47	0.63	90.95

Table 6-14. n261 50MHz 1CC Full RB AGC Threshold and Booster Gain – Relay Side – H Beam

Note: AGC Level is found at -67.48dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 54
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 43 of 51
© 2021 PCTEST	•	•	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
100	27924.96	Mid	QPSK	Full RB	-76.48	15.52	-	92.00
100	27924.96	Mid	QPSK	Full RB	-75.48	16.67	1.15	92.15
100	27924.96	Mid	QPSK	Full RB	-74.48	17.81	1.14	92.29
100	27924.96	Mid	QPSK	Full RB	-73.48	18.91	1.10	92.39
100	27924.96	Mid	QPSK	Full RB	-72.48	19.98	1.07	92.46
100	27924.96	Mid	QPSK	Full RB	-71.48	21.14	1.16	92.62
100	27924.96	Mid	QPSK	Full RB	-70.48	22.06	0.92	92.54
100	27924.96	Mid	QPSK	Full RB	-69.48	23.01	0.95	92.49
100	27924.96	Mid	QPSK	Full RB	-68.48	23.57	0.56	92.05
100	27924.96	Mid	QPSK	Full RB	-67.48	24.25	0.68	91.73
100	27924.96	Mid	QPSK	Full RB	-66.48	24.84	0.59	91.32
100	27924.96	Mid	QPSK	Full RB	-65.48	25.38	0.54	90.86
100	27924.96	Mid	QPSK	Full RB	-64.48	25.78	0.40	90.26

Table 6-15. n261 100MHz 4CC Full RB AGC Threshold and Booster Gain – Relay Side – H Beam

Note: AGC Level is found at -68.48dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 44 of 54
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 44 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
50	27924.96	Mid	QPSK	Full RB	-76.48	13.53	-	90.01
50	27924.96	Mid	QPSK	Full RB	-75.48	14.60	1.07	90.08
50	27924.96	Mid	QPSK	Full RB	-74.48	15.68	1.08	90.16
50	27924.96	Mid	QPSK	Full RB	-73.48	16.81	1.13	90.29
50	27924.96	Mid	QPSK	Full RB	-72.48	17.92	1.11	90.40
50	27924.96	Mid	QPSK	Full RB	-71.48	19.01	1.09	90.49
50	27924.96	Mid	QPSK	Full RB	-70.48	20.12	1.11	90.60
50	27924.96	Mid	QPSK	Full RB	-69.48	21.29	1.17	90.77
50	27924.96	Mid	QPSK	Full RB	-68.48	22.34	1.05	90.82
50	27924.96	Mid	QPSK	Full RB	-67.48	23.37	1.03	90.85
50	27924.96	Mid	QPSK	Full RB	-66.48	24.17	0.80	90.65
50	27924.96	Mid	QPSK	Full RB	-65.48	25.01	0.84	90.49
50	27924.96	Mid	QPSK	Full RB	-64.48	25.89	0.88	90.37

Table 6-16. n261 50MHz 1CC Full RB AGC Threshold and Booster Gain – Relay Side – V Beam

Note: AGC Level is found at -66.48dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	PCTEST°	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 45 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 45 of 51
© 2021 PCTEST			V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
100	27924.96	Mid	QPSK	Full RB	-76.48	14.47	-	90.95
100	27924.96	Mid	QPSK	Full RB	-75.48	15.62	1.15	91.10
100	27924.96	Mid	QPSK	Full RB	-74.48	16.73	1.11	91.21
100	27924.96	Mid	QPSK	Full RB	-73.48	17.86	1.13	91.34
100	27924.96	Mid	QPSK	Full RB	-72.48	19.03	1.17	91.51
100	27924.96	Mid	QPSK	Full RB	-71.48	20.12	1.09	91.60
100	27924.96	Mid	QPSK	Full RB	-70.48	21.20	1.08	91.68
100	27924.96	Mid	QPSK	Full RB	-69.48	22.19	0.99	91.67
100	27924.96	Mid	QPSK	Full RB	-68.48	23.18	0.99	91.66
100	27924.96	Mid	QPSK	Full RB	-67.48	23.97	0.79	91.45
100	27924.96	Mid	QPSK	Full RB	-66.48	24.61	0.64	91.09
100	27924.96	Mid	QPSK	Full RB	-65.48	25.31	0.70	90.79
100	27924.96	Mid	QPSK	Full RB	-64.48	25.93	0.62	90.41

Table 6-17. n261 100MHz 4CC Full RB AGC Threshold and Booster Gain – Relay Side – V Beam

Note: AGC Level is found at -67.48dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proved to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 46 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 46 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
50	38499.96	Mid	QPSK	Full RB	-72.53	14.03	-	86.56
50	38499.96	Mid	QPSK	Full RB	-71.53	15.05	1.02	86.58
50	38499.96	Mid	QPSK	Full RB	-70.53	16.08	1.03	86.61
50	38499.96	Mid	QPSK	Full RB	-69.53	17.18	1.10	86.71
50	38499.96	Mid	QPSK	Full RB	-68.53	18.36	1.18	86.89
50	38499.96	Mid	QPSK	Full RB	-67.53	19.47	1.11	87.00
50	38499.96	Mid	QPSK	Full RB	-66.53	20.59	1.12	87.12
50	38499.96	Mid	QPSK	Full RB	-65.53	21.79	1.20	87.32
50	38499.96	Mid	QPSK	Full RB	-64.53	22.93	1.14	87.46
50	38499.96	Mid	QPSK	Full RB	-63.53	23.94	1.01	87.47
50	38499.96	Mid	QPSK	Full RB	-62.53	24.72	0.78	87.25
50	38499.96	Mid	QPSK	Full RB	-61.53	25.42	0.70	86.95
50	38499.96	Mid	QPSK	Full RB	-60.53	26.18	0.76	86.71

Table 6-18. n260 50MHz 1CC Full RB AGC Threshold and Booster Gain – Relay Side – H Beam

Note: AGC Level is found at -62.53dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 47 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 47 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
100	38499.96	Mid	QPSK	Full RB	-72.53	13.92	-	86.45
100	38499.96	Mid	QPSK	Full RB	-71.53	15.08	1.16	86.61
100	38499.96	Mid	QPSK	Full RB	-70.53	16.30	1.22	86.83
100	38499.96	Mid	QPSK	Full RB	-69.53	17.57	1.27	87.10
100	38499.96	Mid	QPSK	Full RB	-68.53	18.72	1.15	87.25
100	38499.96	Mid	QPSK	Full RB	-67.53	19.99	1.27	87.52
100	38499.96	Mid	QPSK	Full RB	-66.53	21.20	1.21	87.73
100	38499.96	Mid	QPSK	Full RB	-65.53	22.33	1.13	87.86
100	38499.96	Mid	QPSK	Full RB	-64.53	23.34	1.01	87.87
100	38499.96	Mid	QPSK	Full RB	-63.53	24.18	0.84	87.71
100	38499.96	Mid	QPSK	Full RB	-62.53	25.05	0.87	87.58
100	38499.96	Mid	QPSK	Full RB	-61.53	25.82	0.77	87.35
100	38499.96	Mid	QPSK	Full RB	-60.53	26.50	0.68	87.03

Table 6-19. n260 100MHz 4CC Full RB AGC Threshold and Booster Gain – Relay Side – H Beam

Note: AGC Level is found at -63.53dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 48 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

n260 – Relay Side

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
50	38499.96	Mid	QPSK	Full RB	-72.53	14.48	-	87.01
50	38499.96	Mid	QPSK	Full RB	-71.53	15.58	1.10	87.11
50	38499.96	Mid	QPSK	Full RB	-70.53	16.67	1.09	87.20
50	38499.96	Mid	QPSK	Full RB	-69.53	17.81	1.14	87.34
50	38499.96	Mid	QPSK	Full RB	-68.53	18.90	1.09	87.43
50	38499.96	Mid	QPSK	Full RB	-67.53	19.91	1.01	87.44
50	38499.96	Mid	QPSK	Full RB	-66.53	21.07	1.16	87.60
50	38499.96	Mid	QPSK	Full RB	-65.53	22.21	1.14	87.74
50	38499.96	Mid	QPSK	Full RB	-64.53	23.19	0.98	87.72
50	38499.96	Mid	QPSK	Full RB	-63.53	24.04	0.85	87.57
50	38499.96	Mid	QPSK	Full RB	-62.53	24.79	0.75	87.32
50	38499.96	Mid	QPSK	Full RB	-61.53	25.42	0.63	86.95
50	38499.96	Mid	QPSK	Full RB	-60.53	25.92	0.50	86.45

Table 6-20. n260 50MHz 1CC Full RB AGC Threshold and Booster Gain – Relay Side – V Beam

Note: AGC Level is found at -63.53dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 49 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

Bandwidth [MHz]	Frequency [MHz]	Channel	Modulation	RB Size	EUT Input Power Level [dBm]	EIRP [dBm]	Calculated Change in Output Power [dB]	Calculated Gain [dB]
100	38499.96	Mid	QPSK	Full RB	-72.53	14.33	-	86.86
100	38499.96	Mid	QPSK	Full RB	-71.53	15.41	1.08	86.94
100	38499.96	Mid	QPSK	Full RB	-70.53	16.54	1.13	87.07
100	38499.96	Mid	QPSK	Full RB	-69.53	17.66	1.12	87.19
100	38499.96	Mid	QPSK	Full RB	-68.53	18.82	1.16	87.35
100	38499.96	Mid	QPSK	Full RB	-67.53	19.97	1.15	87.50
100	38499.96	Mid	QPSK	Full RB	-66.53	21.02	1.05	87.55
100	38499.96	Mid	QPSK	Full RB	-65.53	21.99	0.97	87.52
100	38499.96	Mid	QPSK	Full RB	-64.53	22.89	0.90	87.42
100	38499.96	Mid	QPSK	Full RB	-63.53	23.56	0.67	87.09
100	38499.96	Mid	QPSK	Full RB	-62.53	24.27	0.71	86.80
100	38499.96	Mid	QPSK	Full RB	-61.53	24.87	0.60	86.40
100	38499.96	Mid	QPSK	Full RB	-60.53	25.38	0.51	85.91

Table 6-21. n260 100MHz 4CC Full RB AGC Threshold and Booster Gain – Relay Side – V Beam

Note: AGC Level is found at -63.53dBm EUT Input Power Level.

FCC ID: NKR-TR2V1-IDU	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 50 of 51
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 50 of 51
© 2021 PCTEST	•	·	V 9 0 02/01/2019

7.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **5G Extender Gen 2 FCC ID: NKR-TR2V1-IDU** has been tested to comply with the requirements specified in §20.21 and KDB 935210 D05 for Industrial Booster operation.

FCC ID: NKR-TR2V1-IDU	Proud to be part of element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Technical Manager	
Test Report S/N: Test Dates:		EUT Type:	Daga E1 of E1	
1M2106230069-01-R3.NKR	07/12/2021-08/16/2021	5G Extender Gen 2	Page 51 of 51	
© 2021 PCTEST			V 9.0 02/01/2019	