

FCC Test Report

Equipment	:	11abgn 2x2 USB WiFi module
Brand Name	:	SHARP Corporation
Model No.	:	DNUR-SM1
FCC ID	:	NKR-SM1
Standard	:	47 CFR FCC Part 15.407
Operating Band	:	5150 MHz – 5250 MHz 5250 MHz – 5350 MHz 5470 MHz – 5725 MHz
Equipment Class	:	NII
Applicant Manufacturer	:	Wistron NeWeb Corporation 20 Park Avenue II, Hsinchu Science Park, Hsinchu 308,Taiwan,R.O.C.
Operate Mode	:	Client without radar detection

The product sample received on Nov. 27, 2012 and completely tested on Dec. 07, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	DFS and TPC Information	7
1.3	Support Equipment	7
1.4	Testing Applied Standards	7
1.5	Testing Location Information	7
1.6	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	Test Channel Frequencies Configuration	9
2.3	The Worst Case Power Setting Parameter	10
2.4	The Worst Case Measurement Configuration	11
2.5	Test Setup Diagram	12
3	TRANSMITTER TEST RESULT	13
3.1	AC Power-line Conducted Emissions	13
3.2	Emission Bandwidth	16
3.3	RF Output Power	22
3.4	Peak Power Spectral Density	33
3.5	Peak Excursion	41
3.6	Transmitter Radiated Bandedge Emissions	43
3.7	Transmitter Radiated Unwanted Emissions	53
3.8	Frequency Stability	108
4	TEST EQUIPMENT AND CALIBRATION DATA	110

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications						
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result		
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied		
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 17.75MHz 35.89 (Margin 14.11dB) - AV 40.72 (Margin 19.28dB) - QP	FCC 15.207	Complied		
3.2	15.407(a)	Emission Bandwidth	Bandwidth [MHz] 20M: 28.00 / 40M: 52.75	Information only	Complied		
3.3	15.407(a)	RF Output Power (Maximum Conducted Output Power)	Power [dBm] 5150-5250MHz: 16.60 5250-5350MHz: 22.65 5470-5725MHz: 22.41	Power [dBm] 5150-5250MHz:17 5250-5350MHz:24 5470-5725MHz:24	Complied		
3.4	15.407(a)	Peak Power Spectral Density	PPSD [dBm/MHz] 5150-5250MHz: 3.31 5250-5350MHz: 10.17 5470-5725MHz: 9.85	PPSD [dBm/MHz] 5150-5250MHz:4 5250-5350MHz:11 5470-5725MHz:11	Complied		
3.5	15.407(a)	Peak Excursion	9.66 dB	13 dB	Complied		
3.6	15.407(b)	Transmitter Radiated Bandedge Emissions	Restricted Bands [dBuV/m at 3m]: 5725.00MHz 67.02 (Margin 1.28dB) - PK	Non-Restricted Bands: ≤ -27dBm (68.3dBuV/m@3m) Restricted Bands: FCC 15.209	Complied		
3.7	15.407(b)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 480.08MHz 44.12 (Margin 1.88dB) - PK	Non-Restricted Bands: ≤ -27dBm (68.3dBuV/m@3m) Restricted Bands: FCC 15.209	Complied		
3.8	15.407(g)	Frequency Stability	0.66 ppm	Signal shall remain in-band	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR2N2717AN	Rev. 01	Initial issue of report	Dec.13, 2012
FR2N2717-01AN	Rev. 01	Change the Brand and model name	Aug. 21, 2014

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information					
IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	RF Output Power (dBm)	Co-location
а	5180-5240	36-48 [4]	1	14.79	N/A
	5260-5320	52-64 [4]	1	20.37	
	5500-5700	100-140 [8]	1	20.87	
n (HT-20)	5180-5240	36-48 [4]	2	14.53	N/A
	5260-5320	52-64 [4]	2	21.59	
	5500-5700	100-140 [8]	2	21.26	
n (HT-40)	5190-5230	38-46 [2]	2	16.60	N/A
	5270-5310	54-62 [2]	2	22.65	
	5510-5670	102-134 [3]	2	22.41	
	802.11 a n (HT-20)	IEEE Std. 802.11 Ch. Freq. (MHz) a 5180-5240 5260-5320 5500-5700 n (HT-20) 5180-5240 5260-5320 5500-5700 n (HT-20) 5180-5240 5260-5320 5500-5700 n (HT-40) 5190-5230 5270-5310 5270-5310	IEEE Std. 802.11 Ch. Freq. (MHz) Channel Number a 5180-5240 36-48 [4] 5260-5320 52-64 [4] 5500-5700 100-140 [8] n (HT-20) 5180-5240 36-48 [4] 5260-5320 52-64 [4] 5260-5320 52-64 [4] 5260-5320 52-64 [4] 5260-5320 52-64 [4] 5260-5320 52-64 [4] 5500-5700 100-140 [8] n (HT-40) 5190-5230 38-46 [2] 5270-5310 54-62 [2]	IEEE Std. 802.11 Ch. Freq. (MHz) Channel Number Transmit Chains (N _{Tx}) a 5180-5240 36-48 [4] 1 5260-5320 52-64 [4] 1 5500-5700 100-140 [8] 1 n (HT-20) 5180-5240 36-48 [4] 2 5260-5320 52-64 [4] 2 5500-5700 100-140 [8] 1 n (HT-20) 5180-5240 36-48 [4] 2 5260-5320 52-64 [4] 2 2 5500-5700 100-140 [8] 2 2 n (HT-40) 5190-5230 38-46 [2] 2 n (HT-40) 5190-5230 54-62 [2] 2	IEEE Std. 802.11Ch. Freq. (MHz)Channel NumberTransmit Chains (NTX)RF Output Power (dBm)a5180-524036-48 [4]114.795260-532052-64 [4]120.375500-5700100-140 [8]120.87n (HT-20)5180-524036-48 [4]214.535260-532052-64 [4]221.595500-5700100-140 [8]221.26n (HT-40)5190-523038-46 [2]216.605270-531054-62 [2]222.65

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 3: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

1.1.2 Antenna Information

	Antenna Category					
	Equipment placed on the market without antennas					
\square	Inte	gral antenna (antenna permanently attached)				
	\boxtimes	Temporary RF connector provided				
		No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.				
	Exte	ernal antenna (dedicated antennas)				
		Single power level with corresponding antenna(s).				
		Multiple power level and corresponding antenna(s).				
		RF connector provided				
		Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)				
		Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)				

	Antenna General Information					
No.	No. Ant. Cat. Ant. Type Gain (dBi)					
1	1 2 Integral	Printed	1.52			
2			2.15			

1.1.3 Type of EUT

	Identify EUT			
EUT	Γ Serial Number	N/A		
Pre	sentation of Equipment	□ Production ; □ Pre-Production ; □ Prototype		
	Type of EUT			
\square	Stand-alone			
	Combined (EUT where the radio part is fully integrated within another device)			
	Combined Equipment - Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System - Brand Name / Model No.:			
] Other:			

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle					
Operated normally mode for worst duty cycle					
Operated test mode for worst duty cycle					
Test Signal Duty Cycle (x)	Power Duty Factor [dB] – (10 log 1/x)				
88.82% - IEEE 802.11a	0.52				
☑ 79.87% - IEEE 802.11n (HT-20)	0.98				
⊠ 65.01% - IEEE 802.11n (HT-40)	⊠ 65.01% - IEEE 802.11n (HT-40) 1.87				

Note 1: RF Output Power Plots w/o Duty Factor Note 1: Power Density Plots w/o Duty Factor

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery

1.2 DFS and TPC Information

	The DFS Related Operating Mode(s) of the Equipment				
Master					
Slave with ra	dar detection				
Slave withou	t radar detection				
Software / Firmv	Software / Firmware Version 0.0.1.0				
Communication	Mode	☐ IP Based (Load Based) ☐ Frame Based			
IEEE Std. 802.11 Protocol Range (MHz)		TPC (Transmit Power Control)	Passive Scan		
а	5250-5350	Yes	Yes		
n (HT-20)	5470-5725	Yes	Yes		
n (HT-40)	5600-5650	-	-		

1.3 Support Equipment

	Support Equipment					
No.	No. Equipment Brand Name Model Name Serial No.					
1	Notebook	DELL	E5410	DoC		

1.4 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 789033
- FCC KDB 662911
- FCC KDB 412172

1.5 Testing Location Information

	Testing Location								
\square	HWA YA	ADD	:		o. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, ao Yuan Hsien, Taiwan, R.O.C.				
		TEL : 886-3-327-3456 FAX : 886-3-327-0973							
	Test Condition Test Site No. Test Engineer Test Environment								
	RF Condu	cted		TH01-HY	lan	23.5°C / 62%			
	AC Conduction CO01-HY Sam 23°C / 56%		23°C / 56%						
F	Radiated Emission 03CH05-HY Hsiao 24.5°C / 64%								
Test	Test site registered number [643075] with FCC.								

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Test Item	Uncertainty	Limit		
AC power-line conducted emissions		±2.2 dB	N/A	
Emission bandwidth		±1.4 %	N/A	
RF output power, conducted		±0.6 dB	N/A	
Power density, conducted		±0.8 dB	N/A	
Unwanted emissions, conducted	30 – 1000 MHz	±0.5 dB	N/A	
	1 – 18 GHz	±0.6 dB	N/A	
	18 – 40 GHz	±0.8 dB	N/A	
	40 – 200 GHz	N/A	N/A	
All emissions, radiated	30 – 1000 MHz	±2.5 dB	N/A	
	1 – 18 GHz	±3.5 dB	N/A	
	18 – 40 GHz	±3.8 dB	N/A	
	40 – 200 GHz	N/A	N/A	
Temperature	·	±0.8 °C	N/A	
Humidity	±3 %	N/A		
DC and low frequency voltages	±3 %	N/A		
Time	±1.4 %	N/A		
Duty Cycle		±1.4 %	N/A	

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

W	orst Modulation Use	d for Conformance T	esting (5150-5250MH	z)
Modulation Mode	Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Output Power (dBm)
11a	1	6-54Mbps	6 Mbps	14.79
HT-20	2	M0-15	MCS 8	14.53
HT-40	2	M0-15	MCS 8	16.60
W	orst Modulation Use	d for Conformance T	esting (5250-5350MH	z)
Modulation Mode	Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Output Power (dBm)
11a	1	6-54Mbps	6 Mbps	20.37
HT-20	2	M0-15	MCS 8	21.59
HT-40	2	M0-15	MCS 8	22.65
W	orst Modulation Use	d for Conformance T	esting (5470-5725MH	z)
Modulation Mode	Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS	Output Power (dBm)
11a	1	6-54Mbps	6 Mbps	20.87
HT-20	2	M0-15	MCS 8	21.26
HT-40	2	M0-15	MCS 8	22.41
support HT-2 Note 2: Modulation m		odulation mode of Gu	40 (HT: High Throughp ard Interval (GI) is 400	

2.2 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration				
Frequency Range (MHz)	IEEE Std. 802.11	Test Channel Freq. (MHz) – FX (Frequencies Abbreviations)		
5150-5250	a, n (HT-20)	5180-(F1), 5200-(F2), 5240-(F3)		
5250-5350	a, n (HT-20)	5260-(F4), 5300-(F5), 5320-(F6)		
5470-5725	a, n (HT-20)	5500-(F7), 5580-(F8), 5700-(F9)		
5150-5250	n (HT-40)	5190-(F1'), 5230-(F2')		
5250-5350	n (HT-40)	5270-(F4'), 5310-(F5')		
5470-5725	n (HT-40)	5510-(F7'), 5550-(F8'), 5670-(F9')		

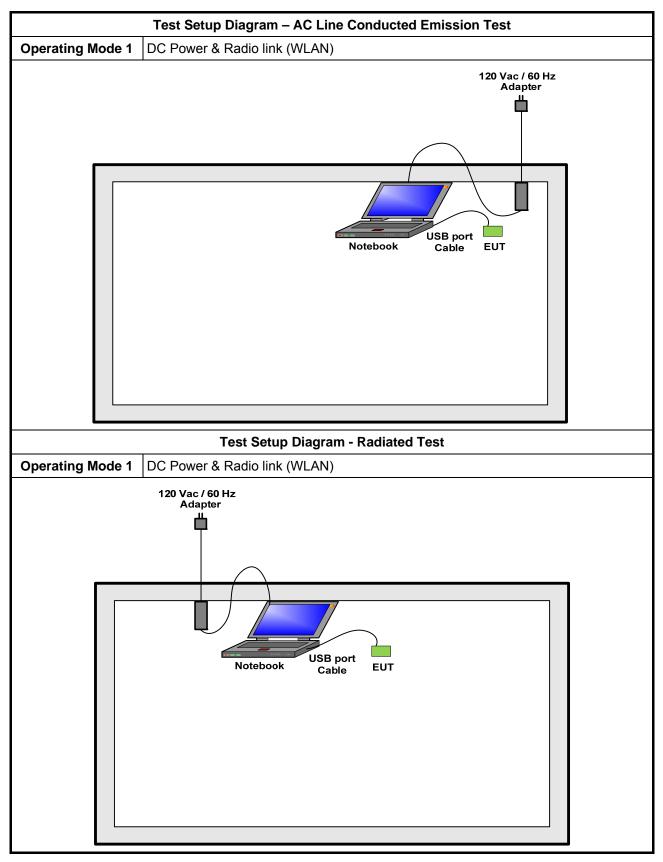
2.3 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (5150-5250 MHz band)							
Test Software Version				RT5x7x QA_	_1.0.3.8		
				Test Frequ	ency (MHz)		
Modulation Mode	N _{TX}		NCB: 20MHz	2	NCB: 40MHz		
		5180	5200	5240	5190	5230	-
11a	1	1D	1D	1E	-	-	-
HT-20	2	16,18	16,18	17,18	-	-	-
HT-40	2	-	-	-	1A,1B	1A,1B	-

The Worst Case Power Setting Parameter (5250-5350 MHz band)							
Test Software Version				RT5x7x QA_	_1.0.3.8		
				Test Frequ	iency (MHz)		
Modulation Mode	\mathbf{N}_{TX}		NCB: 20MHz	Z	NCB: 40MHz		
		5260	5300	5320	5270	5310	-
11a	1	2B	2B	2B	-	-	-
HT-20	2	2A/2B	2A/2B	2A/2B	-	-	-
HT-40	2	-	-	-	2B/2B	20/20	_

The Worst Case Power Setting Parameter (5470-5725 MHz band)								
Test Software Version				RT5x7x QA	_1.0.3.8			
				Test Frequ	ency (MHz)			
Modulation Mode	N _{TX}		NCB: 20MHz			NCB: 40MHz		
		5500	5580	5700	5510	5550	5670	
11a	1	26	2B	21	-	-	-	
HT-20	2	28/2B	28/2B	25/25	-	-	-	
HT-40	2	-	-	-	13/16	28/2B	28/2B	

2.4 The Worst Case Measurement Configuration


Th	The Worst Case Mode for Following Conformance Tests		
Tests Item	AC power-line conducted emissions		
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz		
Operating Mode	Operating Mode Description		
1	DC Power & Radio link (WLAN)		

Th	The Worst Case Mode for Following Conformance Tests		
Tests Item	Tests ItemRF Output Power, Peak Power Spectral Density, Emission Bandwidth, Peak Excursion		
Test Condition	Conducted measurement at transmit chains		
Modulation Mode	11a, HT-20, HT-40		

Th	e Worst Case Mode for Fo	bllowing Conformance Te	sts			
Tests Item		Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions				
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.					
	EUT will be placed in	fixed position.				
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed three orthogonal planes. The worst planes is Y.					
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.					
Operating Mode < 1GHz	1. DC Power & Radio link (WLAN)					
Modulation Mode	11a, HT-20, HT-40					
	X Plane	Y Plane	Z Plane			
Orthogonal Planes of EUT						

2.5 Test Setup Diagram

Transmitter Test Result 3

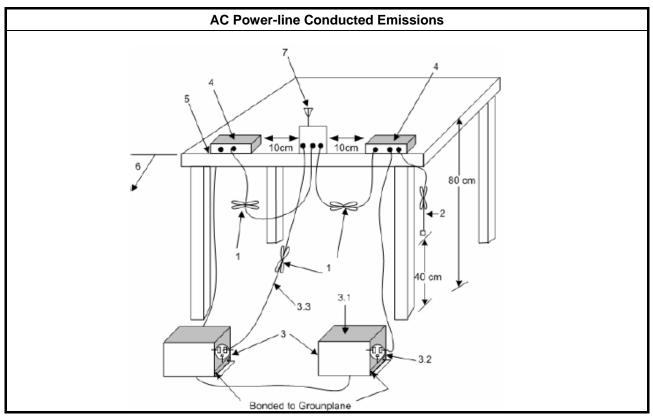
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

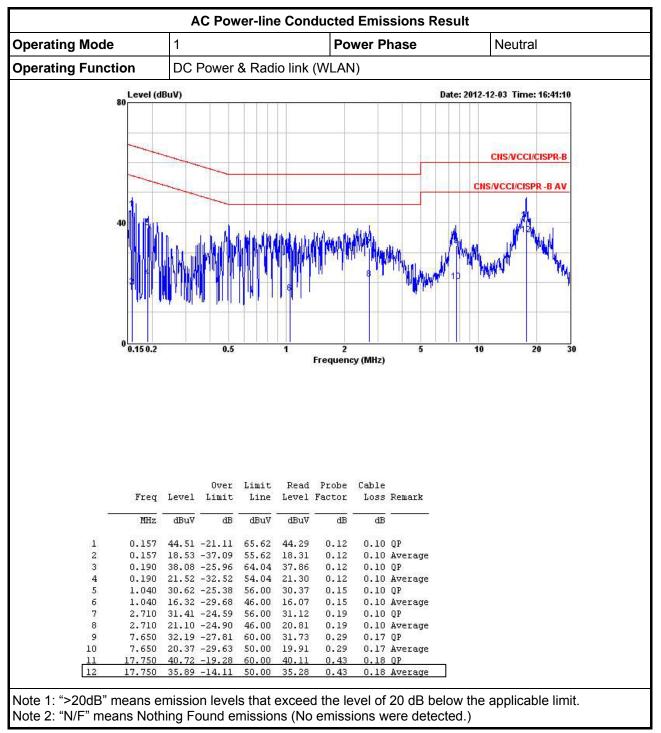
AC Power-line Conducted Emissions Limit				
Frequency Emission (MHz)	Quasi-Peak	Average		
0.15-0.5	66 - 56 *	56 - 46 *		
0.5-5	56	46		
5-30 60 50				
Note 1: * Decreases with the logarithm of	of the frequency.	•		

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

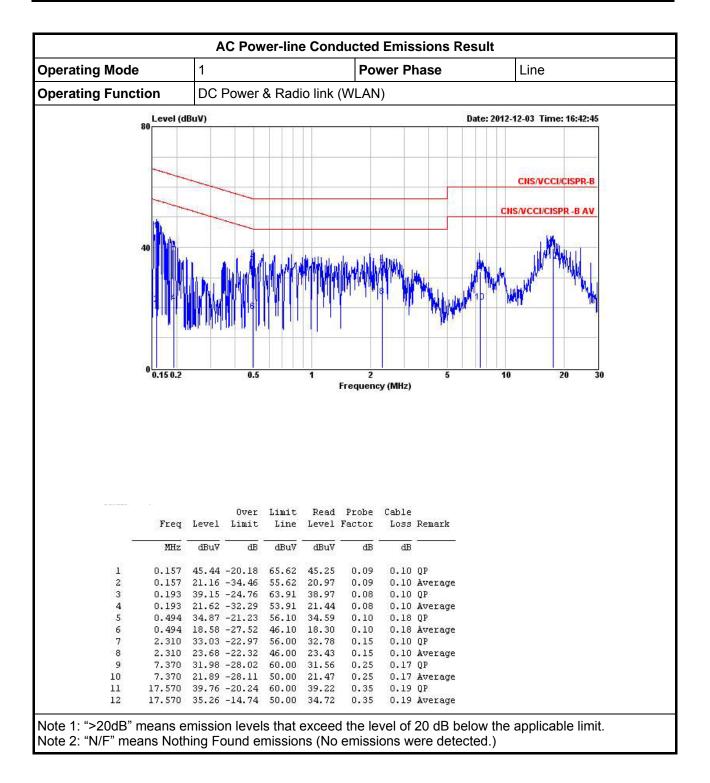

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures


Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



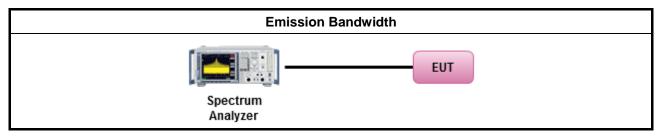
3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth (EBW) Limit

	Emission Bandwidth (EBW) Limit
UN	II Devices
\square	For the 5.15-5.25 GHz band, the maximum conducted output power shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.
	For the 5.25-5.35 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.
\square	For the 5.47-5.725 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.
	For the 5.725-5.825 GHz band, the maximum conducted output power shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz
LE	-LAN Devices
	For the band 5.15-5.25 GHz, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
\boxtimes	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	whichever power is less. B is the 99% emission bandwidth in MHz For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dB

3.2.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

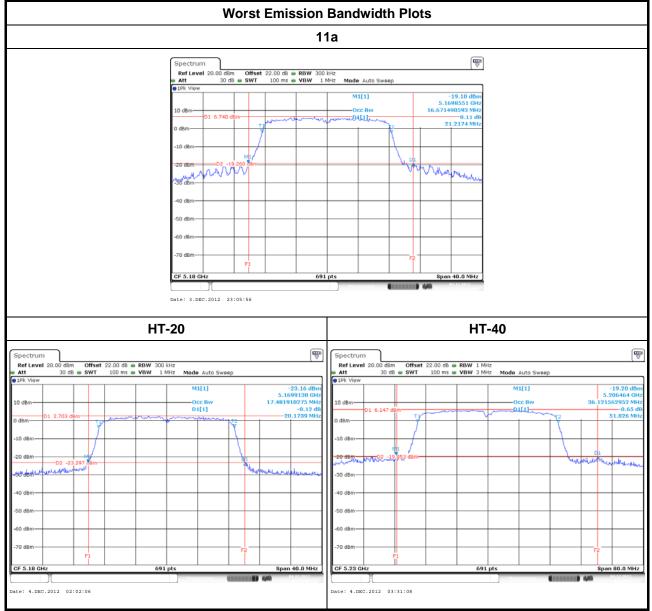
3.2.3 Test Procedures

		Test Method
\square	For	the emission bandwidth shall be measured using one of the options below:
	\boxtimes	Refer as FCC KDB 789033, clause D for EBW measurement.
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
	\boxtimes	Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.
\square	For	conducted measurement.
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain.
	\boxtimes	The EUT supports diversity transmitting and the results on transmit chain port 2 is the worst case.
	\boxtimes	The EUT supports multiple transmit chains using options given below:
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 2.
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.

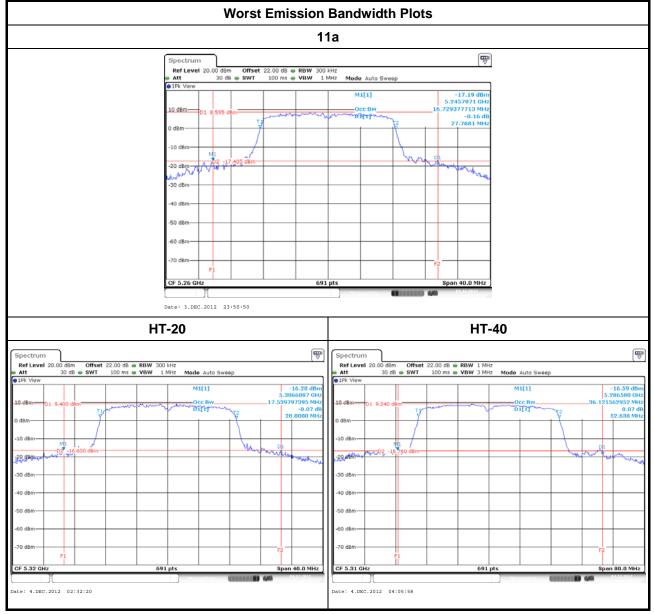
3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

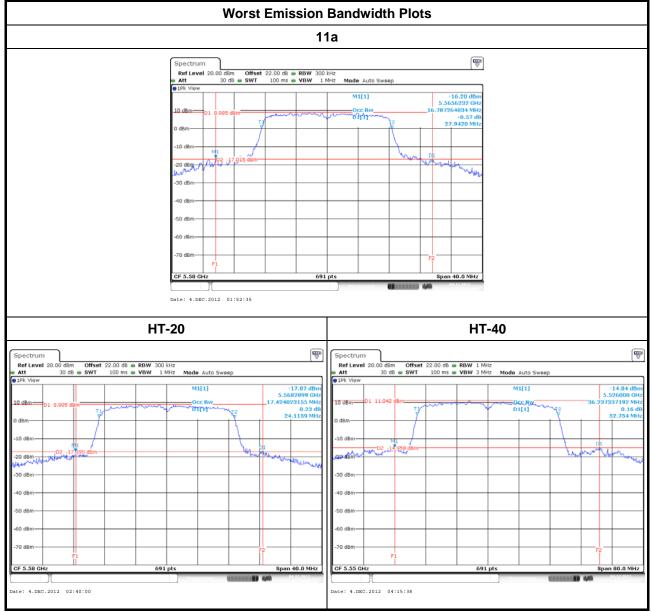
	UNII Emission Bandwidth Result (5150-5250MHz band)											
Condi	ition			Emission Bandwidth (MHz)								
Modulation		Freq.	99% Ba	ndwidth	26dB B	andwidth	Powe	r Limit				
Mode	Ντχ	(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 1	Chain- Port 2	99% BW	26dB BW				
11a	1	5180	-	16.67	-	21.22	16.22	17.00				
11a	1	5200	-	16.67	-	20.12	16.22	17.00				
11a	1	5240	-	16.61	-	19.54	16.20	16.91				
HT-20	2	5180	17.48	17.48	20.17	19.88	16.43	16.98				
HT-20	2	5200	17.48	17.48	20.12	19.94	16.43	17.00				
HT-20	2	5240	17.48	17.48	20.17	20.12	16.43	17.00				
HT-40	2	5190	36.12	36.12	49.62	48.58	17.00	17.00				
HT-40	2	5230	36.12	36.24	51.83	40.58	17.00	17.00				
Res	ult				Com	plied						


		UNII Em	ission Band	width Resu	lt (5250-535	0MHz band)					
Cond	ition			Emission Bandwidth (MHz)							
Modulation		Freq.	99% Ba	ndwidth	26dB B	andwidth	Powe	r Limit			
Mode	Ντχ	(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 1	Chain- Port 2	99% BW	26dB BW			
11a	1	5260	-	16.73	-	27.77	23.23	24.00			
11a	1	5300	-	16.73	-	25.50	23.23	24.00			
11a	1	5320	-	16.67	-	24.70	23.22	24.00			
HT-20	2	5260	17.42	17.60	22.55	26.20	23.41	24.00			
HT-20	2	5300	17.48	17.48	21.10	21.04	23.43	24.00			
HT-20	2	5320	17.54	17.54	28.00	23.88	23.44	24.00			
HT-40	2	5270	36.12	36.12	51.59	49.51	24.00	24.00			
HT-40	2	5310	36.12	36.24	52.64	40.58	24.00	24.00			
Res	ult				Com	plied					

		UNII Em	ission Band	dwidth Resu	lt (5470-572	5MHz band)				
Cond	ition			E	mission Bar	ndwidth (MH	z)			
Modulation		Freq.	99% Ba	ndwidth	26dB B	andwidth	Powe	r Limit		
Mode	Ντχ	(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 1	Chain- Port 2	99% BW	26dB BW		
11a	1	5500	-	16.73	-	24.81	23.23	24.00		
11a	1	5580	-	16.79	-	27.94	23.25	24.00		
11a	1	5700	-	16.67	-	19.77	23.22	23.96		
HT-20	2	5500	17.48	17.48	23.88	21.80	23.43	24.00		
HT-20	2	5580	17.42	17.42	24.12	21.57	23.41	24.00		
HT-20	2	5700	17.37	17.42	20.00	20.87	23.40	24.00		
HT-40	2	5510	36.12	36.24	41.39	40.93	24.00	24.00		
HT-40	2	5550	36.12	36.24	49.97	52.75	24.00	24.00		
HT-40	2	5670	36.12	36.12	43.48	40.46	24.00	24.00		
Res	ult				Com	plied				



5150-5250MHz



5250-5350MHz

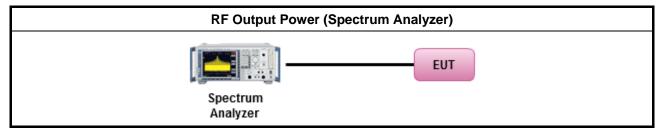
5470-5725MHz

3.3 **RF Output Power**

3.3.1 RF Output Power Limit

	Maximum Conducted Output Power Limit
UN	I Devices
	For the 5.15-5.25 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.
\square	For the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 – (G_{TX} – 6).
\square	For the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 – (G_{TX} – 6).
	For the 5.725-5.825 GHz band:
	Point-to-multipoint systems (P2M): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$.
	Point-to-point systems (P2P): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 23$ dBi, then $P_{Out} = 30 - (G_{TX} - 23)$.
LE-	LAN Devices
\boxtimes	For the 5.15-5.25 GHz band, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	For the 5.25-5.35 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz
	For the 5.725-5.825 GHz band, the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	Point-to-multipoint systems (P2M): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.
	Point-to-point systems (P2P): the maximum e.i.r.p. shall not exceed 4.0 W or 23 + 10 log B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. If e.i.r.p. > 36 dBm, $G_{TX} \le P_{Out}$
	e = maximum conducted output power in dBm, = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\boxtimes	Мах	imum Conducted Output Power
	[dut	y cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 789033, clause C Method SA-1 (spectral trace averaging).
		Refer as FCC KDB 789033, clause C Method SA-1 Alt. (RMS detection with slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 789033, clause C Method SA-2 (spectral trace averaging).
		Refer as FCC KDB 789033, clause C Method SA-2 Alt. (RMS detection with slow sweep speed)
	Wid	eband RF power meter and average over on/off periods with duty factor
		Refer as FCC KDB 789033, clause C Method PM (using an RF average power meter).
\square	For	conducted measurement.
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.
	\square	The EUT supports diversity transmitting and the results on transmit chain port 2 is the worst case.
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

	Directional Gain (DG) Result								
Transmit Chains No.		1	2	-	-				
Maximum G _{ANT} (dBi)		1.52	2.15	-	-				
Modulation Mode	DG (dBi)	Ν _{τχ}	N _{ss}	STBC	Array Gain (dB)				
11a	2.15	1	1	-	-				
HT-20	1.85*	2	1	-	-				
HT-40	1.85*	2	1	-	-				
Note 1: For all transmitter outputs v Any transmit signals are con All transmit signals are con Note 2: For all transmitter outputs v Any transmit signals are con All transmit signals are con Note 3: For Spatial Multiplexing, Di where Nss = the number of Note 4: For CDD transmissions, din Directional Gain (DG) = G _A Array Gain = 0 dB (i.e., no Array Gain = 0 dB (i.e., no Note 5: * Direction gain = 10 log[(1)	rrelated ppletely vith une prrelated ppletely rectiona f indepe rectional _{NT} + Arra array ga	I, Directional Gai uncorrelated, Dir qual antenna gai I, Directional Gai uncorrelated, Dir I Gain (DG) = G, ndent spatial stre I gain is calculate ay Gain, where A ain) for N _{Tx} ≤ 4;	n = G_{ANT} + 10 log rectional Gain = ins, directional g n =10 log[(10 ^{G1/2} rectional Gain = _{ANT} + 10 log(N _{TX} / eams data. ed as power mea array Gain is as f	$\begin{array}{l} g(N_{TX}) \\ G_{ANT} \\ ain is to be comp \\ {}^{0}++10^{GN/20})^2 \\ 10 \ log[(10^{G1/10}+.) \\ N_{SS}), \\ asurements: \\ follows: \end{array}$	outed as follows: /N _{T×}]				

3.3.5 Directional Gain for Power Measurement

	Maximum Conducted Output Power (5150-5250MHz band)										
Cond	ition			RF Output Power (dBm)							
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit		
11a	1	5180	-	14.79	14.79	17.00	2.15	16.94	22.22		
11a	1	5200	-	14.50	14.50	17.00	2.15	16.65	22.22		
11a	1	5240	-	14.66	14.66	16.91	2.15	16.81	22.20		
HT-20	2	5180	11.46	11.48	14.48	16.98	1.85	16.32	22.43		
HT-20	2	5200	11.33	11.54	14.44	17.00	1.85	16.29	22.43		
HT-20	2	5240	11.47	11.57	14.53	17.00	1.85	16.37	22.43		
HT-40	2	5190	13.70	13.48	16.60	17.00	1.85	18.45	23.00		
HT-40	2	5230	13.47	13.34	16.42	17.00	1.85	18.26	23.00		
Res	ult			Complied							

3.3.6 Test Result of Maximum Conducted Output Power

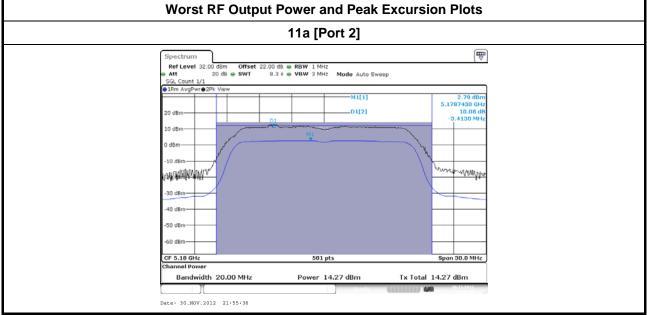
Note 1: RF Output Power Plots w/o Duty Factor

Note 2: Duty factor of each modulation is added to above relative test results

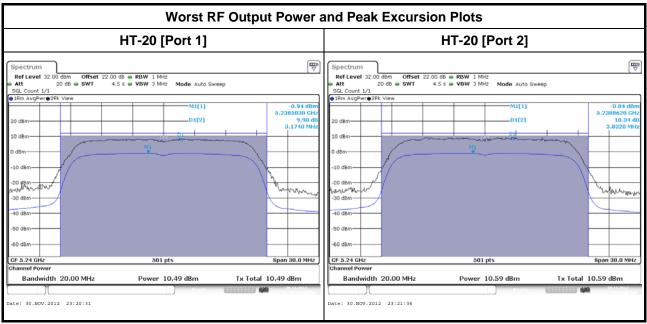
	Maximum Conducted Output Power (5250-5350MHz band)										
Cond	ition			RF Output Power (dBm)							
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit		
11a	1	5260	-	20.37	20.37	24.00	2.15	22.52	29.23		
11a	1	5300	-	20.15	20.15	24.00	2.15	22.30	29.23		
11a	1	5320	-	20.09	20.09	24.00	2.15	22.24	29.22		
HT-20	2	5260	18.45	18.71	21.59	24.00	1.85	23.43	29.41		
HT-20	2	5300	17.86	17.99	20.93	24.00	1.85	22.78	29.43		
HT-20	2	5320	18.19	18.34	21.27	24.00	1.85	23.12	29.44		
HT-40	2	5270	19.74	19.54	22.65	24.00	1.85	24.50	30.00		
HT-40	HT-40 2 5310				19.32	24.00	1.85	21.16	30.00		
Res	ult	•				Complied	l				

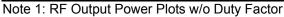
Note 1: RF Output Power Plots w/o Duty Factor

Note 2: Duty factor of each modulation is added to above relative test results

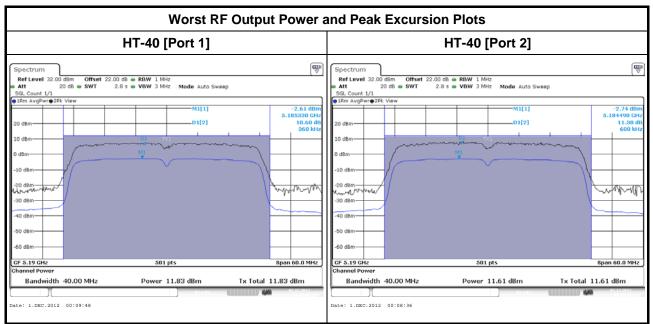


	М	aximum (Conducted	d Output F	ower (547	0-5725MH	Iz band)		
Cond	lition				RF Out	tput Powe	r (dBm)		
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit
11a	1	5500	-	20.47	20.47	24.00	2.15	22.62	29.23
11a	1	5580	-	20.87	20.87	24.00	2.15	23.02	29.25
11a	1	5700	-	17.58	17.58	23.96	2.15	19.73	29.22
HT-20	2	5500	18.33	18.18	21.26	24.00	1.85	23.11	29.43
HT-20	2	5580	17.97	17.48	20.74	24.00	1.85	22.58	29.41
HT-20	2	5700	16.91	17.11	20.02	24.00	1.85	21.86	29.40
HT-40	2	5510	11.01	10.83	13.93	24.00	1.85	15.78	30.00
HT-40	2	5550	19.51	19.28	22.41	24.00	1.85	24.25	30.00
HT-40	2	5670	17.98	17.51	20.76	24.00	1.85	22.61	30.00
Res	sult		Complied						

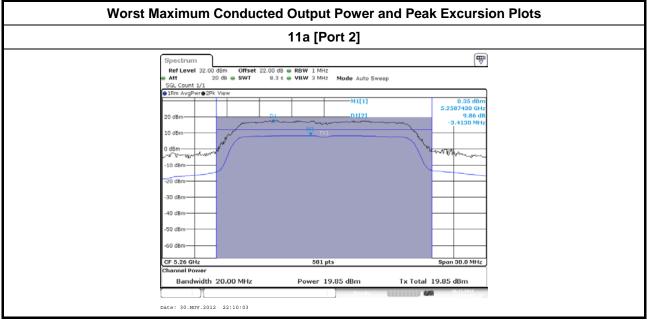

Note 1: RF Output Power Plots w/o Duty Factor Note 2: Duty factor of each modulation is added to above relative test results

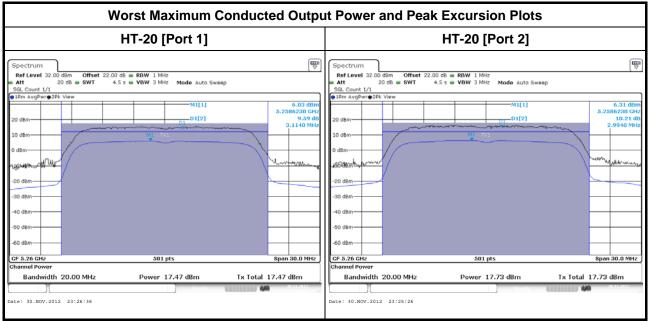


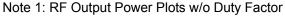
5150-5250MHz



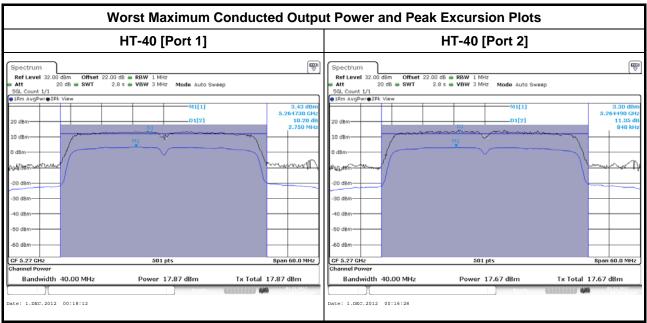
Note 1: RF Output Power Plots w/o Duty Factor



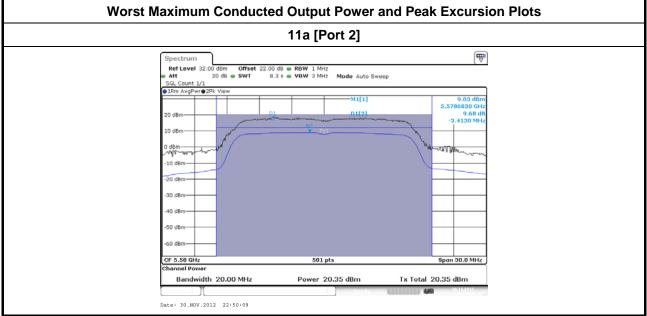

Note 1: RF Output Power Plots w/o Duty Factor

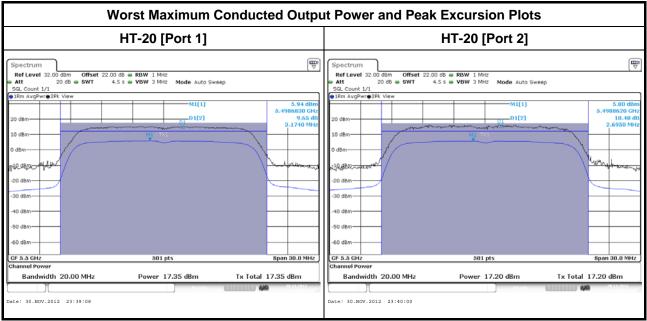


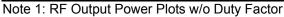
5250-5350MHz



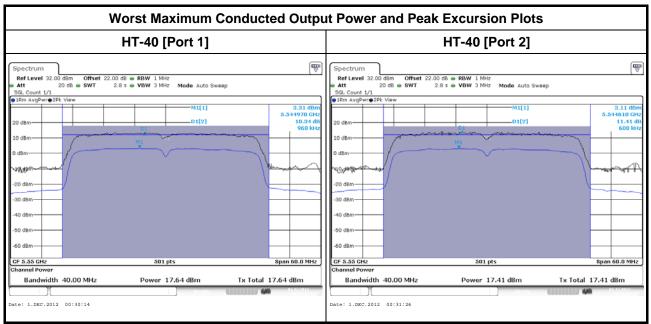
Note 1: RF Output Power Plots w/o Duty Factor




Note 1: RF Output Power Plots w/o Duty Factor



5470-5725MHz



Note 1: RF Output Power Plots w/o Duty Factor

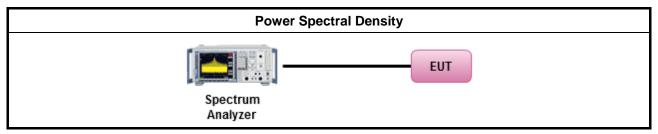
Note 1: RF Output Power Plots w/o Duty Factor

3.4 Peak Power Spectral Density

3.4.1 Peak Power Spectral Density Limit

	Peak Power Spectral Density Limit
UN	II Devices
	For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) \leq 4 dBm/MHz. If G _{TX} > 6 dBi, then PPSD = 4 – (G _{TX} – 6).
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 11 – (G _{TX} – 6).
	For the 5.47-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 11 – (G _{TX} – 6).
	For the 5.725-5.825 GHz band:
	Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 17 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 17 – (G _{TX} – 6).
	Point-to-point systems (P2P): the peak power spectral density (PPSD) \leq 17 dBm/MHz. If G _{TX} > 23 dBi, then PPSD = 17 – (G _{TX} – 23).
LE-	LAN Devices
\square	For the 5.15-5.25 GHz band, the peak power spectral density (PPSD) \leq 4 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 10 dBm/MHz.
	For the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 17 dBm/MHz.
	For the 5.47-5.6 GHz band and 5.65-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 17 dBm/MHz.
	For the 5.725-5.825 GHz band, the peak power spectral density (PPSD) \leq 17 dBm/MHz and the e.i.r.p. peak power spectral density (PPSD) \leq 23 dBm/MHz.
pov	SD = peak power spectral density that he same method as used to determine the conducted output ver shall be used to determine the power spectral density. And power spectral density in dBm/MHz = the maximum transmitting antenna directional gain in dBi.

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method
	outp func	k power spectral density procedures that the same method as used to determine the conducted ut power shall be used to determine the peak power spectral density and use the peak search tion on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density I be measured using below options:
		Refer as FCC KDB 789033, E)5) power spectral density can be measured using resolution bandwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth
	[dut	/ cycle ≥ 98% or external video / power trigger]
		Refer as FCC KDB 789033, clause C Method SA-1 (spectral trace averaging).
		Refer as FCC KDB 789033, clause C Method SA-1 Alt. (RMS detection with slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 789033, clause C Method SA-2 (spectral trace averaging).
		Refer as FCC KDB 789033, clause C Method SA-2 Alt. (RMS detection with slow sweep speed)
\boxtimes	For	conducted measurement.
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.
	\square	The EUT supports diversity transmitting and the results on transmit chain port 2 is the worst case.
	\square	The EUT supports multiple transmit chains using options given below:
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.
		If multiple transmit chains, EIRP PPSD calculation could be following as methods: PPSD _{total} = PPSD ₁ + PPSD ₂ + + PPSD _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = PPSD _{total} + DG
	\boxtimes	Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.
	M	Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.

3.4.4 Test Setup

3.4.5	Directional Gain for Power S	Spectral Density	/ Measurement
•••••			

Directional Gain (DG) Result							
Transmit Chains No.		1	2		-		
Maximum G _{ANT} (dBi)	1.52	2.15		-			
Modulation Mode DG (dBi)		N _{TX}	N _{ss}	STBC	Array Gain (dB)		
11a	2.15	1	1	-	-		
HT-20 1		2	1	-	-		
HT-40 1.85		2	1	-	-		
 Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = G_{ANT} + 10 log(N_{TX}) All transmit signals are completely uncorrelated, Directional Gain = G_{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain =10 log[(10^{G1/20} + + 10^{GN/20})² /N_{TX}] All transmit signals are completely uncorrelated, Directional Gain = 10 log[(10^{G1/10} + + 10^{GN/10})/N_{TX}] 							
Note 3: For Spatial Multiplexing, Directional Gain (DG) = G_{ANT} + 10 log(N_{TX}/N_{SS}), where Nss = the number of independent spatial streams data.							
Note 4: For CDD transmissions, directional gain is calculated as power spectral density measurements: Directional Gain (DG) = G _{ANT} + Array Gain, where Array Gain is as follows:							

Array Gain = $10 \log(N_{TX}/N_{SS});$

Peak Power Spectral Density Result (5150-5250MHz band)							
Cond	ition		Peak Power Spectral Density (dBm/MHz)				
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain	PSD Limit	DG (dBi)	EIRP PSD	EIRP Limit
11a	1	5180	3.31	4.00	2.15	5.46	10.00
11a	1	5200	3.01	4.00	2.15	5.16	10.00
11a	1	5240	3.15	4.00	2.15	5.30	10.00
HT-20	2	5180	3.06	4.00	4.86	7.94	10.00
HT-20	2	5200	3.02	4.00	4.86	7.98	10.00
HT-20	2	5240	3.07	4.00	4.86	8.00	10.00
HT-40	2	5190	2.19	4.00	4.86	7.13	10.00
HT-40	2	5230	1.95	4.00	4.86	6.91	10.00
Res					Complied	•	•

3.4.6 Test Result of Peak Power Spectral Density

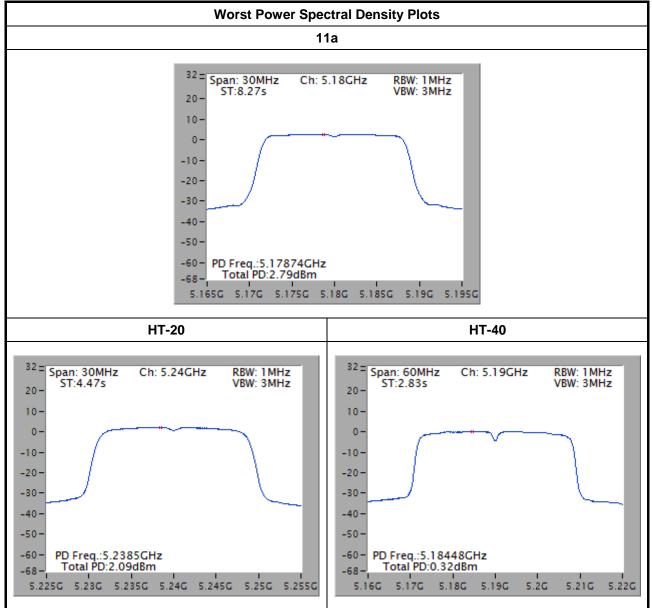
Note 1: RF Output Power Plots w/o Duty Factor

Note 2: Duty factor of each modulation is added to above relative test results

Peak Power Spectral Density Result (5250-5350MHz band)							
Cond	ition		Peak Power Spectral Density (dBm/MHz)				
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain	PSD Limit	DG (dBi)	EIRP PSD	EIRP Limit
11a	1	5260	8.87	11.00	2.15	11.02	17.00
11a	1	5300	8.68	11.00	2.15	10.83	17.00
11a	1	5320	8.79	11.00	2.15	10.94	17.00
HT-20	2	5260	10.17	11.00	4.86	15.15	17.00
HT-20	2	5300	9.50	11.00	4.86	14.46	17.00
HT-20	2	5320	9.87	11.00	4.86	14.80	17.00
HT-40	2	5270	8.23	11.00	4.86	13.17	17.00
HT-40	2	5310	4.90	11.00	4.86	9.82	17.00
Result					Complied		

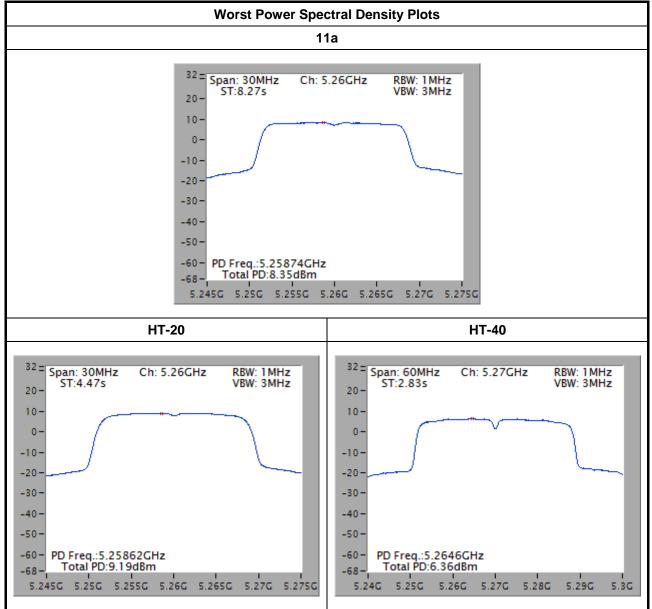
Note 1: RF Output Power Plots w/o Duty Factor

Note 2: Duty factor of each modulation is added to above relative test results

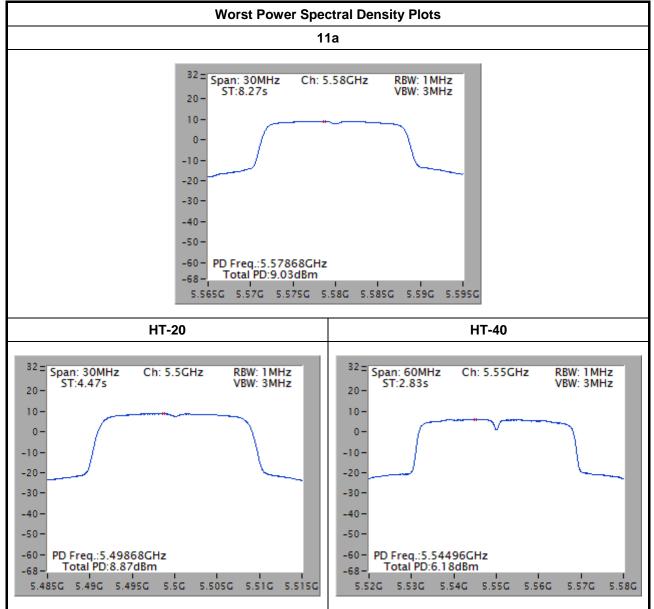


Peak Power Spectral Density Result (5470-5725MHz band)								
Cond	ition		Peak Power Spectral Density (dBm/MHz)					
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain	PSD Limit	DG (dBi)	EIRP PSD	EIRP Limit	
11a	1	5500	9.13	11.00	2.15	11.28	17.00	
11a	1	5580	9.55	11.00	2.15	11.70	17.00	
11a	1	5700	6.26	11.00	2.15	8.41	17.00	
HT-20	2	5500	9.85	11.00	4.86	14.78	17.00	
HT-20	2	5580	9.33	11.00	4.86	14.41	17.00	
HT-20	2	5700	8.59	11.00	4.86	13.55	17.00	
HT-40	2	5510	-0.46	11.00	4.86	4.47	17.00	
HT-40	2	5550	8.05	11.00	4.86	13.05	17.00	
HT-40	2	5670	6.37	11.00	4.86	11.54	17.00	
Result					Complied		•	

Note 1: RF Output Power Plots w/o Duty Factor Note 2: Duty factor of each modulation is added to above relative test results


5150-5250MHz




5250-5350MHz

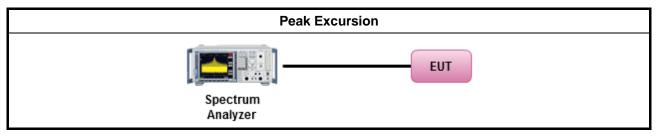
5470-5725MHz

3.5 Peak Excursion

3.5.1 Peak Excursion Limit

	Peak Excursion Limit
UN	III Devices
	Peak excursion ≤ 13 dB. The ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed 13 dB. (Earlier procedures that required computing the ratio of the two spectra at each frequency across the emission bandwidth can lead to unintended failures at band edges and will no longer be required.)
LE	-LAN Devices

🛛 N/A


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

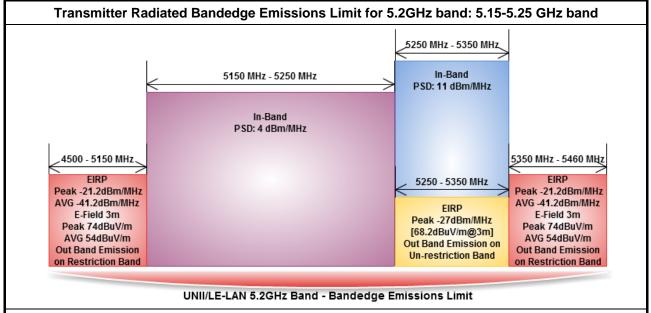
3.5.3 Test Procedures

	Test Method						
\boxtimes	Refer as FCC KDB 789033, clause F peak excursion method.						
	Testing each modulation mode on a single channel is sufficient to demonstrate compliance with the peak excursion requirement						
\boxtimes	For conducted measurement.						
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain.					
	\boxtimes	The EUT supports diversity transmitting and the results on transmit chain port 2 is the worst case.					
	\boxtimes	The EUT supports multiple transmit chains using given below method: Refer as FCC KDB 662911, when testing in-band (peak to average ratio) against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N).					
		Test result plots refer as test report clause 3.3.5 with peak excursion ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum.					

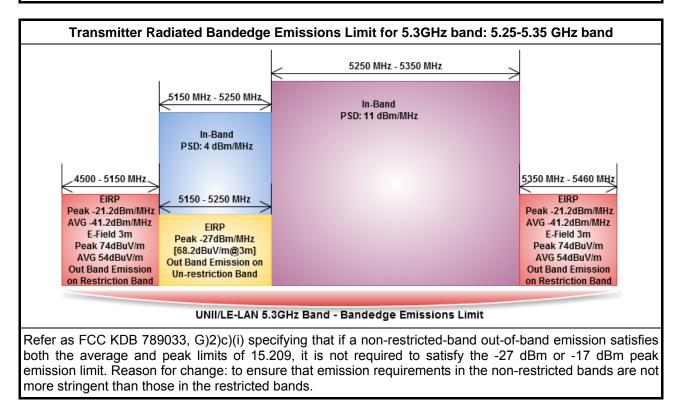
3.5.4 Test Setup

3.5.5 Test Result of Peak Excursion

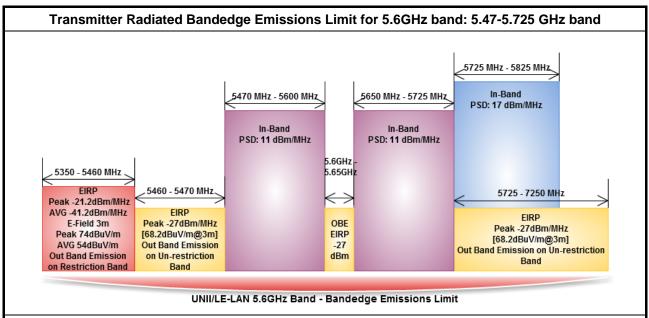
UNII Peak Excursion Result (5150-5250MHz band)							
Condition			Peak Excursion (dB)				
		Freq. (MHz)	Chain- Port 1	Chain- Port 2	Limit		
11a	1	5180	-	9.63	13.0		
HT-20	2	5180	8.92	9.47	13.0		
HT-40	2	5190	8.81	9.51	13.0		
Res	ult			Complied			

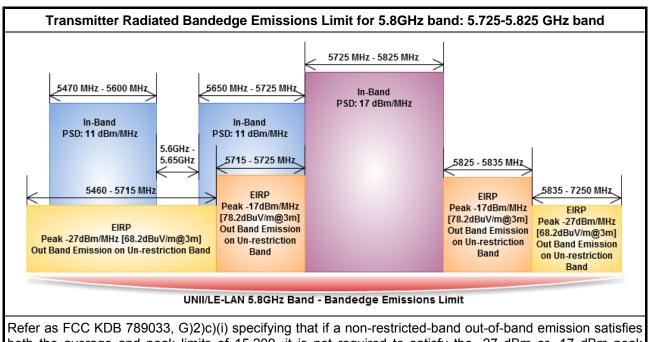

UNII Peak Excursion Result (5250-5350MHz band)							
Condition			Peak Excursion (dB)				
Modulation Mode N _{TX} Freq. (MHz)		Chain- Port 1	Chain- Port 2	Limit			
11a	1	5260	-	9.34	13.0		
HT-20	2	5260	8.72	9.45	13.0		
HT-40	2	5270	8.96	9.66	13.0		
Res	ult			Complied			

UNII Peak Excursion Result (5470-5725MHz band)							
Condition			Peak Excursion (dB)				
Modulation Mode N _{TX} Freq. (MHz)			Chain- Port 1	Chain- Port 2	Limit		
11a	1	5500	-	9.47	13.0		
HT-20	2	5500	8.91	9.57	13.0		
HT-40	2	5510	8.47	9.54	13.0		
Res	ult			Complied			



3.6 Transmitter Radiated Bandedge Emissions


3.6.1 Transmitter Radiated Bandedge Emissions Limit

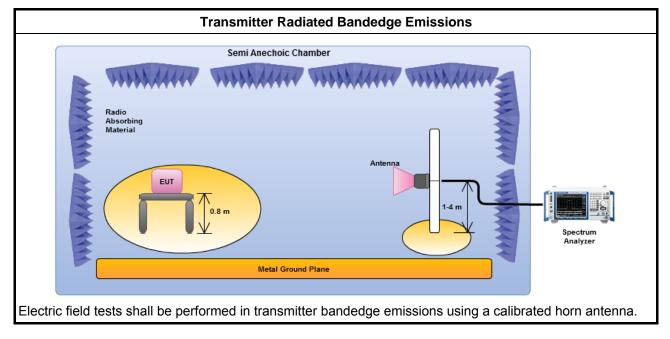

Refer as FCC KDB 789033, G)2)c)(i) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

Refer as FCC KDB 789033, G)2)c)(i) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

Refer as FCC KDB 789033, G)2)c)(I) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

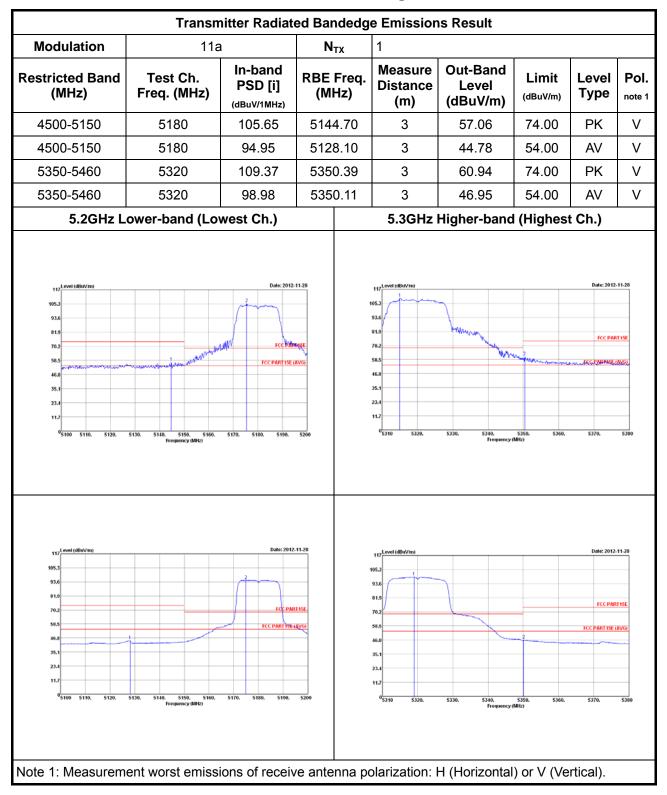
3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

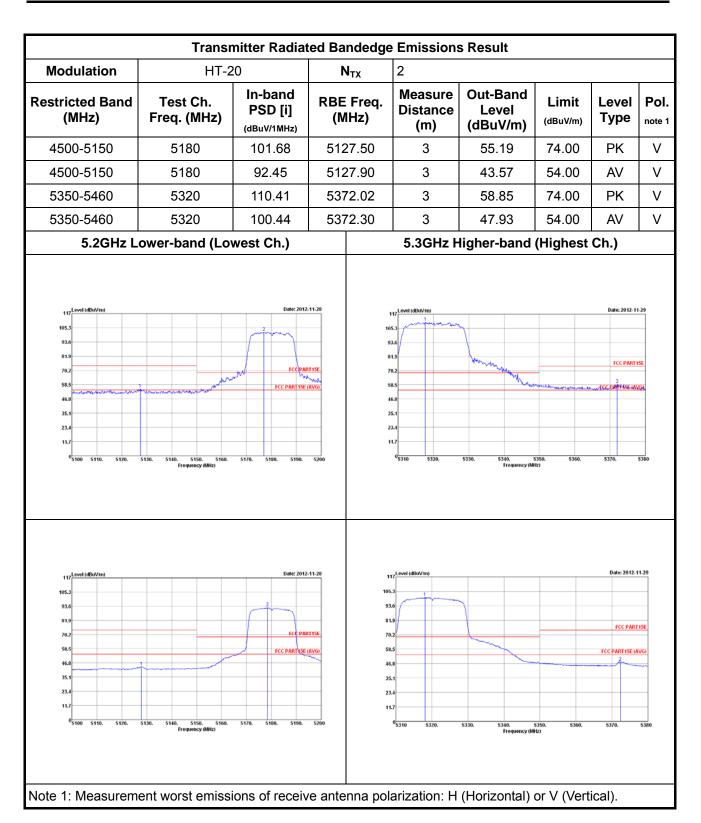


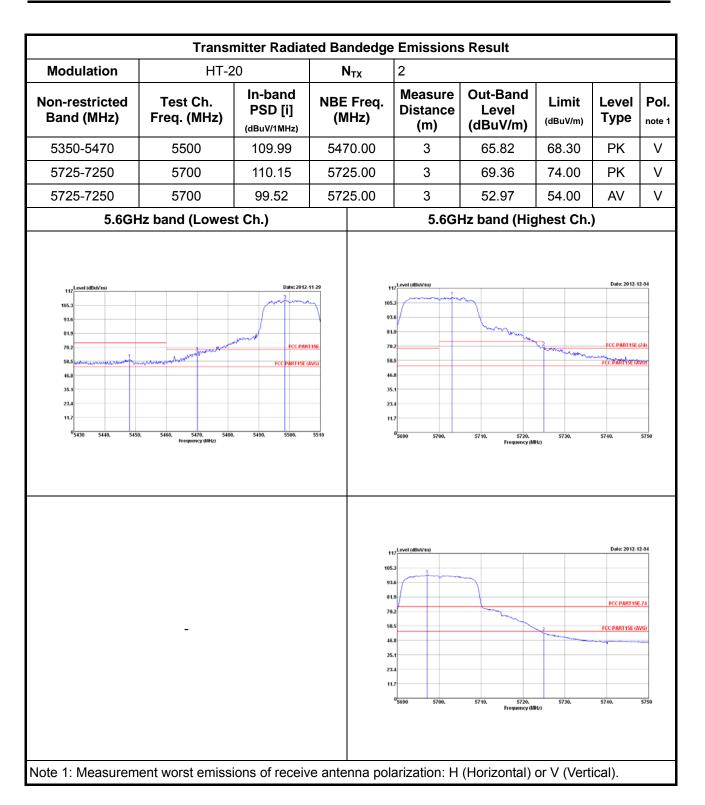
3.6.3 Test Procedures

		Test Method
	perf equi extra dista mea	asurements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement ipment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density asurements). Measurements in the bandedge are typically made at a closer distance 1m, because instrumentation noise floor is typically close to the radiated emission limit.
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency nnel and highest frequency channel within the allowed operating band.
		If EUT operate in adjacent contiguous bands, bandedge testing performed at the lowest frequency channel at lower-band and highest frequency channel at higher-band. Transmitter in-band emissions will consist of adjacent contiguous bands (e.g., IEEE 802.11ac VHT160 The lowest frequency channel at lower-band and highest frequency channel at higher-band in-band emissions will consist of two adjacent contiguous bands.)
		Operating in 5.15-5.25 GHz band (lower-band) and 5.25-5.35 GHz band (higher-band).
		Operating in 5.47-5.725 GHz band (lower-band) and 5.725-5.825 GHz band (higher-band).
		If EUT operate in individual non-contiguous bands, bandedge testing performed at the lowest frequency channel and highest frequency channel within lower-band and higher-band. (e.g., (e.g., IEEE 802.11ac VHT160)
		Operating in 5.25-5.35 GHz band (lower-band) and 5.47-5.725 GHz band (higher-band).
		Operating in 5.15-5.25 GHz band (lower-band) and 5.725-5.825 GHz band (higher-band).
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
		\boxtimes Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) - Duty cycle ≥ 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.
\square	For	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 789033, clause G)3)d) marker-delta method for band-edge measurements.
	\square	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.
\boxtimes	For	radiated measurement, refer as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.

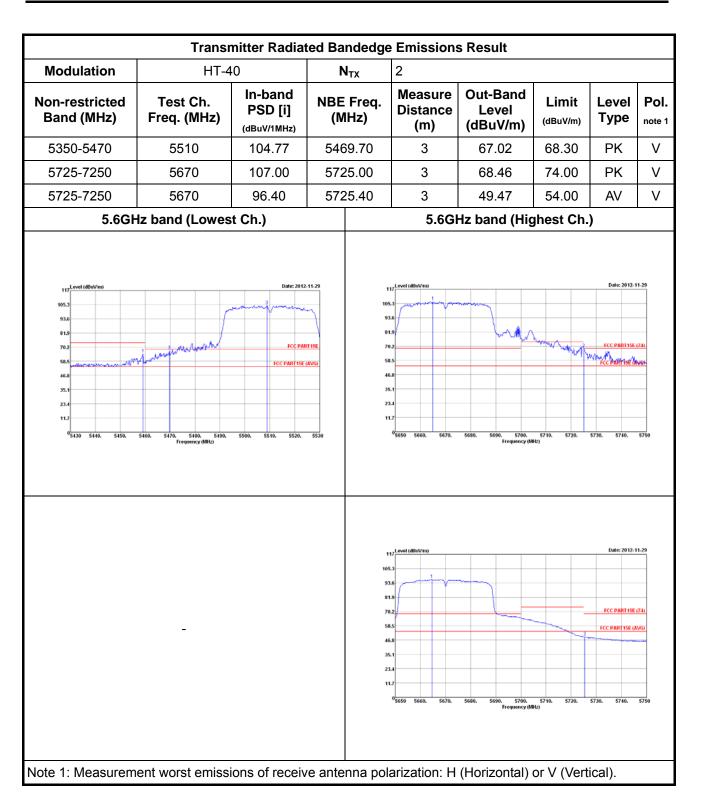


3.6.4 Test Setup


3.6.5 Test Result of Transmitter Radiated Bandedge Emissions



Modulation	11a	1	N _{TX}	1				
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	NBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Po note
5350-5470	5500	0 110.32 54		3	66.42	74.00	PK	V
5350-5470	5500	99.56	5469.44	3	51.81	54.00	AV	V
5725-7250	5700	106.78	5725.00	3	68.08	74.00	PK	V
5725-7250	5700	96.72	5725.00	3	52.46	54.00	AV	V
5.6G	Hz band (Lowes	t Ch.)		5.60	Hz band (Hi	ghest Ch	.)	
25.1 23.4 11.7 0 5430 5440. 54	50. 5460. 5470. 5480 Frequency (MRz)	5490. 5500.	5510	25.1 23.4 11.7 05690 5700.	5710. 5720. Frequency	5730.	5740.	5750
117 Level (@ht/tm) 105.3		Date: 2012- 2 FCC PART 15E FCC PART 15E ()		117 Level (dBh/m) 105.3 33.6 54.5			Dute: 2012	E (74).
46.8 35.1 23.4				11.7				



Modulation	HT-4	0	N _{TX} RBE Freq. (MHz)		2				
estricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)			Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Po note
4500-5150	5190	102.92	514	14.55	3	64.85	74.00	PK	V
4500-5150	5190	93.01	515	50.00	3	52.39	54.00	AV	V
5350-5460	5310	105.00	535	53.45	3	65.75	74.00	PK	V
5350-5460	5310	94.10	535	50.93	3	52.90	54.00	AV	V
5.2GHz L	ower-band (Lov	west Ch.)			5.3GHz H	ligher-band	(Hiahest	Ch.)	
117Level (dBuV/m)		Date: 2012-	11-28	11	7 Level (dBuV/m)	1		Date: 2012-1	1-29
93.6		munipum	7	93.	And a start of the	many			
81.9				81	e			FCC PART	15E
70.2	worthan	FCC PAR		70.		- m	man manon		
58.5 46.8	white	FCC PART 15E (AVG)	58.				W-RCOPARTISE IN	VG
35.1				35					
23.4			_	23	4				
11.7			_	11.	7				_
							Hz)		
							1(2)		
117 ^{Level} (dBuV m)		Date: 2012	2.11.28	11	7 Level (dDuV m)			Date: 2012.1	1.29
117Level (dBr/Vm) 105.3		Date: 2012	2.11.28	105	3			Date: 2012.1	1.29
93.6		Date: 2012	2.11.28	105. 93.	3			Date: 2012.1	1.29
105.3 93.6 81.9		Date: 2012	~	105	3 6 9			Date: 2012-1	
93.6		FCC PA	RT 15E	105. 93. 81.	3 6 9 2				<u>15E</u>
105.3 93.6 81.9 70.2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RT 15E	105. 93. 81. 70.	3 6 9 2 5			FCC PART	<u>15E</u>
105.3 93.6 81.9 70.2 58.5		FCC PA	RT 15E	105 93 81 70 58				FCC PART	<u>15E</u>
105.3 93.6 81.9 70.2 58.5 46.8 35.1 23.4		FCC PA	RT 15E	105. 93. 81. 70. 58. 46. 35. 23.				FCC PART	<u>15E</u>
105.3 93.6 81.9 70.2 58.5 46.8 35.1 23.4 11.7		FCC PARTISE	RT ISE (AVG)	105 93 81 70 58 46 35 23 23				FCC PART	15E
105.3 93.6 81.9 70.2 58.5 46.8 35.1 23.4 11.7	130. 5150. 51. Frequency (MIL)	FCC PARTISE	RT 15E	105 93 81 70 58 46 35 23 23		5320, 5330, 5: Frequency (M	40. 5350. 5.	FCC PART	<u>15E</u>
105.3 93.6 81.9 70.2 58.5 46.8 35.1 23.4 11.7	30. 5150. 51 Frequency (MHz)	FCC PARTISE	RT ISE (AVG)	105 93 81 70 58 46 35 23 23			40. 5350. 5.	FCC PART FCC PARTISE (A	15E

3.7 Transmitter Radiated Unwanted Emissions

3.7.1 Transmitter Radiated Unwanted Emissions Limit

Unwanted emissions below 1 GHz and restricted band emissions above 1GHz limit						
Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
2400/F(kHz)	48.5 - 13.8	300				
24000/F(kHz)	33.8 - 23	30				
30	29	30				
100	40	3				
150	43.5	3				
200	46	3				
500	54	3				
	Field Strength (uV/m) 2400/F(kHz) 24000/F(kHz) 30 100 150 200	Field Strength (uV/m) Field Strength (dBuV/m) 2400/F(kHz) 48.5 - 13.8 24000/F(kHz) 33.8 - 23 30 29 100 40 150 43.5 200 46				

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

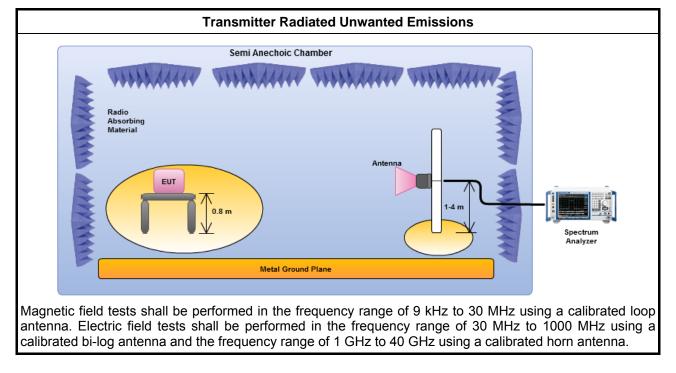
Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

	Un-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]
performed in the r equipment. When be extrapolated to	ay be performed at a distance other than the limit distance provided they are not lear field and the emissions to be measured can be detected by the measurement performing measurements at a distance other than that specified, the results shale the specified distance using an extrapolation factor of 20 dB/decade (inverse of field-strength measurements, inverse of linear distance-squared for power-density

3.7.2 Measuring Instruments

measurements).

Refer a test equipment and calibration data table in this test report.



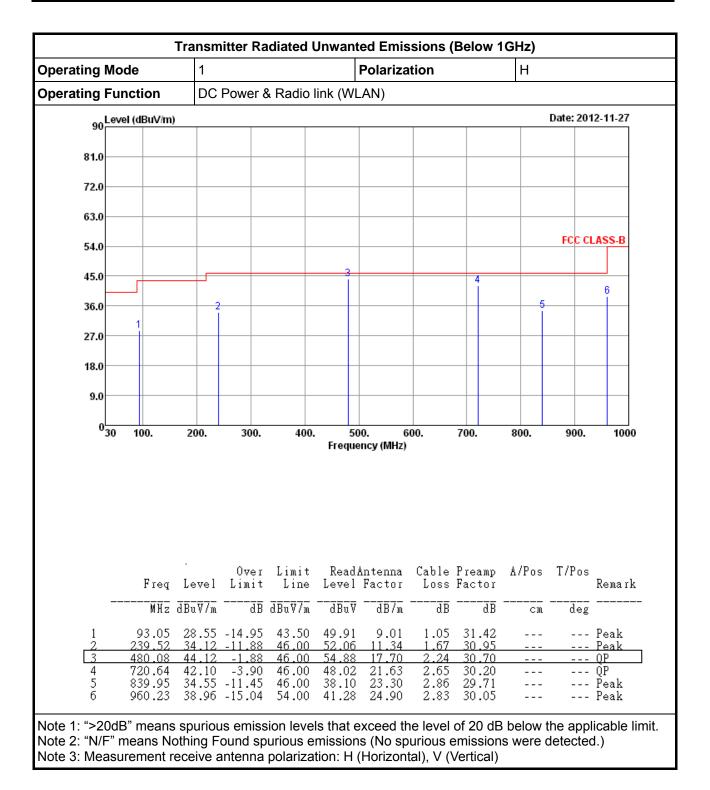
3.7.3 Test Procedures

		Test Method
\boxtimes	perfe equi abov are i be e dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. Measurements shall not be performed at a distance greater than 30 m for frequencies /e 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less mpractical. When performing measurements at a distance other than that specified, the results shall xtrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density surements).
		Measurements in the frequency range 5 GHz - 10GHz are typically made at a closer distance 1.5m, because the instrumentation noise floor is typically close to the radiated emission limit.
		Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.
		Measurements in the frequency range above 18 GHz - 40GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.
\bowtie	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	\square	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty \geq 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.
\square	For	radiated measurement.
	\square	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz.
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz.
	\boxtimes	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz.

3.7.4 Test Setup

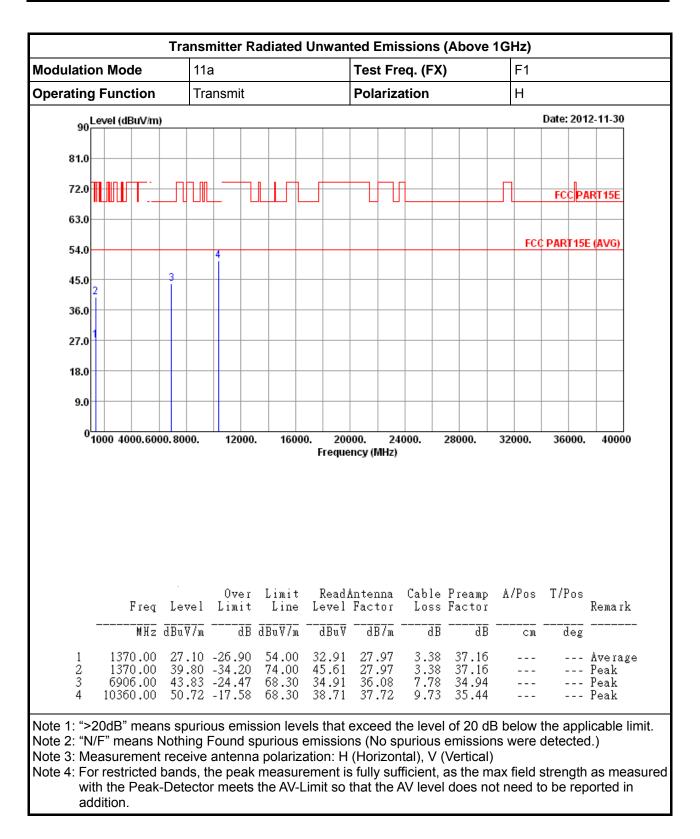
3.7.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.



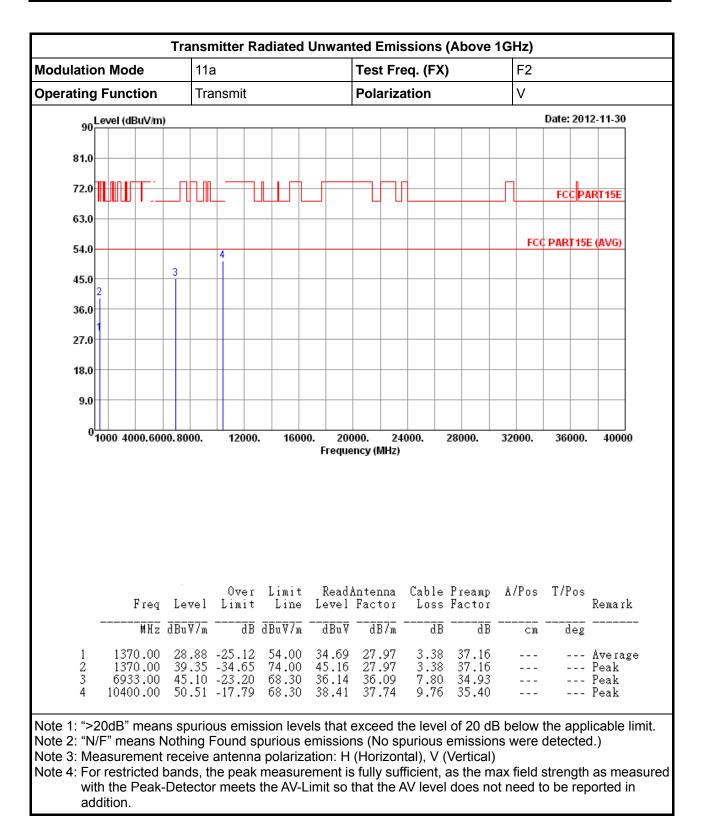
erating Mode	1				Polariza	tion		V		
erating Function	DC	Power &	& Radio	link (W	LAN)					
90 90	1)								Date: 201	2-11-27
81.0										
72.0										
63.0										
54.0									FCC CI	ASS-B
45.0				2			4			6
36.0						3		5		
18.0										
9.0										
0 <mark>30 100.</mark>	200.	300.	400.			500.	700.	800.	900.	1000
0 <mark>11 </mark> 30 100.	200.	300.	400.	Frequ	ency (MHz)				900.	1000
	200. Level	300. Over Limit		Frequ Read		Cable			900. T/Pos	1000 Remark
Freq		Over Limit	Limit	Frequ Read	ency (MHz) Åntenna Factor	Cable	Preamp			

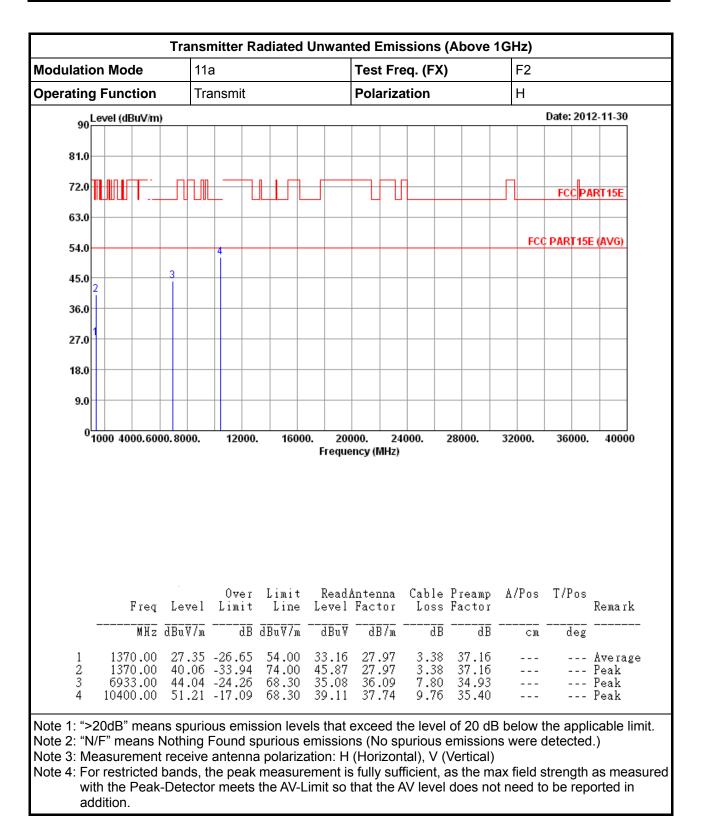
3.7.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

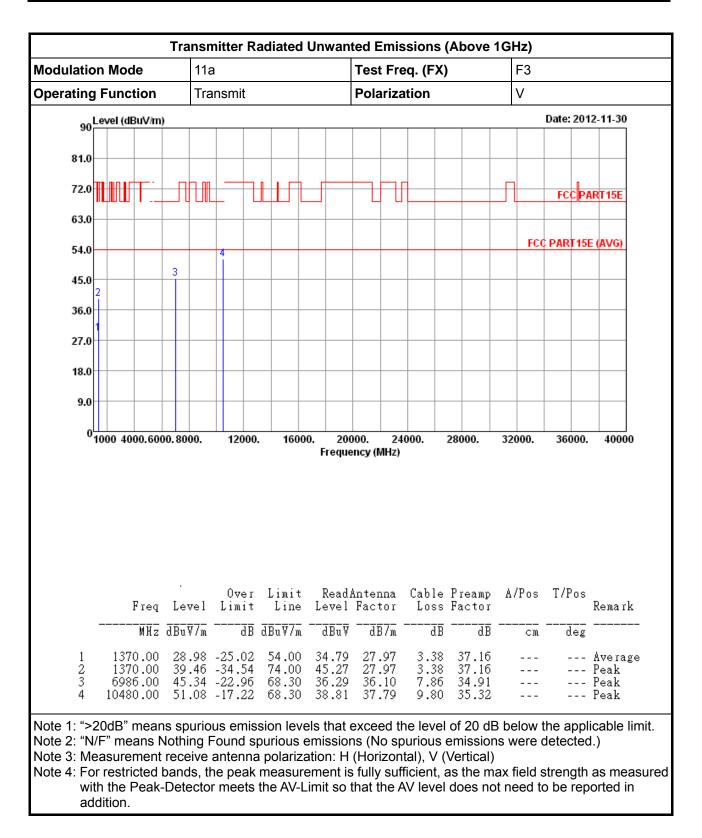


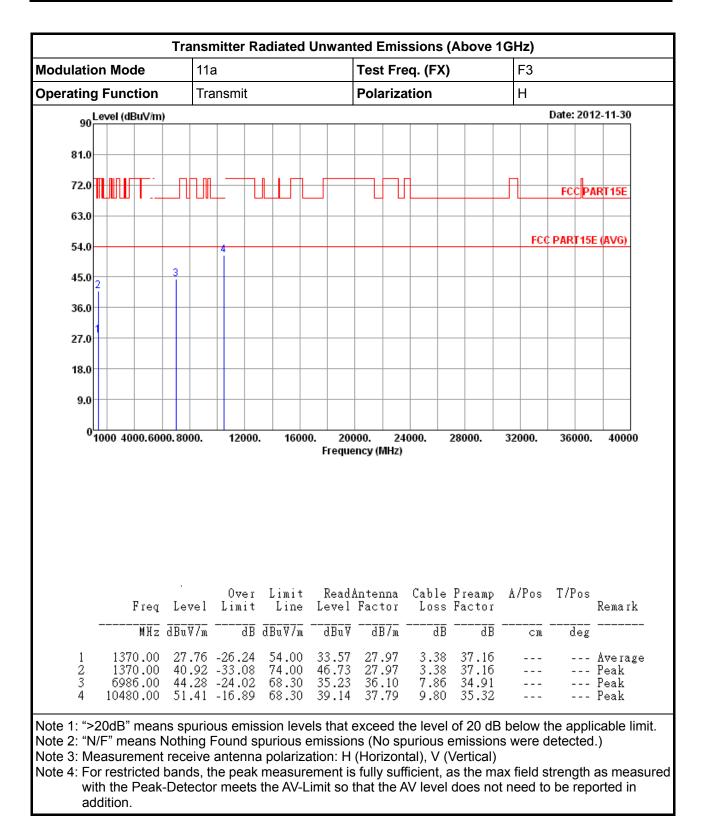
	11	а			Test Fr	eq. (FX)	F1			
perating Function	Tra	ansmit			Polariz	ation		V			
90 Level (dBuV/m)									Date	2012	2-11-30
90											
81.0											
72.0									- EC	c DA	RT15E
		+	└╜└┼┸╌┘╎└							C PA	NIISE
63.0											
54.0		4						F(C PAR	115E	(AVG)
45.0	3								_		
36.0											
1											
27.0											
18.0											
9.0											
										1	
0 1000 4000.6000	0. 8000.	1200	0. 1600		00. 24 ncy (MHz)	000.	28000.	32000.	36	000.	40000
	0.8000. Level	0 ve i	Limit	Freque Read	ncy (MHz)	Cable	Preamp			Pos	40000
Freq		Over Limit	Limit	Freque Read	ncy (MHz) Intenna	Cable	Preamp		5 T/H	Pos	
Freq	Level dBuV/m 28.45 39.21	Over Limit	Limit Line dBuV7m 54.00 74.00	Freque Read/ Level	n cy (MHz) Intenna Factor	Cable Loss	Preamp Factor	A/Pos	s T/F	Pos	

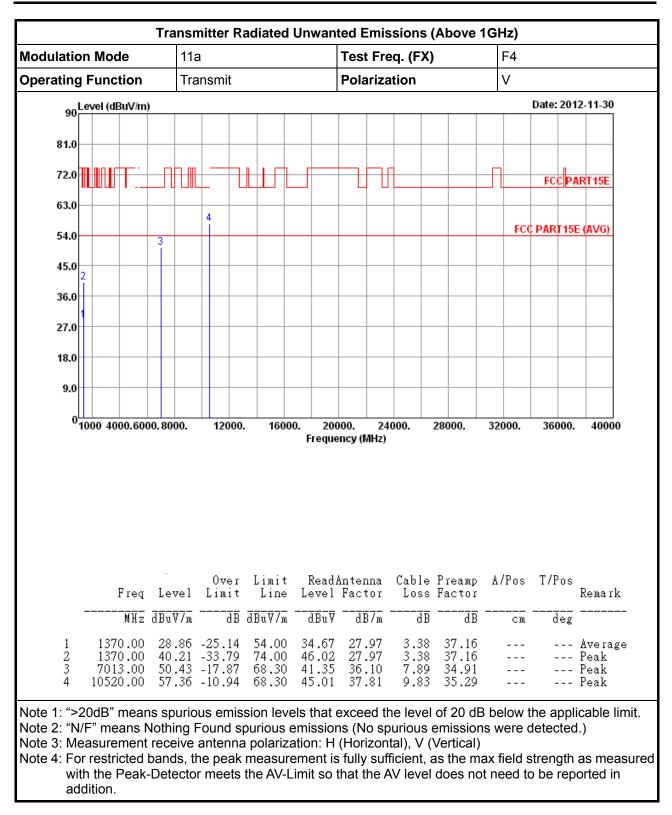
3.7.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

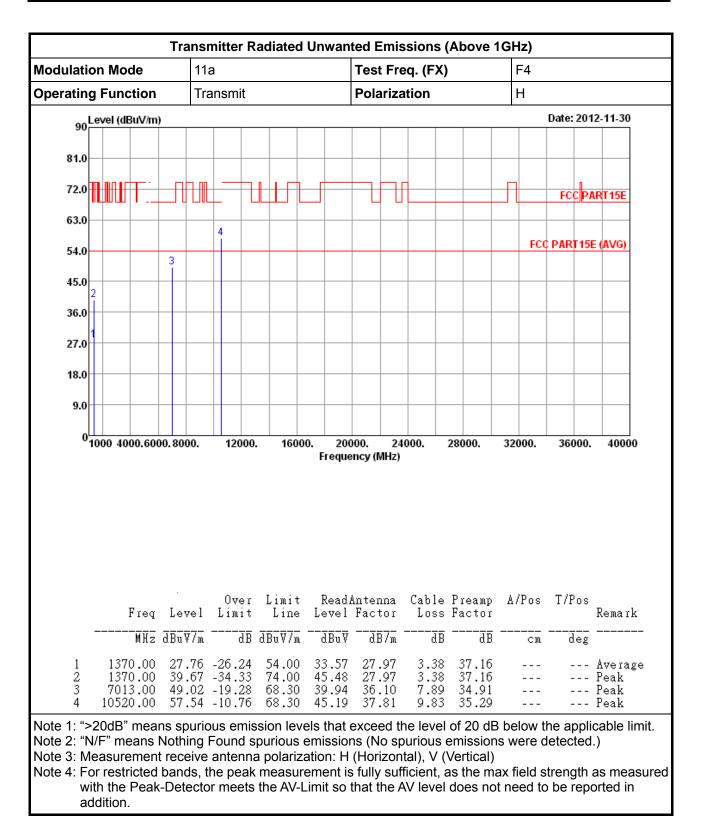




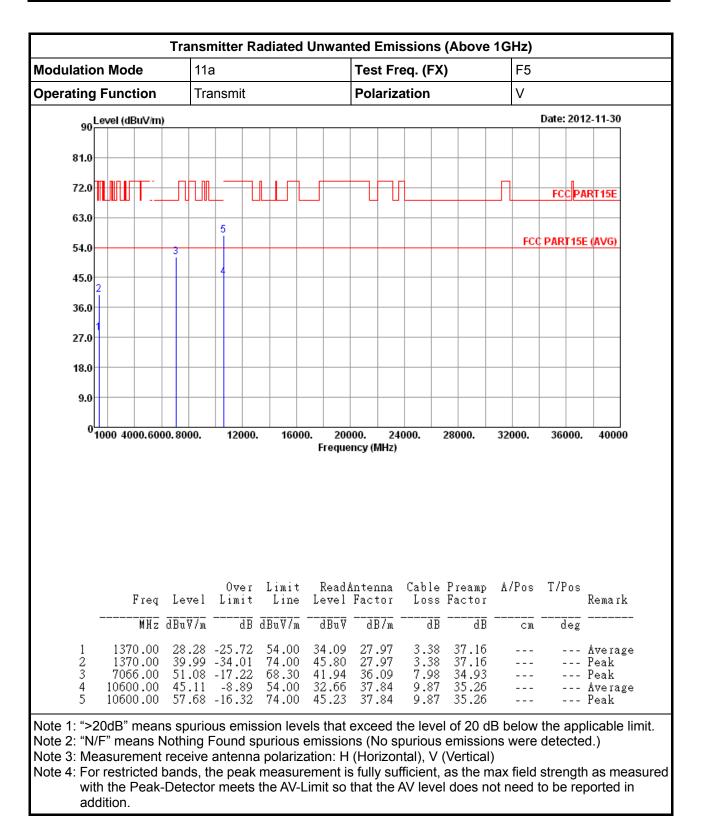


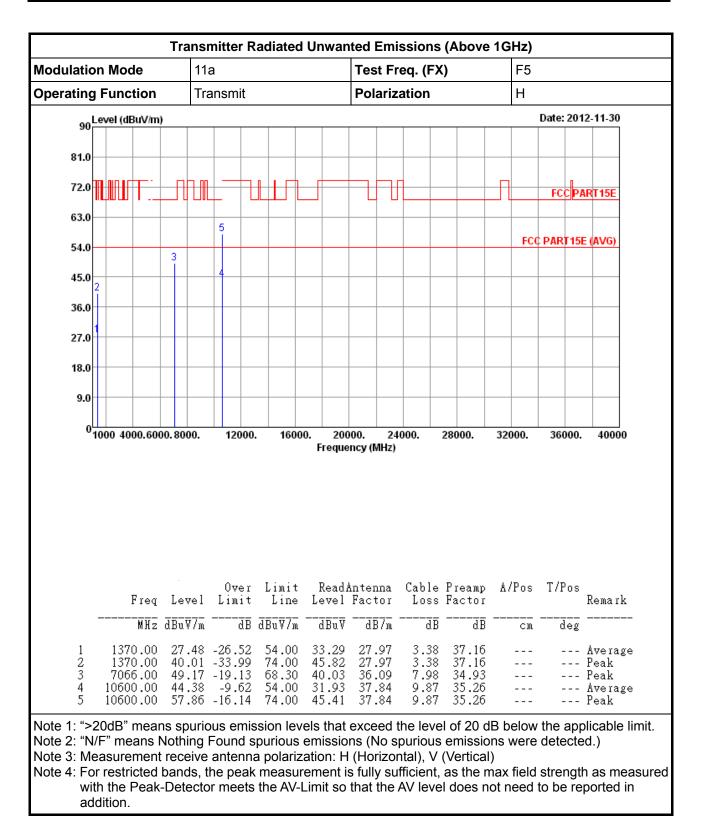


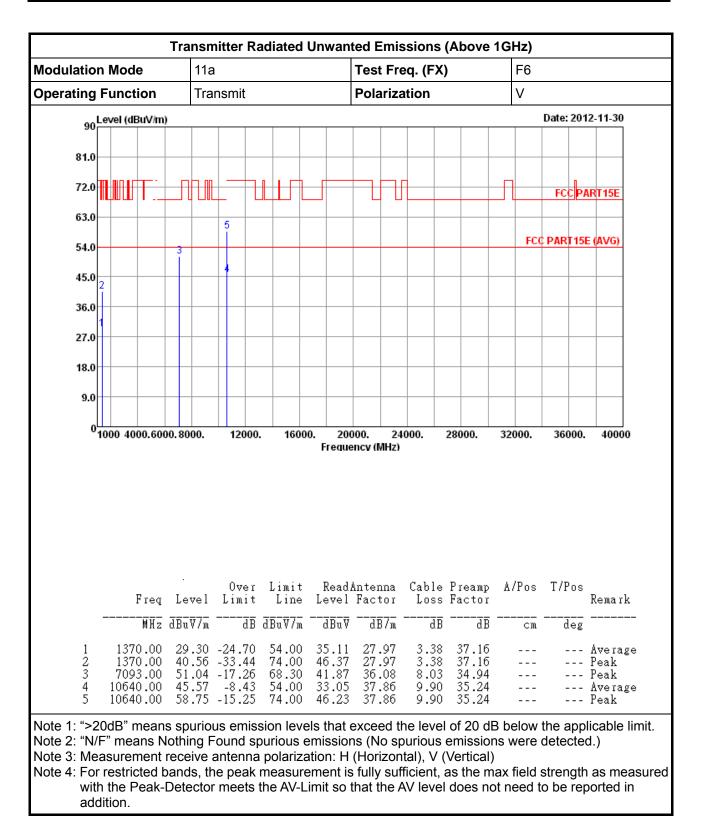


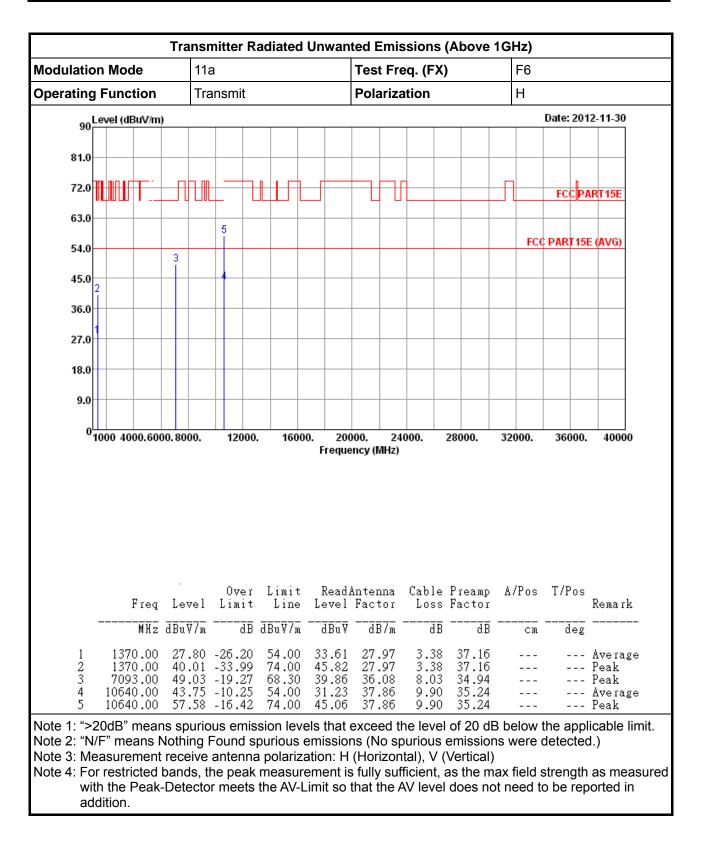


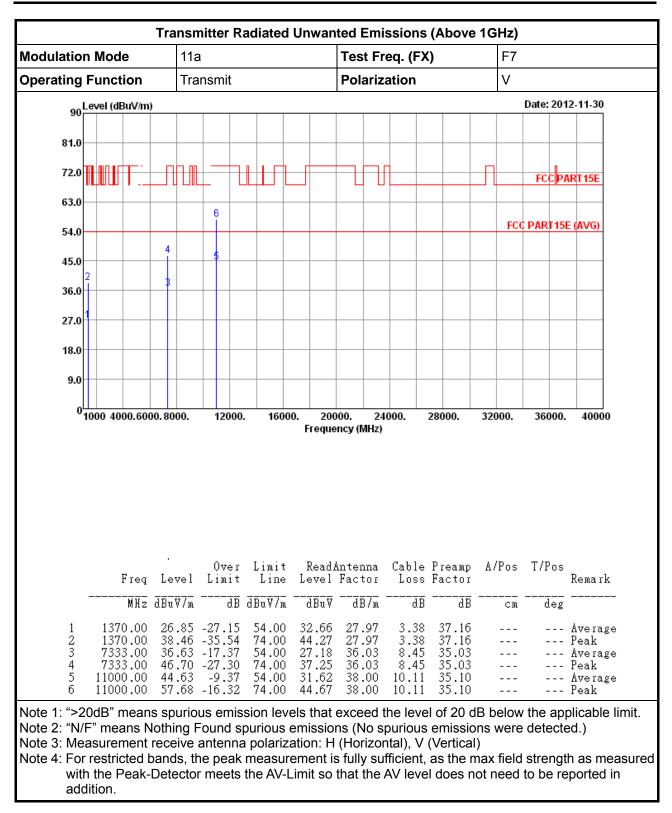
Report No. : FR2N2717-01AN

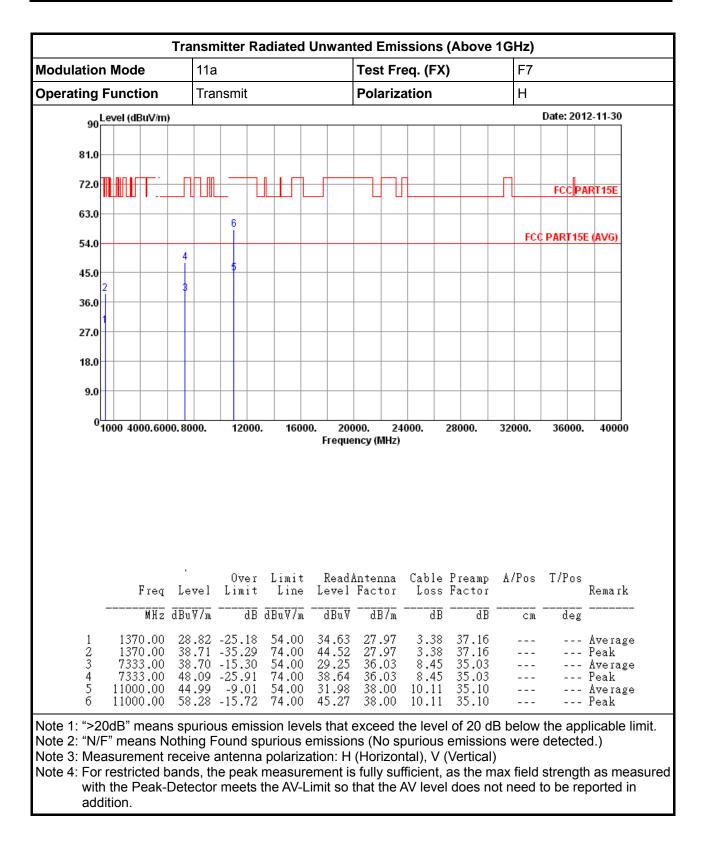


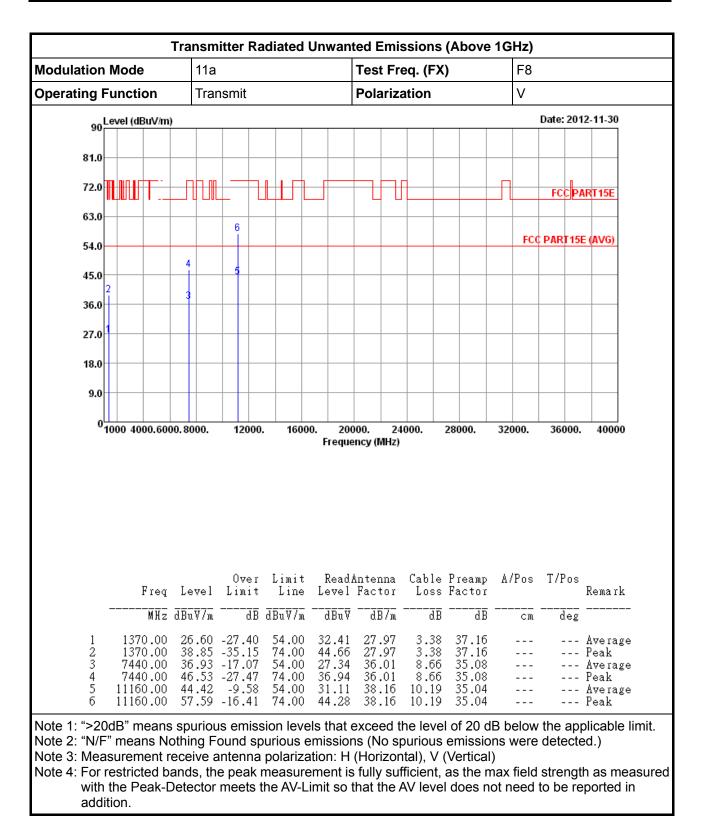


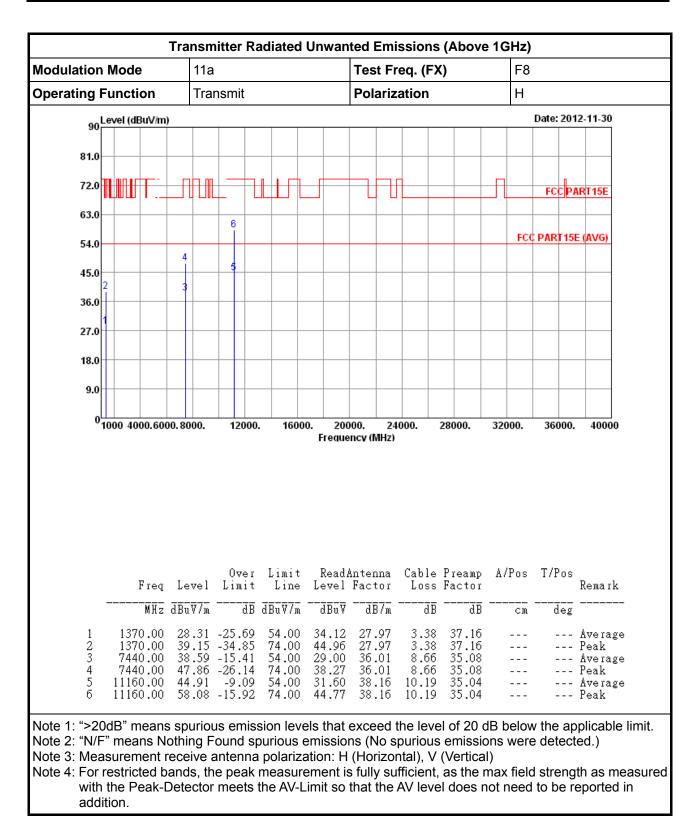


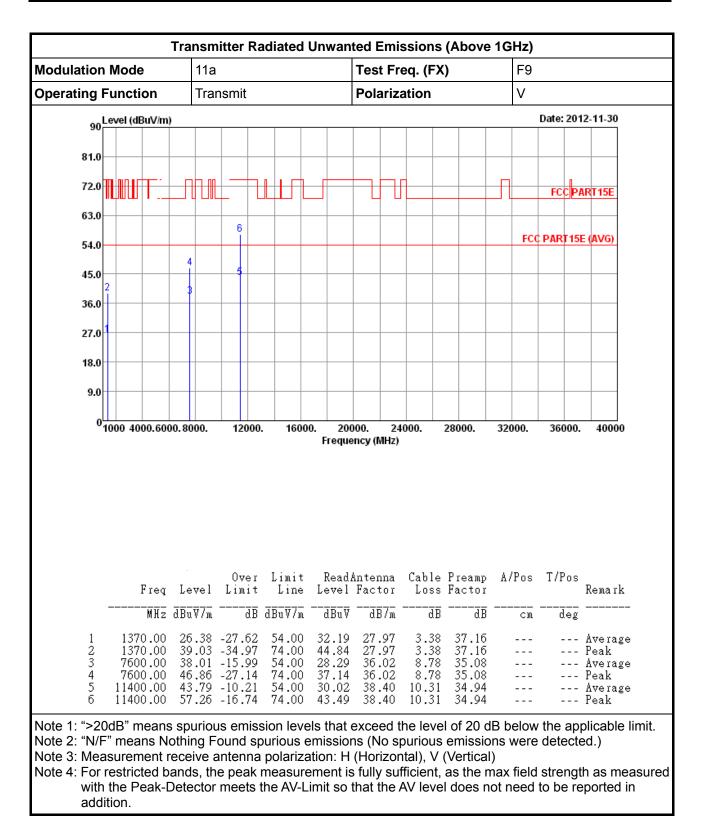


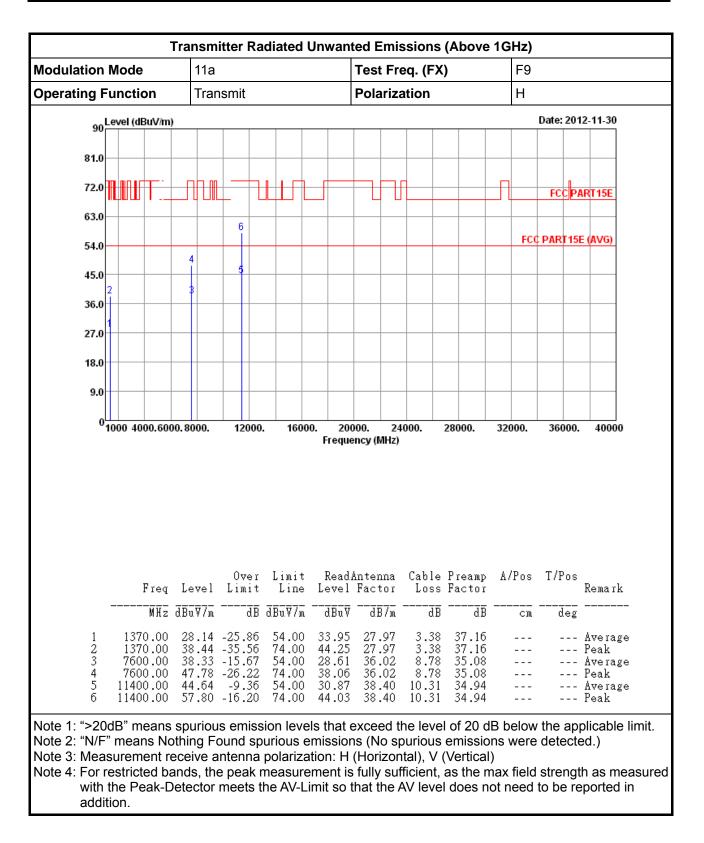


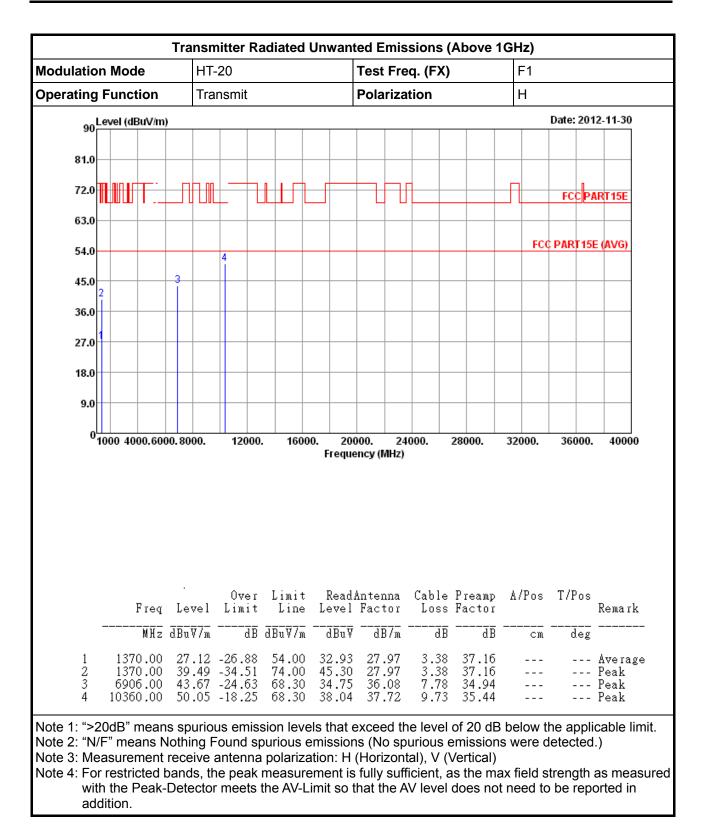




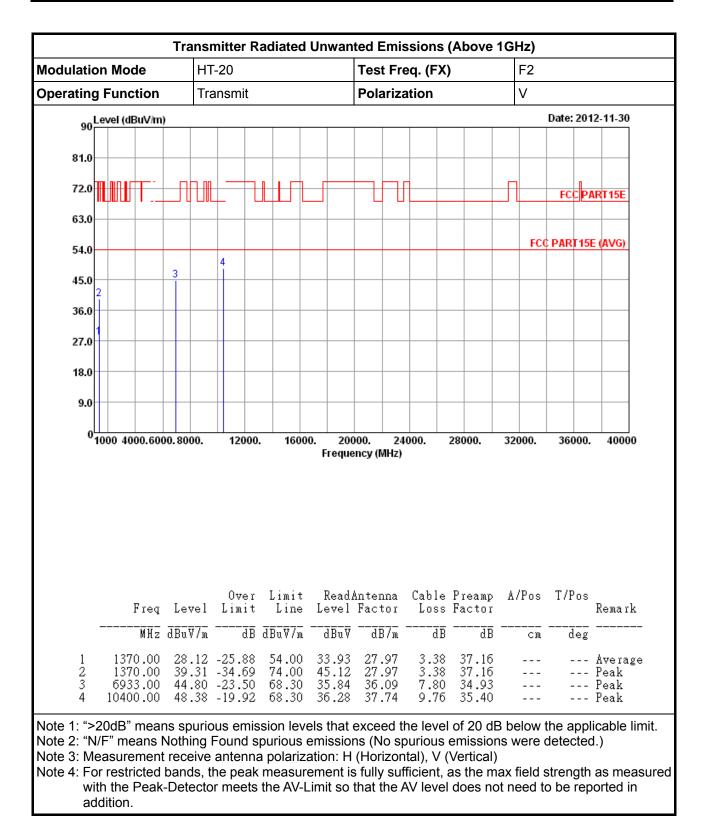


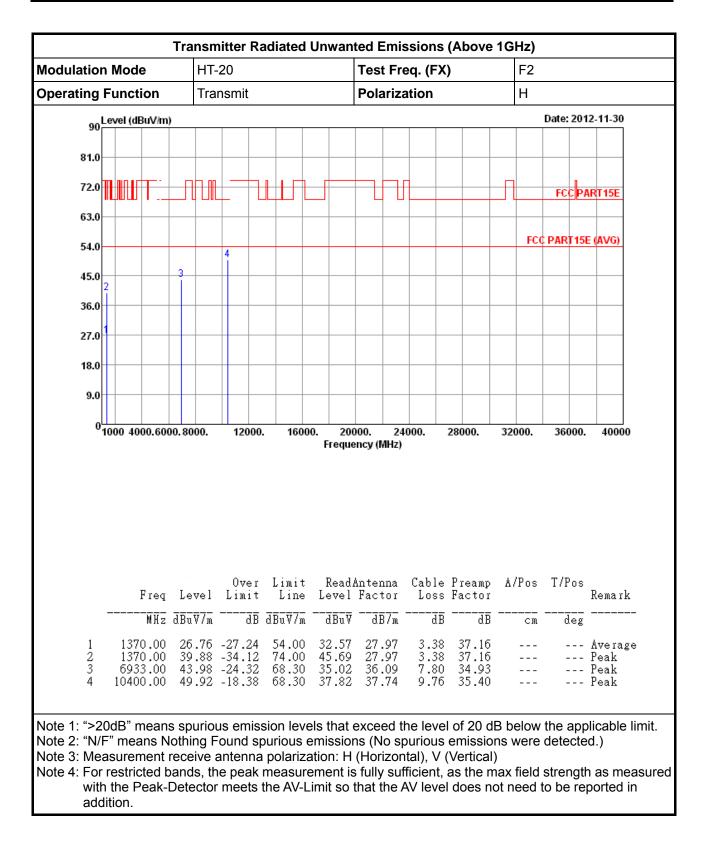


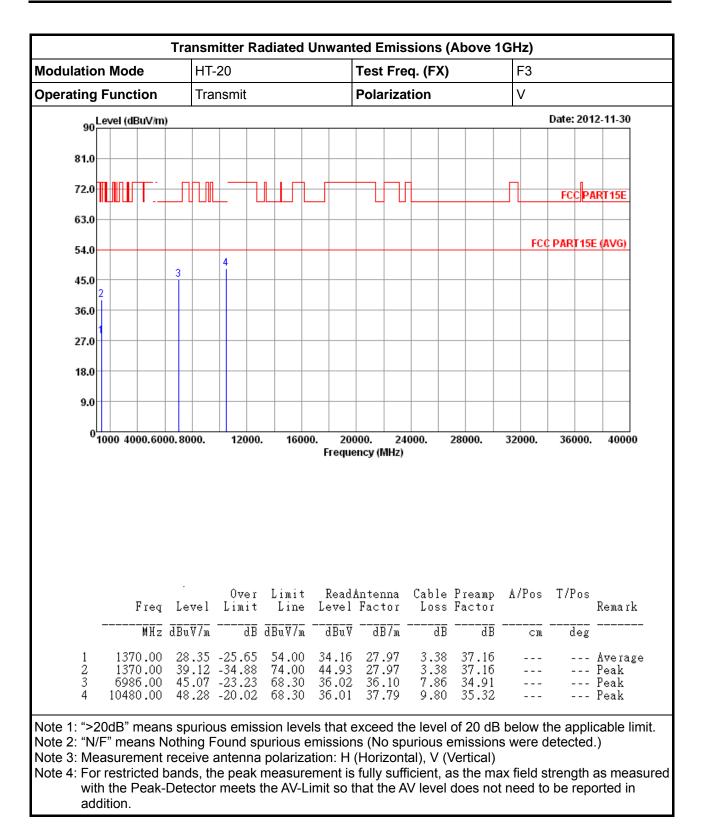


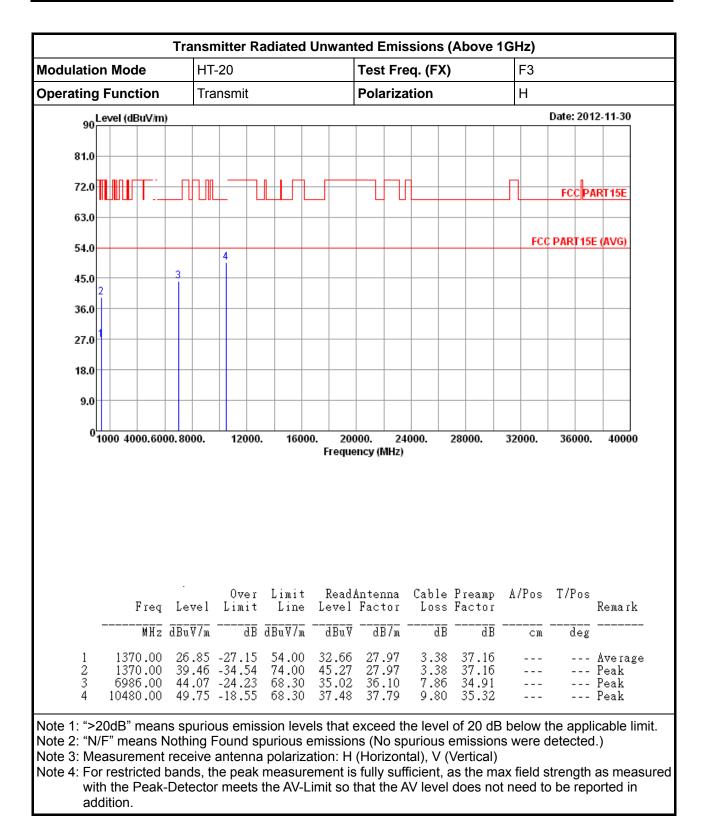


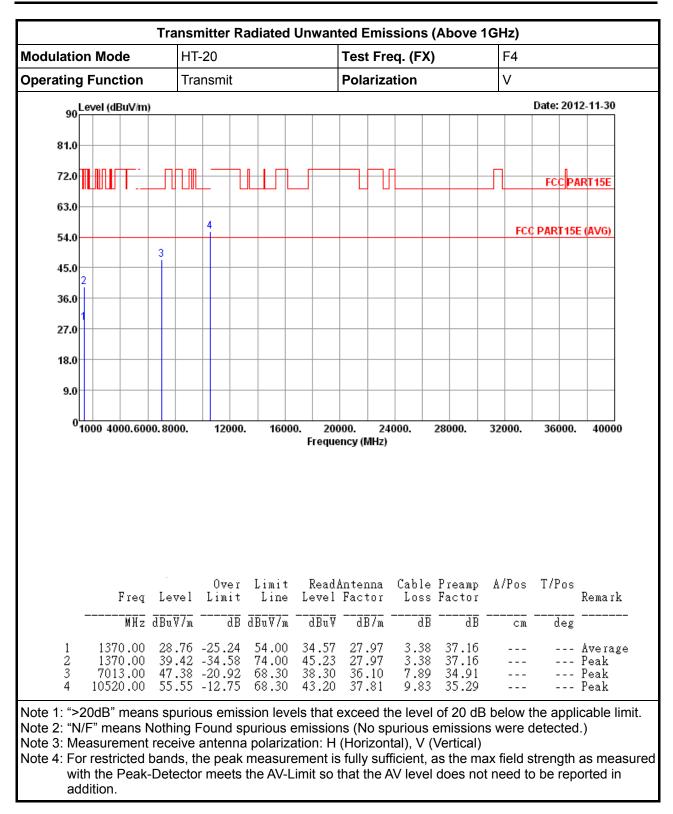
porating Eurotics	odulation Mode HT-20						Test	Fre	q. (FX	()		F	=1			
Operating Function	Ti	Transmit					Polarization				١	V				
90 90)											Date: 2012-11-30				
81.0																
72.0				łF	}									FC		रा 15E
63.0																
54.0													FCC	PAR	F15E	(AVG)
54.0	3	4														
45.0 2	Ť															
36.0																
27.0										_						
18.0																
9.0																
9.0																
01000 4000.600	00. 8000.	120	000.	160)00. :ncy (N)00.	280	00.	320)00.	360)00.	40000
		0.44	ər I	Limit	F	reque Read <i>i</i>	ncy (M	IHZ)	Cable	e Pre	amp					40000
Freq	Leve	Ova l Lim	er I it	Limi† Line	F t I è Le	reque Read <i>i</i>	incy (N Anten Fact	nna or	Cable Loss	e Pro	eamp ctor				os	40000
Freq	Leve dBuV/	Ova l Lim	∍r I it ∃B dI	Limit	F t] è L∉ n c	reque Read <i>i</i>	incy (N Anten Fact	IHZ)	Cable	e Pro	amp			т/Р	os	

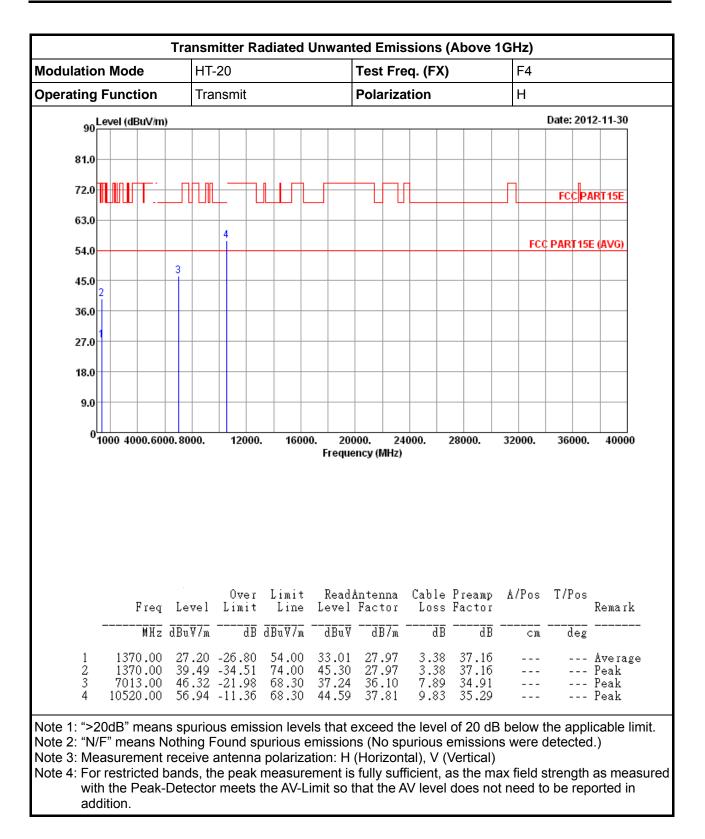

3.7.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT-20

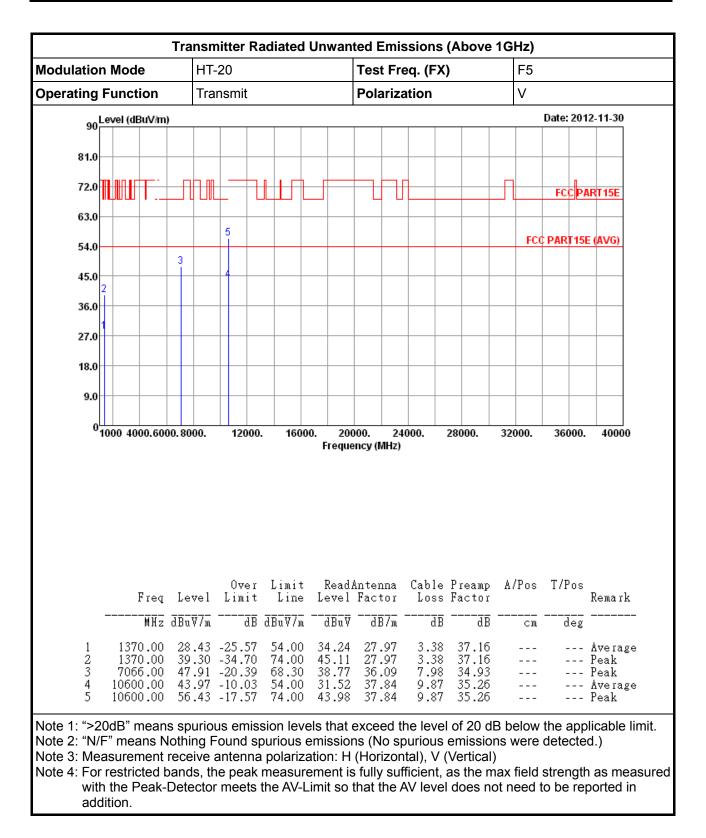


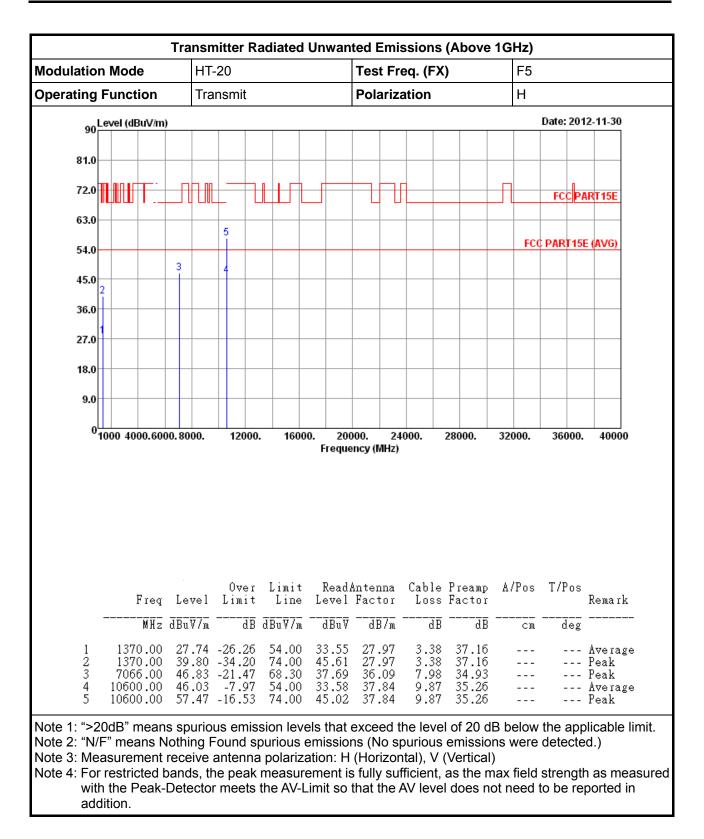


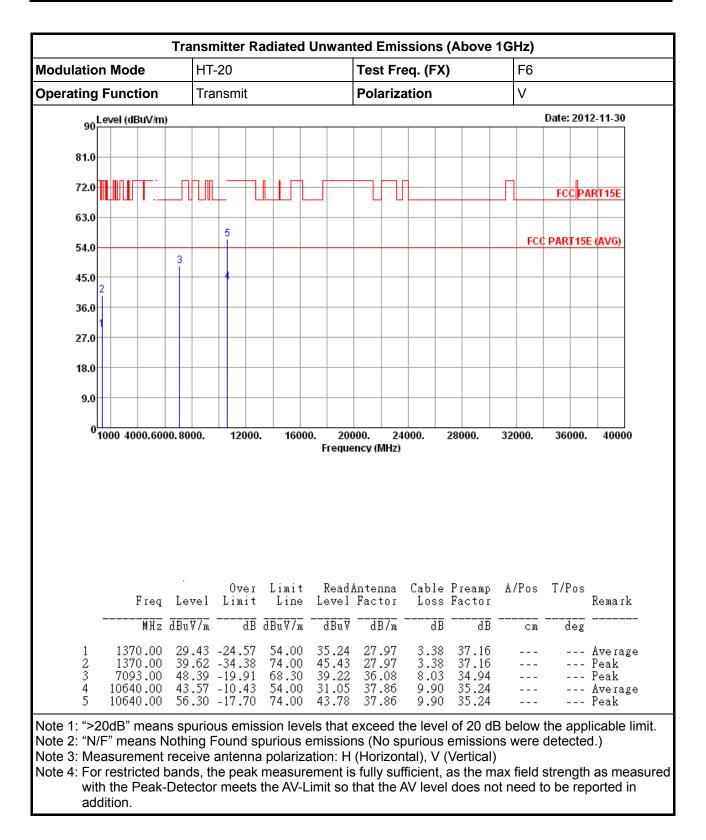


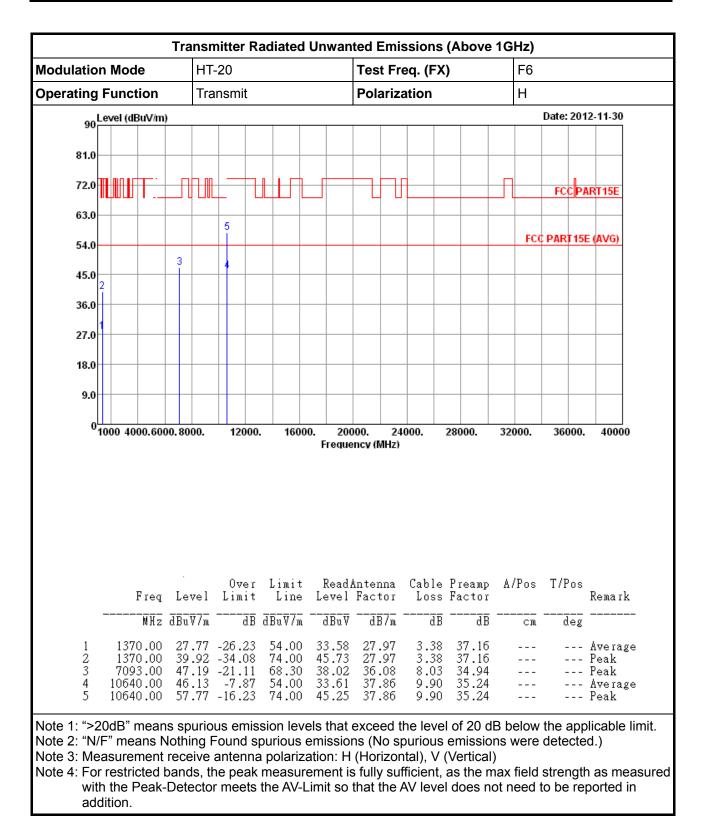


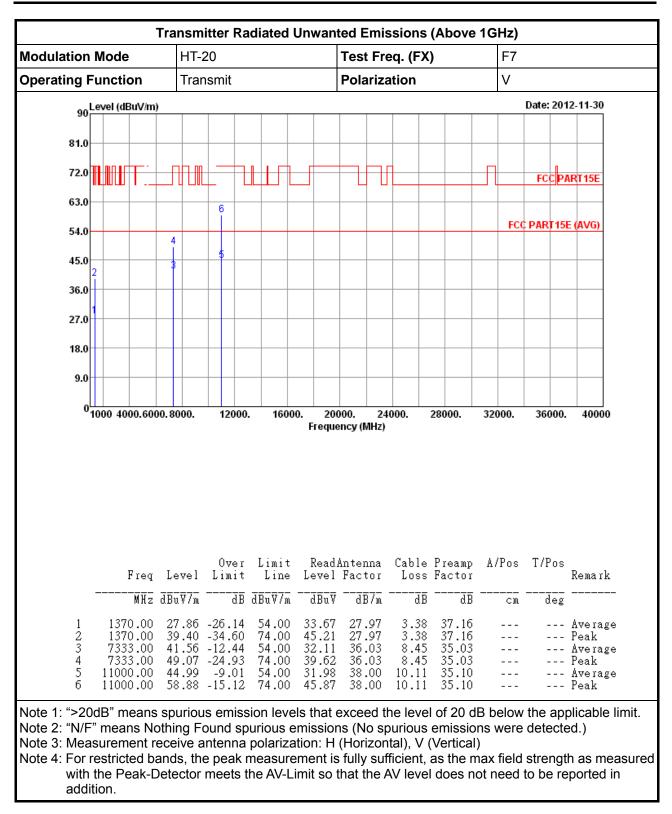


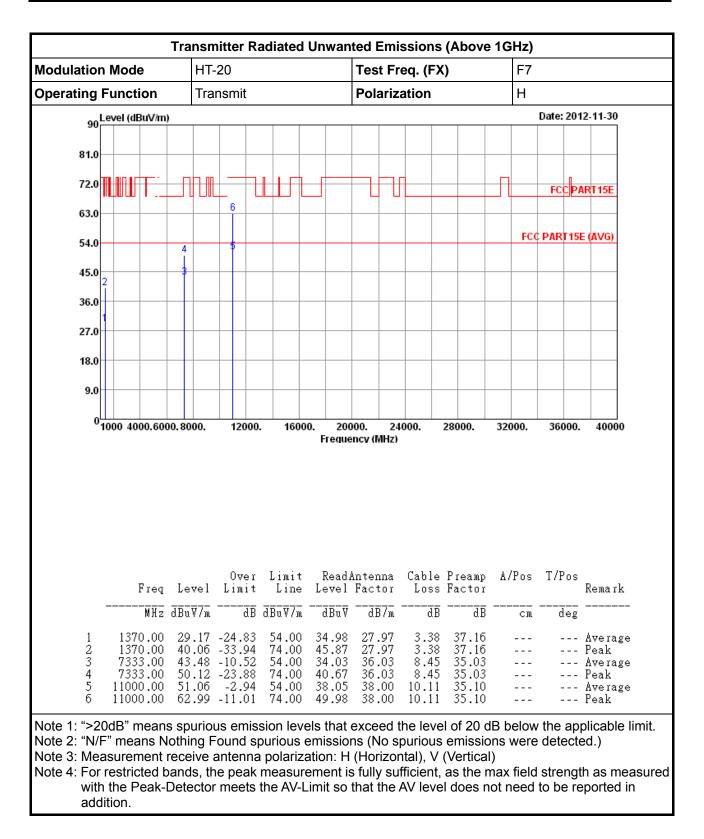


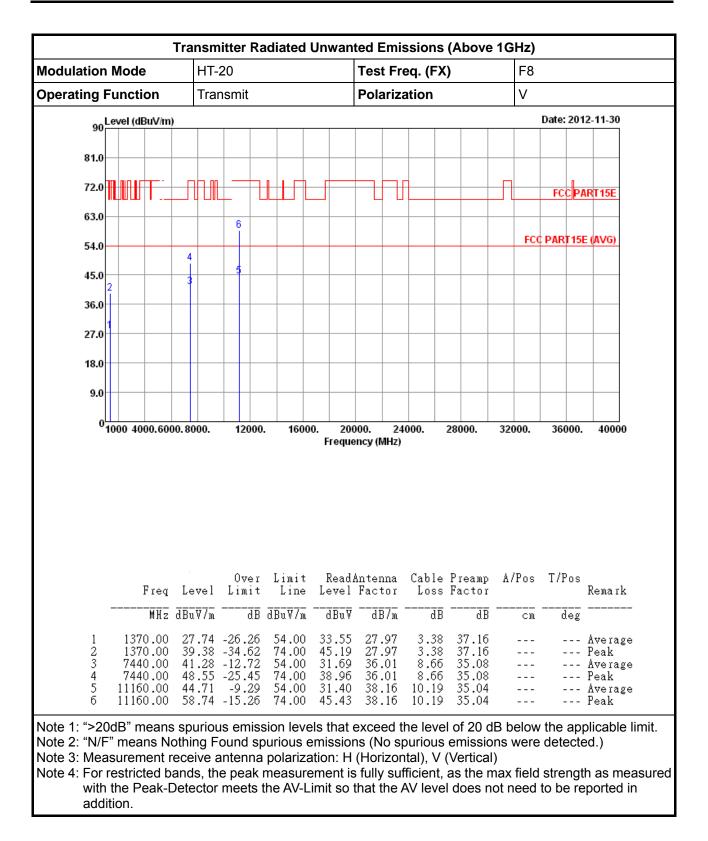


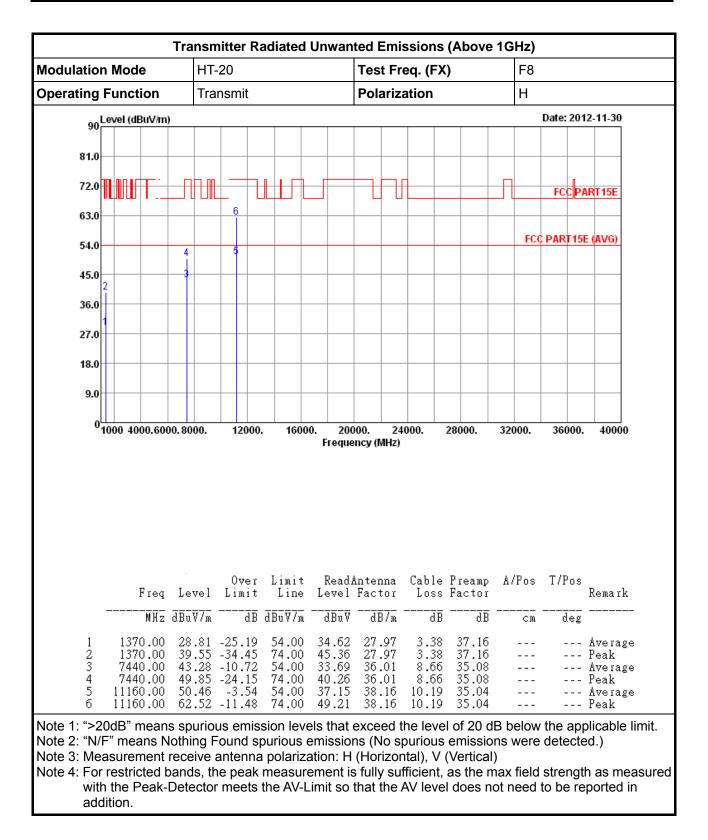


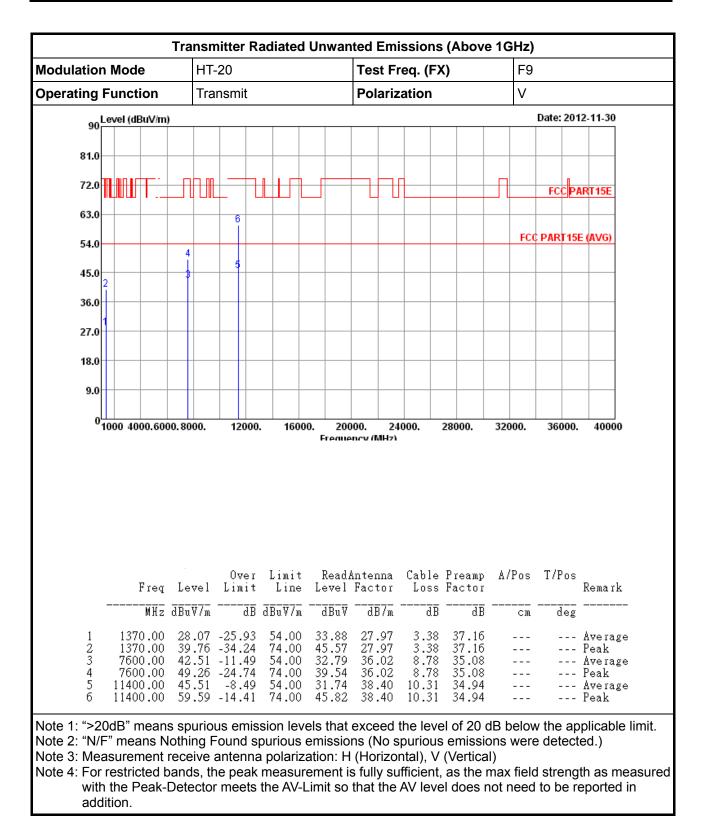


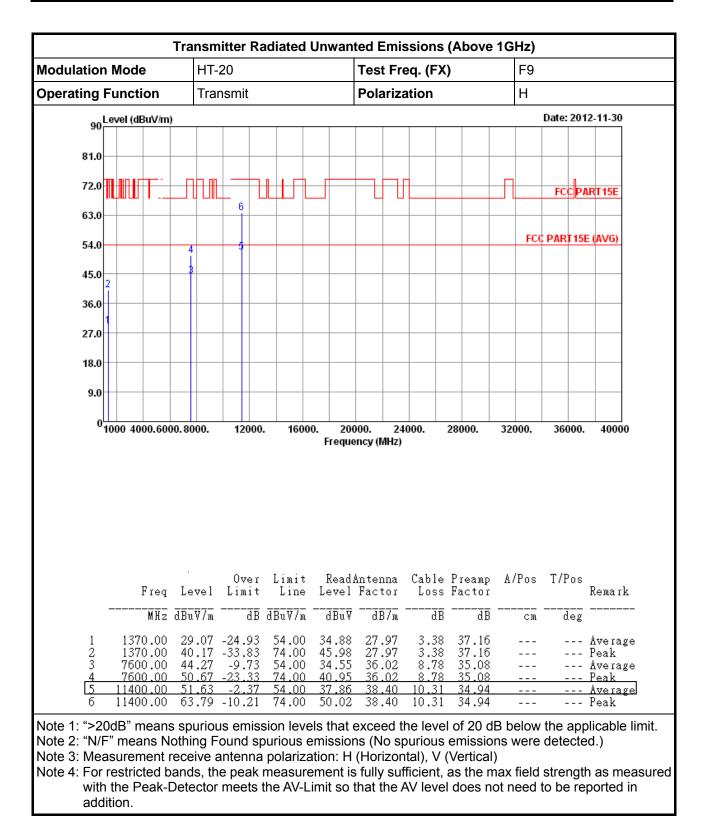


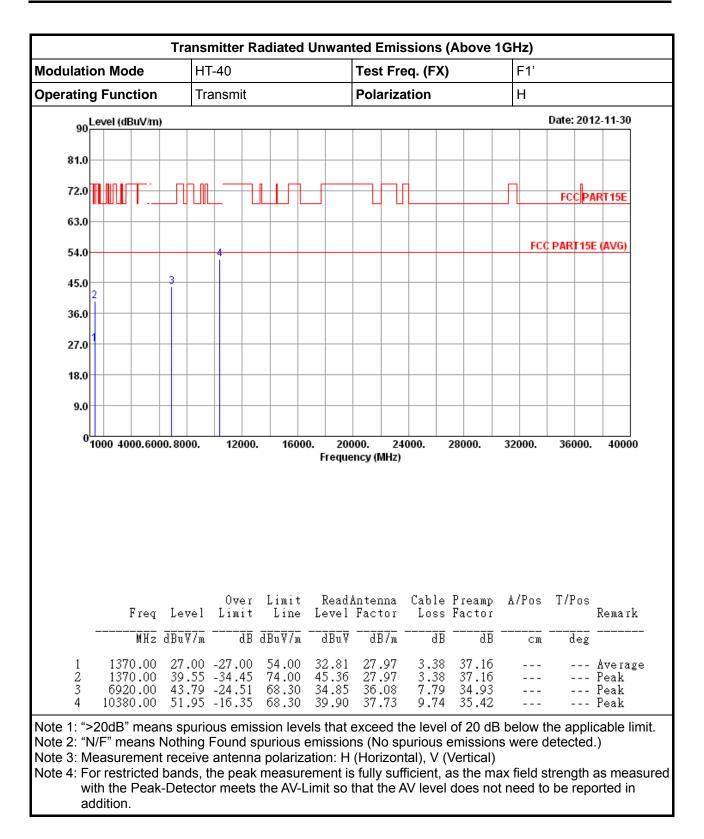






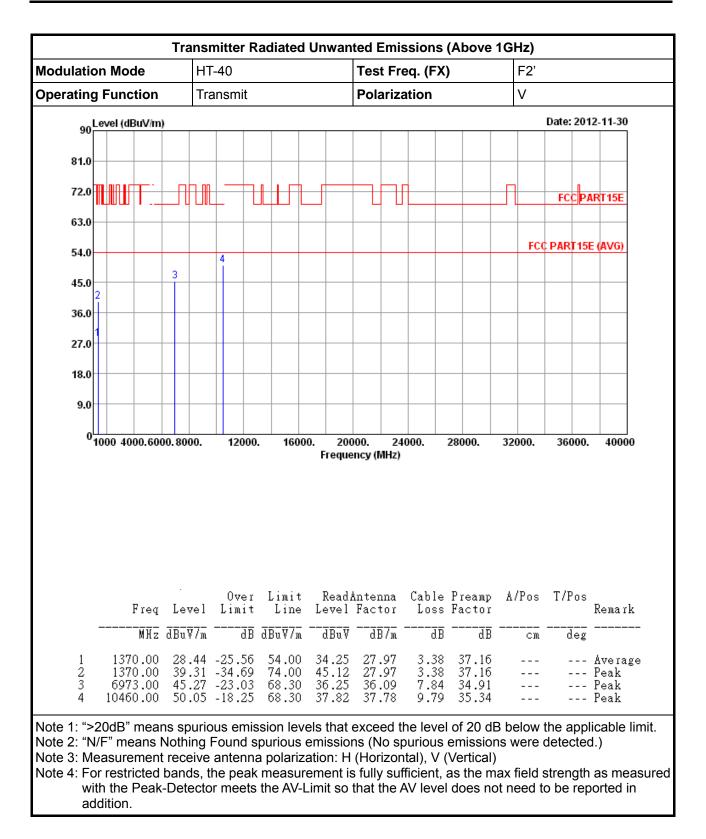


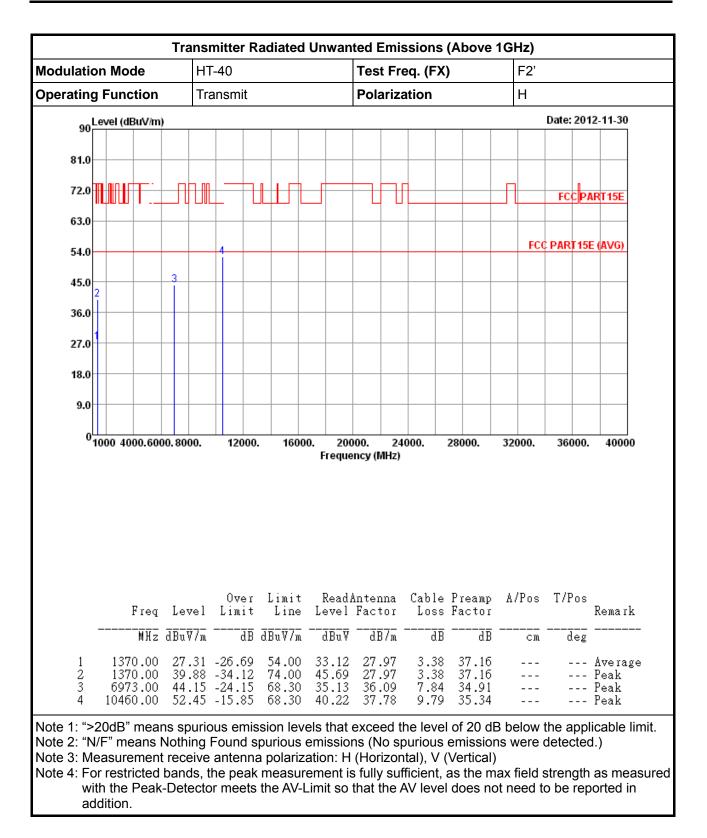


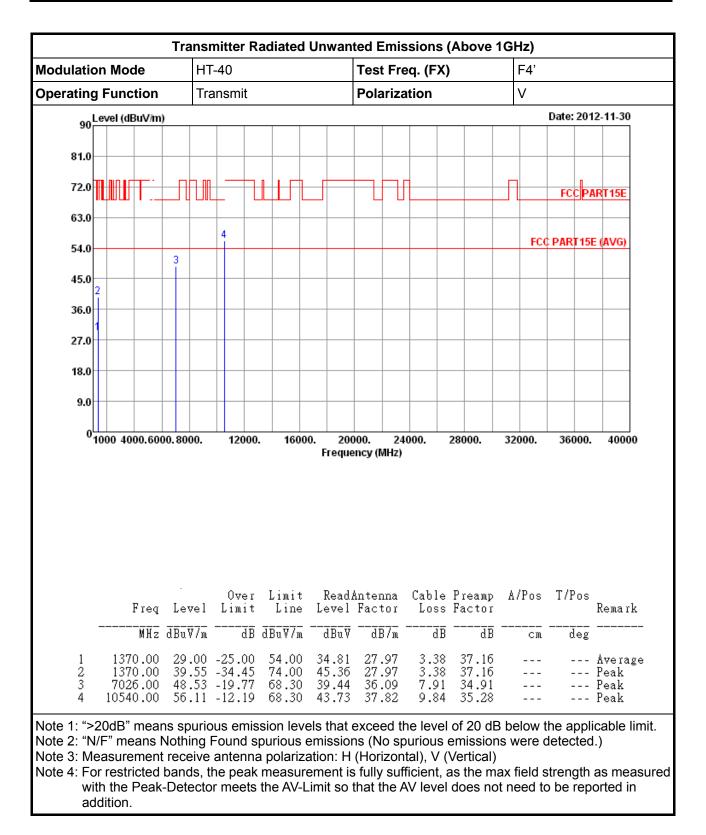


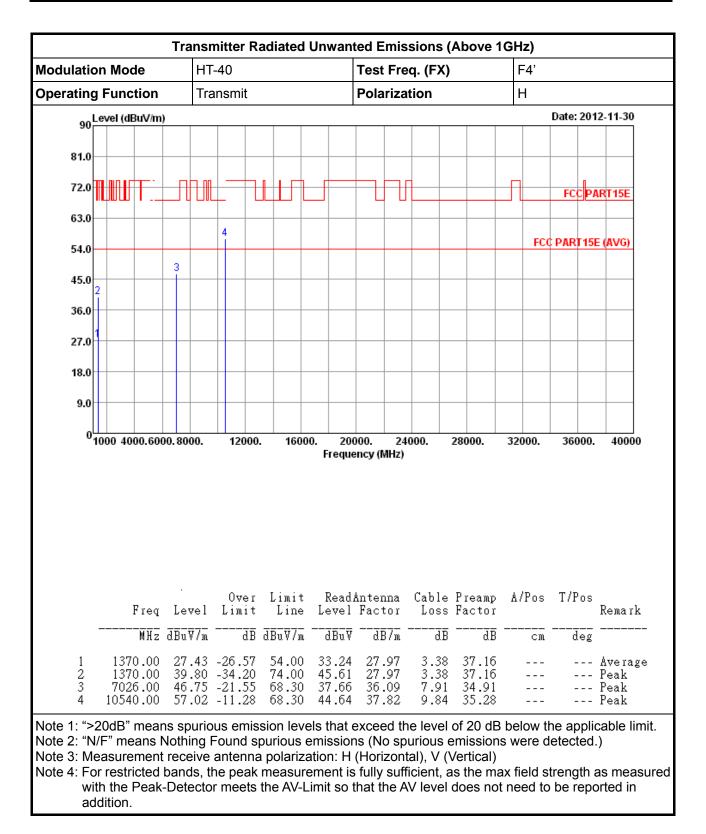
3.7.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT-40

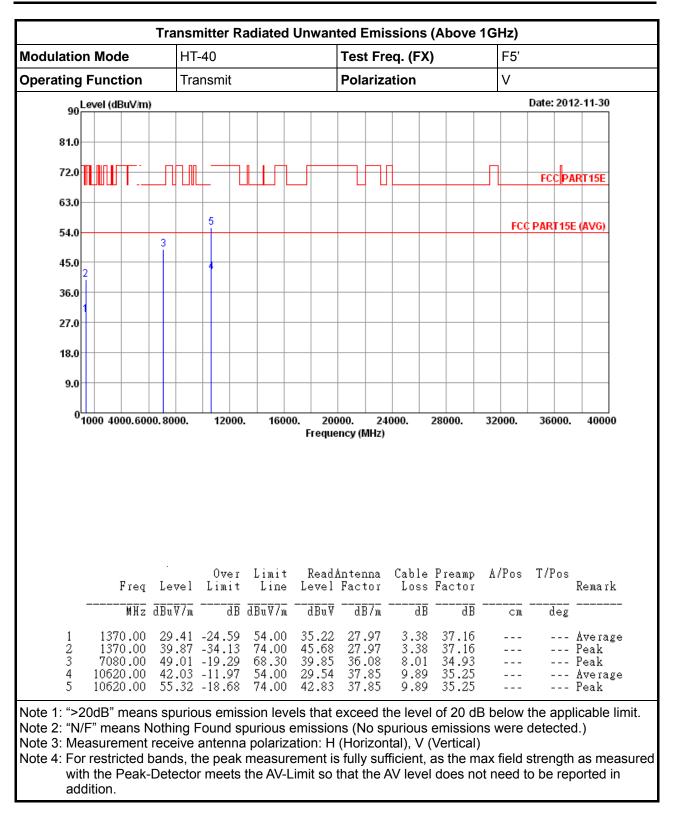
	dulation Mode HT-40						Test Freq. (FX)				F	F1'							
operatin	g Func	tion		Tra	nsmi	it				Polarization					١	V			
90	Level (dE	BuV/m)															Date:	2012	-11-30
81.0																			
72.0				1													FC		T15E
63.0																			
54.0					4											FCC	PAR	[15E	(AVG)
45.0	2		3																
36.0	<u> </u>																		
27.0	1												_						
18.0																			
9.0																			
0	1000 40				400	000.	160		200			000.	280		320		360		40000
								F	reque	ncy (N	IHz)						500		
		Freq	Lev	7e l	Ove Lim:		Limit Line	· F	Read <i>l</i>	lnten	ina	Cable Loss			A/		т/р	os	lema rk
		Freq MHz			Lim	it		: F : Le	Read <i>l</i>	inten Fact	ina		5 Fa		A /		Т/Р	os	lema rk

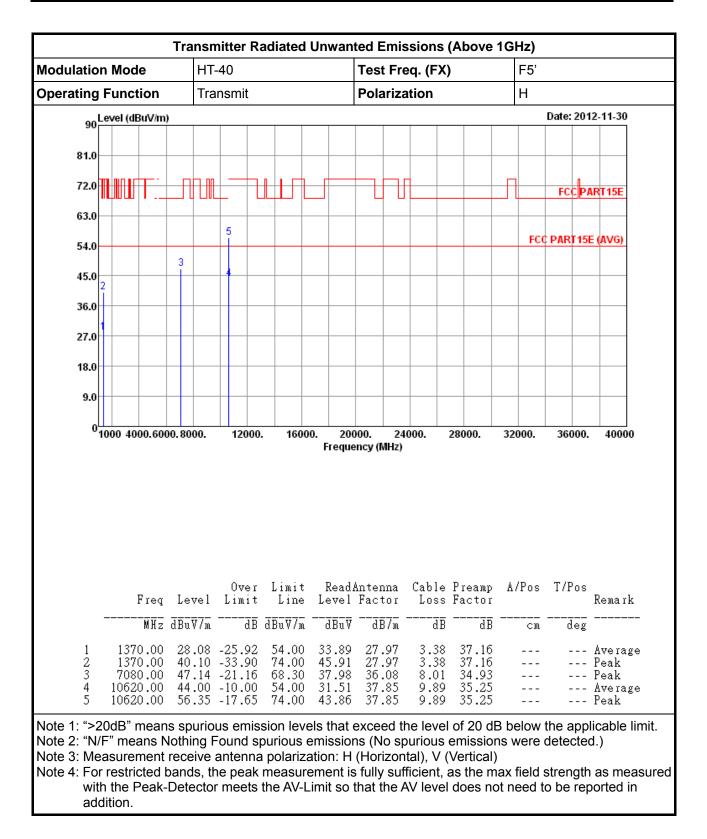


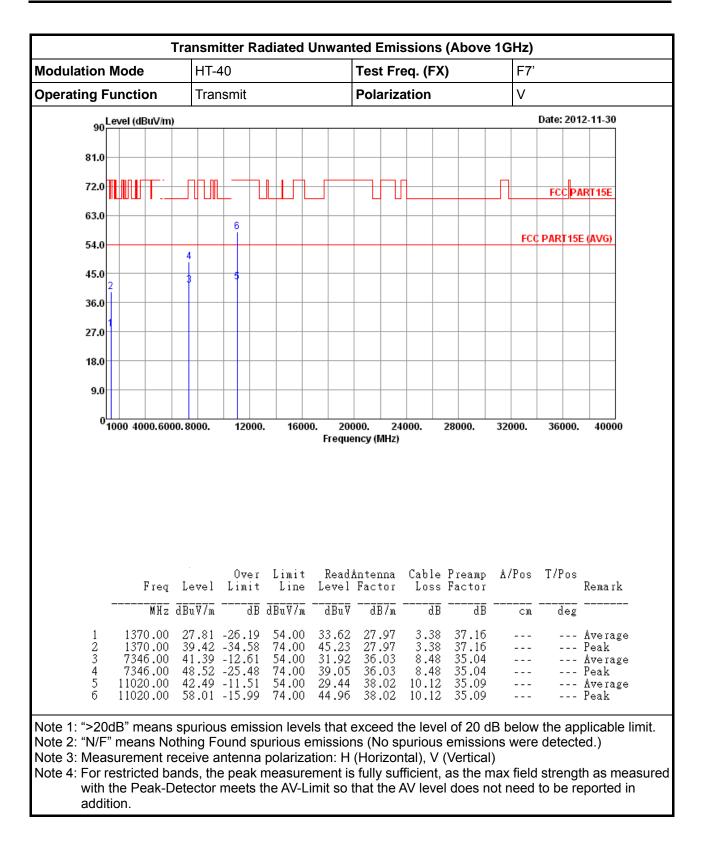


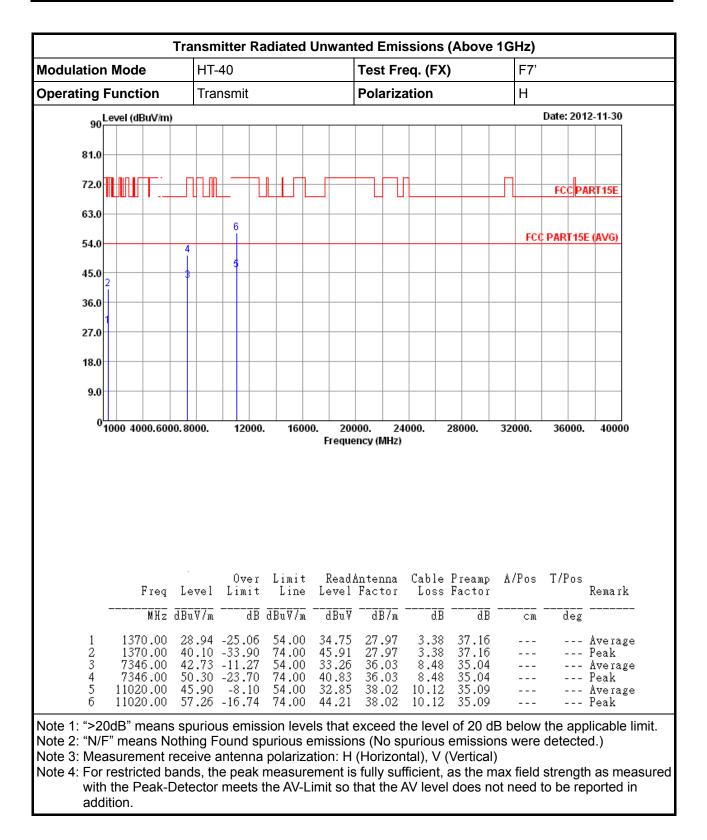


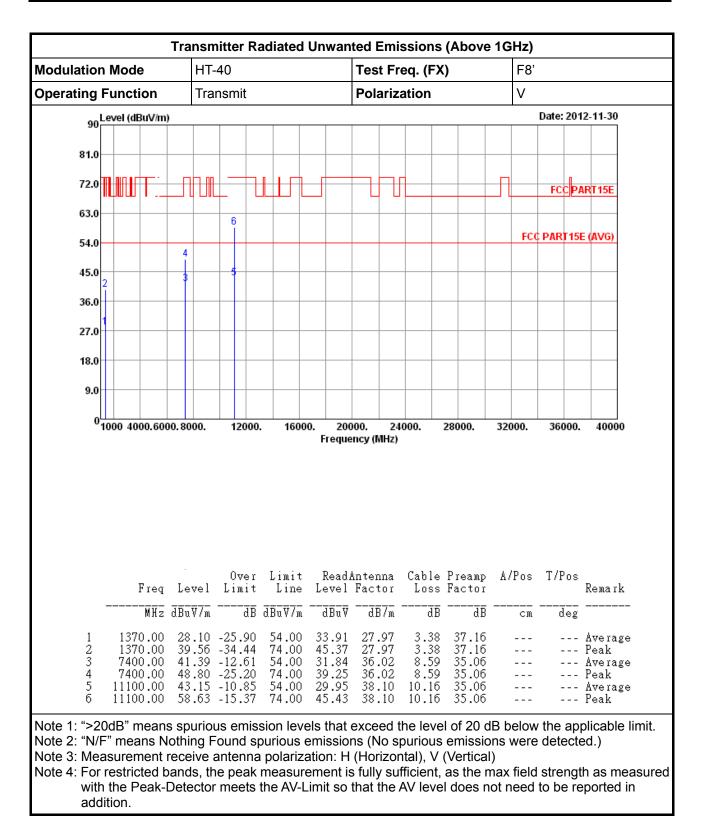


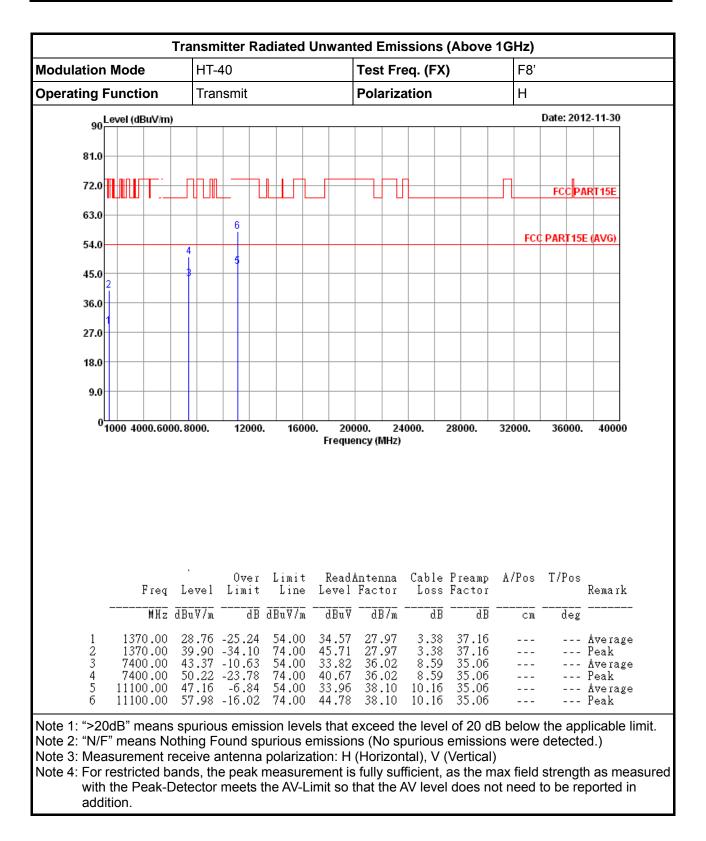


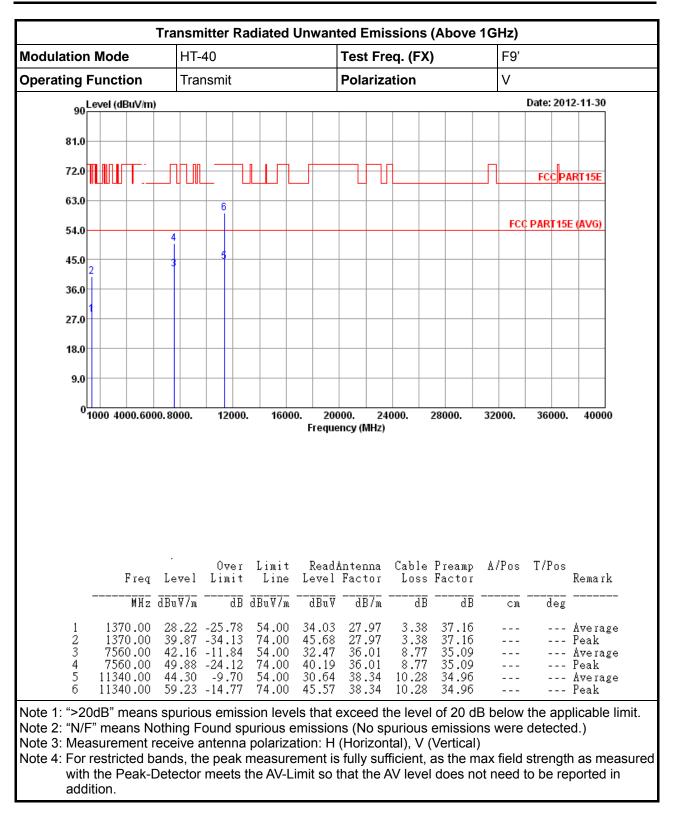


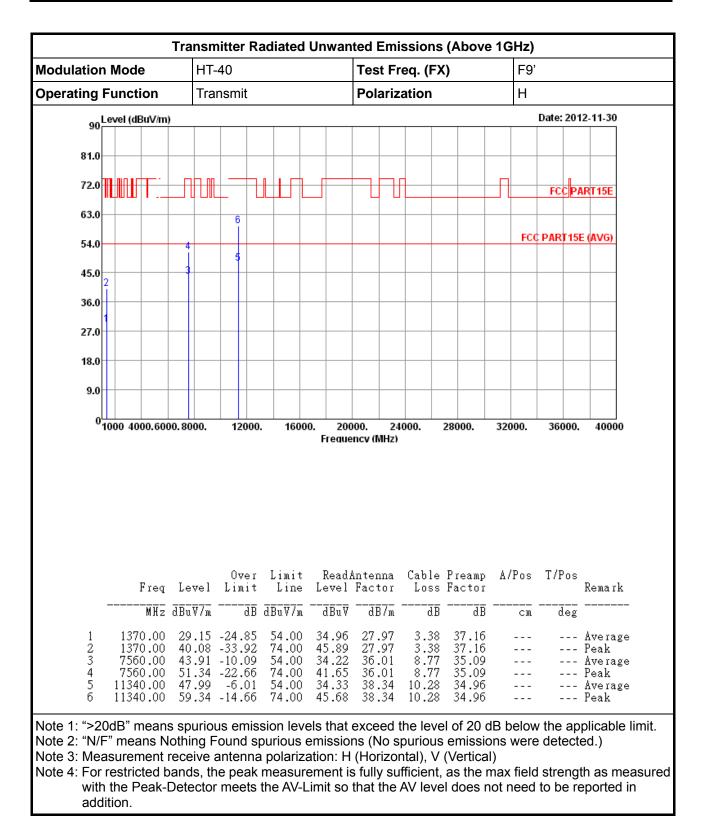

Report No. : FR2N2717-01AN









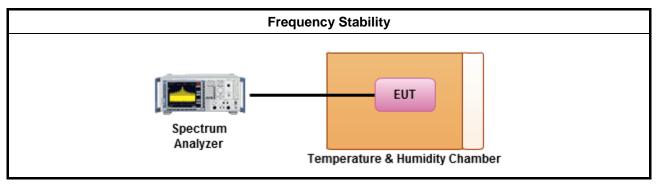


Report No. : FR2N2717-01AN

3.8 Frequency Stability

3.8.1 Frequency Stability Limit

Frequency Stability Limit							
UNII Devices							
In-band emission is maintained within the band of operation under all conditions of normal opera specified in the user's manual.	ation as						
LE-LAN Devices							
⊠ N/A							
IEEE Std. 802.11n-2009							
The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band ar ppm maximum for the 2.4 GHz band.	nd ± 25						


3.8.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.8.3 Test Procedures

	Test Method								
\boxtimes	Refer as ANSI C63.10, clause 6.8 for frequency stability tests								
	\square	Frequency stability with respect to ambient temperature							
	\square	Frequency stability when varying supply voltage							
\square	For	conducted measurement.							
	\square	For conducted measurements on devices with multiple transmit chains: Measurements need only to be performed on one of the active transmit chains (antenna outputs)							
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to a not the maximum emitted power level.							

3.8.4 Test Setup

Mode Frequency Stability (ppm)										
Condition	Freq. (MHz)	0 min	2 min	5 min	10 min	Limit				
T _{20°C} Vmax	5300	-0.61	-0.69	-0.72	-0.76	20.0				
$T_{20^\circ C}Vmin$	5300	-0.22	-0.20	-0.16	-0.12	20.0				
T _{50°C} Vnom	5300	-1.50	-1.52	-1.52	-1.53	20.0				
T _{40°C} Vnom	5300	-1.25	-1.27	-1.28	-1.30	20.0				
T _{30°C} Vnom	5300	-1.07	-1.08	-1.09	-1.10	20.0				
T _{20°C} Vnom	5300	-0.89	-0.88	-0.87	-0.85	20.0				
T _{10°C} Vnom	5300	-0.62	-0.61	-0.60	-0.59	20.0				
$T_{0^{\circ}C}Vnom$	5300	-0.32	-0.31	-0.30	-0.28	20.0				
T _{-10°C} Vnom	5300	0.34	0.35	0.36	0.38	20.0				
T _{-20°C} Vnom	5300	0.60	0.62	0.62	0.66	20.0				
Res	ult			Complied	•					

3.8.5 Test Result of Frequency Stability

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100132	9kHz ~ 2.75GHz	Nov. 14, 2012	Conduction (CO01-HY)
LISN	TESEQ	NNB-52	27380	9kHz ~ 30MHz	Apr. 09, 2012	Conduction (CO01-HY)
LISN (Support Unit)	MessTec	NNB-2/16Z	2001/009	9kHz ~ 30MHz	Feb. 20, 2012	Conduction (CO01-HY)
EMI Filter	LINDGREN	LRE-2060	1004	< 450Hz	N/A	Conduction (CO01-HY)
EMI Filter	LINDGREN	N6006	201052	0 ~ 60Hz	N/A	Conduction (CO01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 40	100305	9KHz ~ 40GHz	Feb. 21, 2012	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	-20 ~ 100℃	Nov. 21, 2012	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 26, 2012	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345675/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
RF Cable-3m	HUBER+SUHNER	SUCOFLEX_104	SN 345669/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Report No. : FR2N2717-01AN

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP	100055	9Kz – 40GHz	Jun. 06, 2012	Radiation (03CH05-HY)
Receiver	R&S	ESIB26	100337	20Hz – 26.5GHz	Jun. 21, 2012	Radiation (03CH05-HY)
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH05-HY	30 MHz - 1 GHz 3m	N/A	Radiation (03CH05-HY)
Amplifier	COM-POWER	PA-103	161075	1KHz - 1GHz	Feb. 27, 2012	Radiation (03CH05-HY)
Amplifier	Agilent	8449B	3008A02665	1GHz – 26.5 GHz	Aug. 28, 2012	Radiation (03CH05-HY)
Horn Antenna	ETS-LINDGREN	3117	66584	1GHz~18GHz	Aug. 09, 2012	Radiation (03CH05-HY)
RF Cable-R03m	Jye Bao	RG142	03CH05-HY	30 MHz - 1 GHz	Oct. 14, 2012	Radiation (03CH05-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX104	03CH05-HY	1GHz~40GHz	Oct. 14, 2012	Radiation (03CH05-HY)
Bilog Antenna	SCHAFFNER	CBL6111C	2725	30 MHz - 1 GHz	Oct. 06, 2012	Radiation (03CH05-HY)
Turn Table	HD	HD100	420/611	0 - 360 degree	N/A	Radiation (03CH05-HY)
Antenna Mast	HD	HD100	240/666	1 m - 4 m	N/A	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	MITEQ	AMF-6F-260400	9121372	26.5GHz ~ 40GHz	Apr. 19, 2011	Radiation (03CH02-HY)
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz - 30 MHz	Jul. 03, 2012	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.