Report No. : FG460628-01AB

RADIO TEST REPORT

FCC ID	: NKR-R2210-048L
Equipment	: Indoor O-RAN Radio Unit
Brand Name	: WNC
Model Name	: R2210-048L
Applicant	: Wistron NeWeb Corporation
	20 Park Avenue II, Hsinchu Science Park, Hsinchu, 308 Taiwan
Manufacturer	: Wistron NeWeb Corporation
	20 Park Avenue II, Hsinchu Science Park, Hsinchu, 308 Taiwan
Standard	: 47 CFR FCC Part 96

The product was received on Aug. 14, 2024, and testing was started from Aug. 21, 2024 and completed on Sep. 03, 2024. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.26-2015 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Rex Liao

Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL : 886-3-656-9065 FAX : 886-3-656-9085 Report Template No.: CB-A18_1 Ver1.2

 Page Number
 : 1 of 27

 Issued Date
 : Sep. 16, 2024

 Report Version
 : 01

Table of Contents

History	y of this test report	3
Summ	ary of Test Result	4
1	General Description	5
1.1	Product Feature of Equipment Under Test	5
1.2	Antenna Information	5
1.3	Maximum EIRP Power and Emission Designator	6
1.4	Applicable Standards	6
1.5	Testing Location	7
1.6	Measurement Uncertainty	7
2	Test Configuration of Equipment Under Test	8
2.1	Test Channel Mode	8
2.2	The Worst Case Measurement Configuration	8
2.3	Accessories	9
2.4	Support Equipment	10
2.5	Test Setup Diagram	
2.6	Measurement Results Explanation Example	
3	Test Result	13
3.1	Conducted Output Power and Maximum Effective Isotropic Radiated Power	13
3.2	Maximum Power Spectral Density	15
3.3	Peak-to-Average Ratio	17
3.4	Occupied Bandwidth	18
3.5	Conducted Band Edge	20
3.6	Conducted Spurious Emission	22
3.7	Radiated Spurious Emission	23
3.8	Frequency Stability for Temperature & Voltage	25
4	Test Equipment and Calibration Data	26
Appen	dix A. Test Result of the Conducted Output Power and Maximum Effective Isotrop	ic Radiated Power
Appen	dix B. Test Result of the Maximum Power Spectral Density	
	dix C. Test Result of the Peak-to-Average Ratio	
	dix D. Test Result of the Occupied Bandwidth	
	dix E. Test Result of the Conducted Band Edge and Conducted Spurious Emission	
	dix F. Test Result of the Radiated Spurious Emission	
	dix G. Test Result of the Frequency Stability for Temperature & Voltage	
	dix H. Test Photos	
Photog	graphs of EUT v01	

History	of	this	test	report
---------	----	------	------	--------

Report No.	Version	Description	Issued Date
FG460628-01AB	01	Initial issue of report	Sep. 16, 2024

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
	2.1046	Conducted Output Power	Reporting only	-
3.1	96.41	Maximum Effective Isotropic Radiated Power	PASS	-
3.2	96.41	Maximum Power Spectral Density (PSD)	PASS	-
3.3	96.41	Peak-to-Average Ratio	PASS	-
3.4	2.1049 / 96.41	Occupied Bandwidth	Reporting only	-
3.5	2.1051 / 96.41	Conducted Band Edge	PASS	-
3.6	2.1051 / 96.41	Conducted Spurious Emission	PASS	-
3.7	2.1051 / 96.41	Radiated Spurious Emission	PASS	-
3.8	2.1055	Frequency Stability for Temperature & Voltage	PASS	-

Summary of Test Result

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Sam Chen

Report Producer: Cathy Chiu

1 General Description

1.1 Product Feature of Equipment Under Test

Items	Description
ЕՍТ Туре	
	CPE-CBSD
Power Type	From power adapter or PoE
Category of EUT	🖂 Category A
	Category B
Professional Installation	🛛 Yes
	□ No
Multi-carrier and/or CA	Yes
	🖂 No
RF Test Tool Software of EUT	Tera Term 4.75
Uplink (UL) operating band	5G NR Band n48: 3550 ~ 3700 MHz
Downlink (DL) operating band	5G NR Band n48: 3550 ~ 3700 MHz
Bandwidth (MHz)	20
Type of Modulation	CP-OFDM (QPSK / 16QAM / 64QAM / 256QAM)

Note: The above information was declared by manufacturer.

1.2 Antenna Information

Ant.	Port	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	3	WNC	XKAC-T57_Ant3	PCB Antenna	I-PEX	6.36
2	4	WNC	XKAC-T57_Ant1	PCB Antenna	I-PEX	5.97
3	1	WNC	XKAC-T57_Ant2	PCB Antenna	I-PEX	6.12
4	2	WNC	XKAC-T57_Ant4	PCB Antenna	I-PEX	6.05

Note 1: The above information was declared by manufacturer.

Note 2:

Port 1, Port 2, Port 3 and Port 4 can be use as transmitting/receiving antenna.

Port 1, Port 2, Port 3 and Port 4 could transmit/receive simultaneously.

Note 3: Directional gain information

Туре	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{off}} \left[\sum_{k=1}^{N_{off}} g_{j,k} \right]^2}{N_{\Delta N}} \right]$
BF	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{min}} \left[\sum_{k=1}^{N_{min}} \mathcal{E}_{j,k} \right]^2}{N_{ANT}} \right]$	$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{eff}} \left[\sum_{k=1}^{N_{eff}} g_{j,k} \right]^2}{N_{ANT}} \right]$

Ex.

Directional Gain (NSS1) formula :

NSS1(g1,1) = $10^{G1/20}$; NSS1(g1,2)= $10^{G2/20}$; NSS1(g1,2)= $10^{G3/20}$; NSS1(g1,2)= $10^{G4/20}$

 $\begin{aligned} \text{gj,k} &= (\text{Nss1}(\text{g1,1}) + \text{Nss1}(\text{g1,2}) + \text{Nss1}(\text{g1,3}) + \text{Nss1}(\text{g1,4}))^2 \\ \text{DG} &= 10 \log[(\text{Nss1}(\text{g1,1}) + \text{Nss1}(\text{g1,2}) + \text{Nss1}(\text{g1,3}) + \text{Nss1}(\text{g1,4}))^2 / \text{N}_{\text{ANT}}] \Longrightarrow 10 \\ \log[(10^{G1/20} + 10^{G2/20} + 10^{G3/20} + 10^{G4/20})^2 / \text{N}_{\text{ANT}}] \end{aligned}$

Where :

G1= 5.95 dBi ; G2= 6.12 dBi ; G3= 6.36 dBi ; G4= 6.05 dBi ;DG= 12.15dBi

1.3 Maximum EIRP Power and Emission Designator

Day david the	TX Frequency (MHz)	TX Frequency Type of		Max. Conducted Power		Maximum EIRP		Emission
Bandwidth		Modulation	(dBm)	(W)	(dBm)	(W)	Bandwidth (MHz)	Designator
20MHz 3560 ~ 3		QPSK	20.09	0.102	32.24	1.675	18.26	18M3G7D
	2560 2600	16QAM	19.07	0.081	31.22	1.324	18.27	18M3W7D
	3200 ~ 3090	64QAM	20.09	0.102	32.24	1.675	18.226	18M2W7D
		256 QAM	20.15	0.104	32.30	1.698	18.193	18M2W7D

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 96
- ANSI / TIA-603-E-2016
- ANSI C63.26-2015
- FCC KDB 971168 D01 v03r01
- FCC KDB 940660 D01 v02

The following reference test guidance is not within the scope of accreditation of TAF.

- 47 CFR FCC Part 2
- FCC KDB 412172 D01 v01r01
- FCC KDB 662911 D01 v02r01

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

1.5 Testing Location

Testing Location Information				
Test Lab. : Sportor	n International Inc. Hsinchu Laboratory			
Hsinchu	ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)			
(TAF: 3787)	TEL: 886-3-656-9065 FAX: 886-3-656-9085			
	Test site Designation No. TW3787 with FCC.			
	Conformity Assessment Body Identifier (CABID) TW3787 with ISED.			

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH01-CB	Jay Lo	23.6-24.1 / 66-67	Aug. 21, 2024~ Aug. 22, 2024
Radiated	03CH03-CB	Eason Chen	21.7-22.5 / 54-58	Sep. 03, 2024

1.6 Measurement Uncertainty

Test Items	Uncertainty	Remark
Radiated Emission (30MHz ~ 1,000MHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.0 dB	Confidence levels of 95%
Conducted Emission	3.1 dB	Confidence levels of 95%

2 Test Configuration of Equipment Under Test

2.1 Test Channel Mode

Mode
Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX
3560MHz
3625MHz
3690MHz
Band n48_NR_20MHz_Nss1,CP-OFDM_16QAM_4TX
3560MHz
3625MHz
3690MHz
Band n48_NR_20MHz_Nss1,CP-OFDM_64QAM_4TX
3560MHz
3625MHz
3690MHz
Band n48_NR_20MHz_Nss1,CP-OFDM_256QAM_4TX
3560MHz
3625MHz
3690MHz

2.2 The Worst Case Measurement Configuration

	The Worst Case Mode for Following Conformance Tests				
Tests Item	Conducted Output Power Maximum Effective Isotropic Radiated Power Maximum Power Spectral Density Peak-to-Average Ratio Occupied Bandwidth Conducted Band Edge Measurement Conducted Spurious Emission Frequency Stability for Temperature & Voltage				
Test Condition	Conducted measurement at transmit chains				

	The Worst Case Mode for Following Conformance Tests				
Tests Item	Radiated Spurious Emission				
Test Condition	Radiated measurement				
	СТХ				
Operating Mode < 1GHz	"EUT in Y axis" generated the worst case at Radiated Spurious Emission > 1GHz. Consequently, the measurement will follow this same test mode.				
1	EUT in Y axis + Adapter				
2	EUT in Y axis + PoE				
For operating mode 2 is th	e worst case and it was record in this test report.				
	СТХ				
Operating Mode > 1GHz	After evaluating, EUT in Y axis was the worst case, so the measurement will follow this same test configuration.				
1	EUT in Y axis				

Note: The Poe was for measurement only and would not be marketed.

Its information is shown as below:

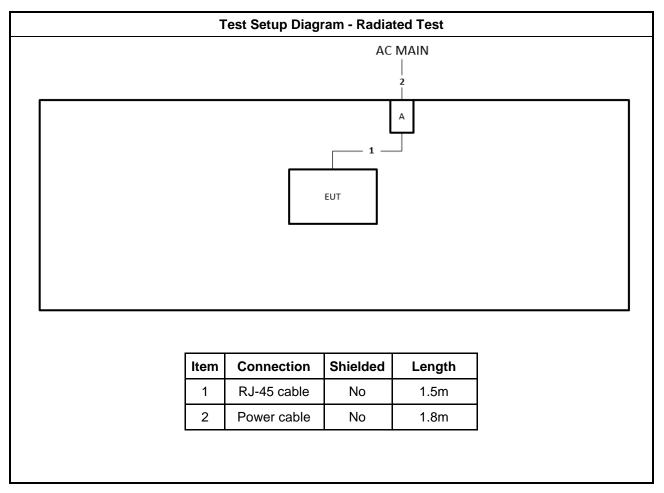
Equipment	Brand Name	Model Name
PoE	PHIHONG	POE60U-BTA

2.3 Accessories

	Accessories						
Equipment Name	Brand Name	Model Name	Rating	Remark			
Adapter	FSP	FSP075-DHAN3	INPUT: 100-240V~, 1.2A, 50/60Hz OUTPUT: 12.0V, 6.25A, 75.0W	DC cable, non-shielded, 1.65m			
	Others						
Power cable*1, non-shielded, 1.8m							

2.4 Support Equipment

For RF Conducted:


	Support Equipment						
No. Equipment Brand Name Model Name FCC ID							
А	Notebook	DELL	E4300	N/A			

For Radiated:

	Support Equipment						
No. Equipment Brand Name Model Name FCC ID							
А	PoE	PHIHONG	POE60U-BTA	N/A			

2.5 Test Setup Diagram

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 6.0 dB.

Example :

Offset(dB) = RF cable loss(dB).

= 6.0 (dB)

3 Test Result

3.1 Conducted Output Power and Maximum Effective Isotropic Radiated Power

3.1.1 Description of the Conducted Output Power measurement

Asystem simulator was used to establish communication with the EUT. Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

3.1.2 Description of the Maximum Effective Isotropic Radiated Power measurement

Device	Maximum EIRP (dBm/10 MHz)
End User Device	23
Category A CBSD	30
Category B CBSD	47

The testing follows ANSI C63.26-2015 Section 5.2.5.5

According to KDB 412172 D01 Power Approach,

 $EIRP = P_T + G_T - L_C$, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

LC = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.1.3 Measuring Instruments

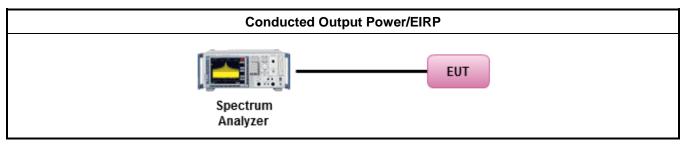
The measuring equipment is listed in the section 4 of this test report.

3.1.4 Test Procedures

For Conducted Output Power

- 1. The transmitter output port was connected to the system simulator.
- 2. Set EUT at maximum power through the system simulator.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure and record the power level from the system simulator.

For Maximum Effective Isotropic Radiated Power


- 1. Set instrument center frequency to OBW center frequency.
- 2. Set span to at least 2 times the OBW.
- 3. Set the RBW to the specified reference bandwidth (often 1 MHz).

4. Set VBW ≥ 3 × RBW.

- 5. Detector = RMS (power averaging).
- 6. Ensure that the number of measurement points in the sweep \geq 2 × span/RBW.
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level within the reference bandwidth (PSD).
- 10. Determine the EIRP by adding the effective antenna gain to the adjusted power level.
- 11. Add 10 log (1/duty cycle) to the measured power level to compute the average power during continuous transmission.

3.1.5 Test Setup

3.1.6 Test Result of Conducted Output Power and Maximum Effective Isotropic Radiated Power.

Refer as Appendix A

3.2 Maximum Power Spectral Density

3.2.1 Description of the Maximum Powe Spectral Density Measurement

Device	Maximum PSD (EIRP) (dBm/MHz)
End User Device	N/A
Category A CBSD	20
Category B CBSD	37

The testing follows ANSI C63.26-2015 Section 5.2.5.5

According to KDB 412172 D01 Power Approach,

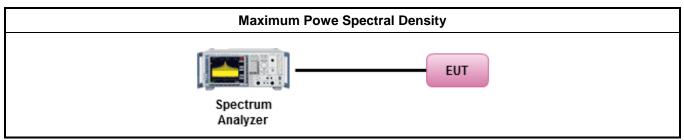
 $EIRP = P_T + G_T - L_C$, where

 P_T = transmitter output power in dBm

 G_T = gain of the transmitting antenna in dBi

LC = signal attenuation in the connecting cable between the transmitter and antenna in dB

3.2.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. Set instrument center frequency to OBW center frequency.
- 2. Set span to at least 2 times the OBW.
- 3. Set the RBW to the specified reference bandwidth (often 1 MHz).
- 4. Set VBW ≥ 3 × RBW.
- 5. Detector = RMS (power averaging).
- 6. Ensure that the number of measurement points in the sweep \geq 2 × span/RBW.
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level within the reference bandwidth (PSD).
- 10. Determine the EIRP by adding the effective antenna gain to the adjusted power level.
- 11. Add 10 log (1/duty cycle) to the measured power level to compute the average power during continuous transmission.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Powe Spectral Density

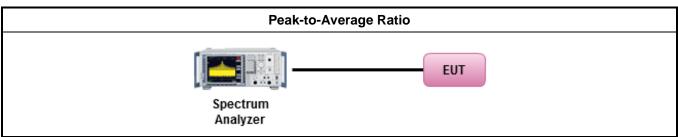
Refer as Appendix B

3.3 Peak-to-Average Ratio

3.3.1 Description of the Peak-to-Average Ratio Measurement

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.3.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.2.6

- 1. The EUT was connected to spectrum and system simulator via a power divider.
- 2. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 3. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 4. Record the deviation as Peak to Average Ratio

3.3.4 Test Setup

3.3.5 Test Result of Peak-to-Average Ratio

Refer as Appendix C

3.4 Occupied Bandwidth

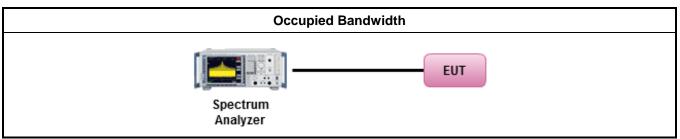
3.4.1 Description of the Occupied Bandwidth Measurement

The occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The 26 dB emission bandwidth is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated 26 dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth equal to approximately 1.0% of the emission bandwidth.

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.4.3 Test Procedures

The testing follows ANSI C63.26-2015 Section 5.4.3 (26dB) and Section 5.4.4 (99OB)

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be between two and five times the anticipated OBW.
- 3. The nominal resolution bandwidth (RBW) shall be in the range of 1 to 5 % of the anticipated OBW, and the VBW shall be at least 3 times the RBW.
- 4. Set the detection mode to peak, and the trace mode to max hold.
- Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace. (this is the reference value)
- 6. Determine the "-26 dB down amplitude" as equal to (Reference Value X).
- 7. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB down amplitude" determined in step 6. If a marker is below this "-X dB down amplitude" value it shall be placed as close as possible to this value. The OBW is the positive frequency difference between the two markers.
- 8. Use the 99 % power bandwidth function of the spectrum analyzer and report the measured bandwidth.

3.4.4 Test Setup

3.4.5 Test Result of Occupied Bandwidth

Refer as Appendix D

3.5 Conducted Band Edge

3.5.1 Description of the Conducted Band Edge Measurement

Part 96.41 (e) (1) (i)

For CBSD the emission limits outside the fundamental are as follows: Within 0 MHz to 10 MHz above and below the assigned channel ≤ −13 dBm/MHz

Greater than 10 MHz above and below the assigned channel ≤ −25 dBm/MHz

Part 96.41 (e) (1) (ii)

For End User Devices the emission limits outside the fundamental are as follows:

Within 0 MHz to B MHz above and below the assigned channel ≤ -13 dBm/MHz

Greater than B MHz above and below the assigned channel ≤ -25 dBm/MHz

where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device.

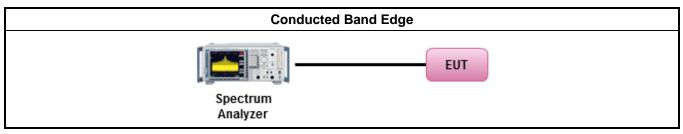
Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

Part 96.41 (e) (2)

For CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.5.3 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The band edges of low and high channels for the highest RF powers were measured.
- 3. Set RBW >= 1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- 4. Beyond the 1 MHz band from the band edge, RBW=1MHz was used
- 5. Offset has included the duty factor for LTE Band 48. Duty factor =10 log (1/x), where x is the measured duty cycle.
- 6. Set spectrum analyzer with RMS detector.
- 7. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.5.4 Test Setup

3.5.5 Test Result of Conducted Band Edge

Refer as Appendix E

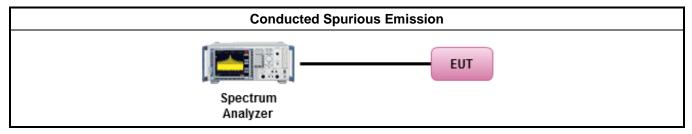
3.6 Conducted Spurious Emission

3.6.1 Description of the Conducted Spurious Emission Measurement

96.41 (e)(2)

The conducted power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

3.6.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 6.1.

- 1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. The middle channel for the highest RF power within the transmitting frequency was measured.
- 4. The conducted spurious emission for the whole frequency range was taken.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz.
- 6. Set spectrum analyzer with RMS detector.
- 7. Taking the record of maximum spurious emission.
- 8. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 9. The limit line is -40dBm/MHz.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Spurious Emission

Refer as Appendix E

3.7 Radiated Spurious Emission

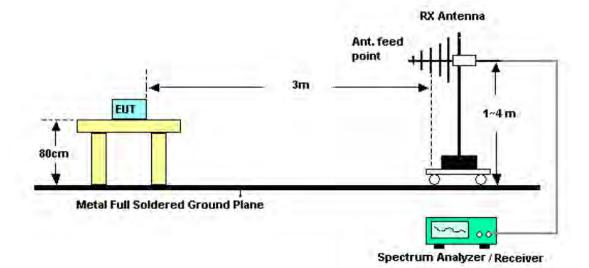
3.7.1 Description of the Radiated Spurious Emission Measurement

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least -40dBm / MHz.

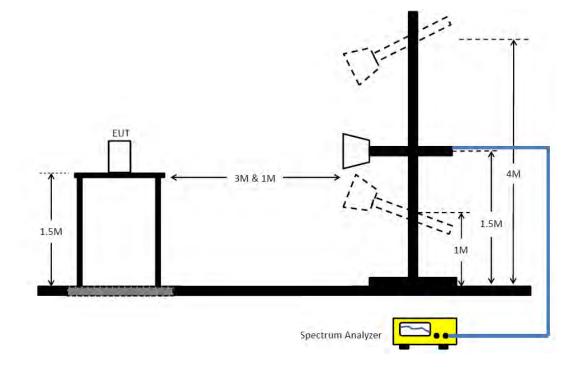
The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

3.7.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.7.3 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter height for frequency below 1GHz and 1.5 meter height for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between 1m to 4m to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. During the measurement, the system simulator parameters were set to force the EUT transmitting at maximum output power.
- Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, taking the record of maximum spurious emission.
- A horn antenna was substituted in place of the EUT and was driven by a signal generator. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
 EIRP (dBm) = S.G. Power Tx Cable Loss + Tx Antenna Gain
 ERP (dBm) = EIRP 2.15
- The RF fundamental frequency should be excluded against the limit line in the operating frequency band. The limit line is -40dBm/MHz



3.7.4 Test Setup

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

3.7.5 Test Result of Radiated Spurious Emission

Refer as Appendix F

3.8 Frequency Stability for Temperature & Voltage

3.8.1 Description of the Frequency Stability for Temperature & Voltage Measurement

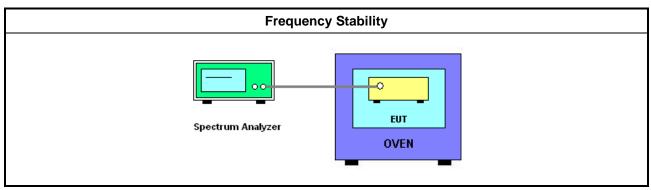
The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency

3.8.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.8.3 Test Procedures for Temperature Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0


- 1. The EUT was set up in the thermal chamber and connected to the spectrum analyzer.
- 2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 3. With power OFF, the temperature was raised in -30°C steps up to 50°C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

3.8.4 Test Procedures for Voltage Variation

The testing follows FCC KDB 971168 D01 v03r01 Section 9.0.

- 1. The EUT was placed in a temperature chamber at 25±5° C and connected to the spectrum analyzer.
- 2. The power supply voltage to the EUT was varied from 85 to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

3.8.5 Test Setup

3.8.6 Test Result of Temperature and Voltage Variation

Refer as Appendix G

Test Equipment and Calibration Data 4

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH03-CB	30 MHz ~ 1 GHz	Jan. 18, 2024	Jan. 17, 2025	Radiation (03CH03-CB)
3m Semi Anechoic Chamber VSWR	ТDК	SAC-3M	03CH03-CB	1GHz ~18GHz 3m	May 03, 2024	May 02, 2025	Radiation (03CH03-CB)
Bilog Antenna with 6dB Attenator	Schaffner & EMCI	CBL6112B& N-6-06	2888&AT-N06 05	30MHz ~ 1GHz	Jan. 18, 2024	Jan. 17, 2025	Radiation (03CH03-CB)
Horn Antenna	ETS·Lindgren	3115	6821	750MHz~18GHz	Jan. 24, 2024	Jan. 23, 2025	Radiation (03CH03-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Sep. 04, 2023	Sep. 03, 2024	Radiation (03CH03-CB)
Amplifier	SGH	SGH301	20240606-1	30MHz ~ 1GHz	Jun. 04, 2024	Jun. 03, 2025	Radiation (03CH03-CB)
Pre-Amplifier	Agilent	8449B	3008A02097	1GHz ~ 26.5GHz	Jun. 29, 2024	Jun. 28, 2025	Radiation (03CH03-CB)
Pre-Amplifier	SGH	SGH184	20221107-3	18GHz ~ 40GHz	Nov. 24, 2023	Nov. 23, 2024	Radiation (03CH03-CB)
Spectrum Analyzer	R&S	FSP40	100019	9kHz ~ 40GHz	Jun. 11, 2024	Jun. 10, 2025	Radiation (03CH03-CB)
EMI Test Receiver	R&S	ESR7	102172	9kHz ~ 7GHz	Oct. 20, 2023	Oct. 19, 2024	Radiation (03CH03-CB)
RF Cable-low	Woken	RG402	Low Cable-02+29	30MHz ~ 1GHz	Aug. 23, 2024	Aug. 22, 2025	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-20+29	1GHz ~ 18GHz	Feb. 29, 2024	Feb. 28, 2025	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-29	1GHz ~ 18GHz	Feb. 29, 2024	Feb. 28, 2025	Radiation (03CH03-CB)
High Cable	Woken	WCA0929M	40G#5+6	1GHz ~ 40 GHz	Jan. 11, 2024	Jan. 10, 2025	Radiation (03CH03-CB)
Test Software	SPORTON	SENSE-FCC_ 2G-4G	V6.1.7	30MHz-40GHz	N.C.R.	N.C.R.	Radiation (03CH03-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	May 27, 2024	May 26, 2025	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	May 20, 2024	May 19, 2025	Conducted (TH01-CB)
Switch	SPTCB	SP-SWI	SWI-01	1~26.5 GHz	Oct. 03, 2023	Oct. 02, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-06	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-07	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A18_1 Ver1.2 Page Number : 26 of 27

: Sep. 16, 2024 Issued Date Report Version : 01

Report No. : FG460628-01AB

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
RF Cable-high	Woken	RG402	High Cable-30	1 GHz – 18 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
Cable	Woken	RG402	low Cable-30	9 kHz –1 GHz	Oct. 02, 2023	Oct. 01, 2024	Conducted (TH01-CB)
Power Sensor	Agilent	E9327A	US40442088	50MHz~18GHz	Mar. 01, 2024	Feb. 28, 2025	Conducted (TH01-CB)
Power Meter	Agilent	E4416A	MY45100745	50MHz~18GHz	Jul. 12, 2024	Jul. 11, 2025	Conducted (TH01-CB)
MW Analog Signal Generator	Keysight	N5183A	MY50142965	100kHz~20GHz	Nov. 17, 2023	Nov. 16, 2024	Conducted (TH01-CB)
Signal analyzer	Keysight	N9020A	MY55400138	10 Hz to 26.5 GHz	Feb. 27, 2024	Feb. 26, 2025	Conducted (TH01-CB)
Test Software	SPORTON	SENSE-FCC_ 2G-4G	V6.1.7	30MHz-40GHz	N.C.R.	N.C.R.	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

Average Power

Appendix A.1

Summary

Mode	Power	Power	EIRP	EIRP
	(dBm)	(W)	(dBm)	(W)
Band n48		-	-	
NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	20.09	0.102	32.24	1.675
NR_20MHz_Nss1,CP-OFDM_16QAM_4TX	19.07	0.081	31.22	1.324
NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	20.09	0.102	32.24	1.675
NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	20.15	0.104	32.30	1.698

DG = Directional Gain; Port n = Port n output power

Average Power

Appendix A.1

Result

Mode	Result	DG	Power	Power	Port 1	Port 2	Port 3	Port 4	EIRP	EIRP
		(dBi)	(dBm)	(W)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(W)
Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX		-		-	-			-	-	-
3560MHz_Outer_Full	Pass	12.15	20.09	0.102	14.23	14.17	13.70	14.16	32.24	1.675
3625MHz_Outer_Full	Pass	12.15	20.04	0.101	14.19	14.10	13.83	13.95	32.19	1.656
3690MHz_Outer_Full	Pass	12.15	20.06	0.101	14.24	14.12	13.69	14.08	32.21	1.663
Band n48_NR_20MHz_Nss1,CP-OFDM_16QAM_4TX	-	-		-	-	-		-	-	-
3560MHz_Outer_Full	Pass	12.15	19.07	0.081	13.22	13.17	12.63	13.16	31.22	1.324
3625MHz_Outer_Full	Pass	12.15	19.02	0.080	13.16	13.12	12.78	12.91	31.17	1.309
3690MHz_Outer_Full	Pass	12.15	19.00	0.079	13.16	13.06	12.67	13.02	31.15	1.303
Band n48_NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	-	-	-	-	-	-	-	-	-	-
3560MHz_Outer_Full	Pass	12.15	20.09	0.102	14.23	14.14	13.72	14.18	32.24	1.675
3625MHz_Outer_Full	Pass	12.15	20.09	0.102	14.21	14.17	13.89	13.99	32.24	1.675
3690MHz_Outer_Full	Pass	12.15	20.02	0.100	14.22	14.11	13.60	14.06	32.17	1.648
Band n48_NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	-	-	-	-	-	-	-	-	-	-
3560MHz_Outer_Full	Pass	12.15	20.15	0.104	14.27	14.23	13.74	14.24	32.30	1.698
3625MHz_Outer_Full	Pass	12.15	20.10	0.102	14.23	14.18	13.90	14.01	32.25	1.679
3690MHz_Outer_Full	Pass	12.15	20.08	0.102	14.25	14.15	13.72	14.09	32.23	1.671

DG = Directional Gain; Port n = Port n output power

Summary

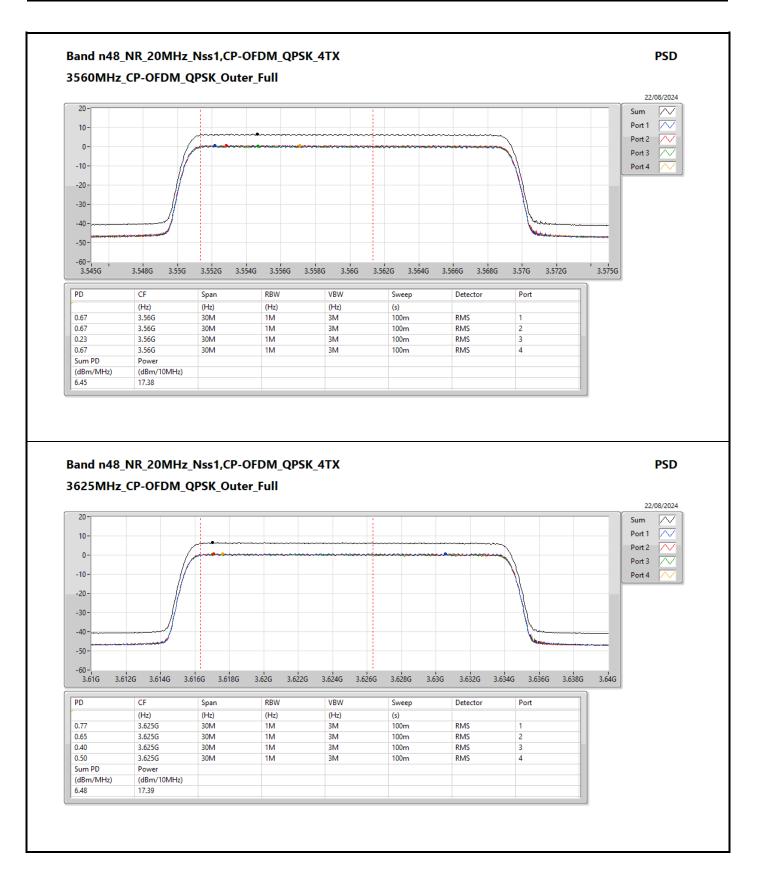
Mode	Power	EIRP		
	(dBm/10MHz)	(dBm/10MHz)		
Band n48		-		
NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	17.40	29.55		
NR_20MHz_Nss1,CP-OFDM_16QAM_4TX	16.56	28.71		
NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	17.48	29.63		
NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	17.53	29.68		

Result

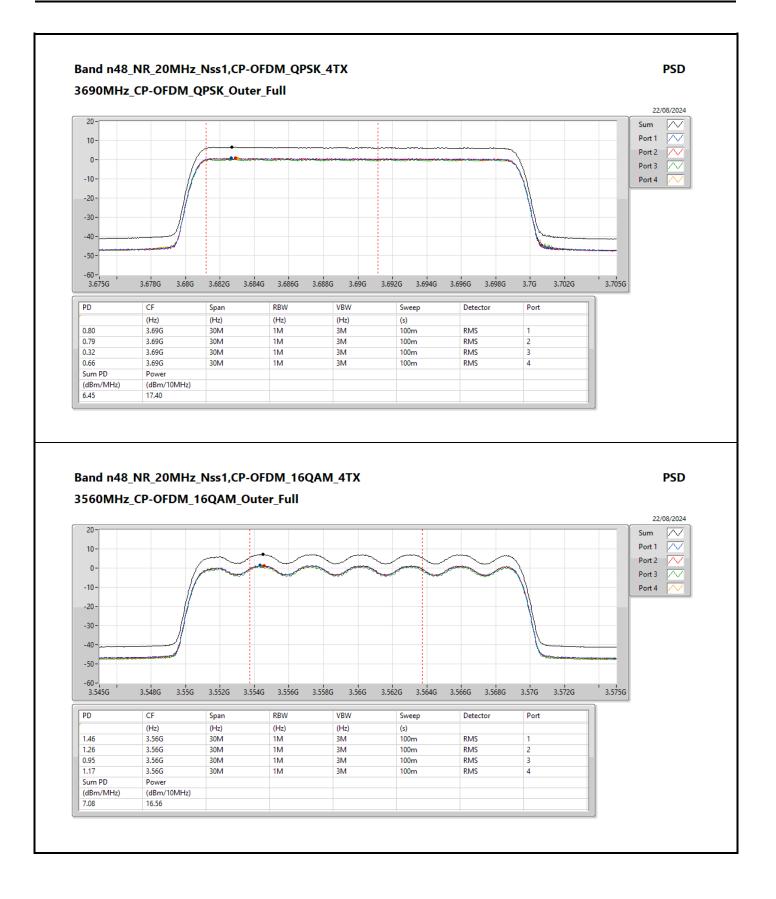
Mode	Result	EIRP	EIRP Limit	
		(dBm/10MHz)	(dBm/10MHz)	
Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	-			
3560MHz_Outer_Full	Pass	29.53	30.00	
3625MHz_Outer_Full	Pass	29.54	30.00	
3690MHz_Outer_Full	Pass	29.55	30.00	
Band n48_NR_20MHz_Nss1,CP-OFDM_16QAM_4TX				
3560MHz_Outer_Full	Pass	28.71	30.00	
3625MHz_Outer_Full	Pass	28.70	30.00	
3690MHz_Outer_Full	Pass	28.66	30.00	
Band n48_NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	-		-	
3560MHz_Outer_Full	Pass	29.60	30.00	
3625MHz_Outer_Full	Pass	29.63	30.00	
3690MHz_Outer_Full	Pass	29.60	30.00	
Band n48_NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	-		-	
3560MHz_Outer_Full	Pass	29.68	30.00	
3625MHz_Outer_Full	Pass	29.63	30.00	
3690MHz_Outer_Full	Pass	29.59	30.00	

Summary

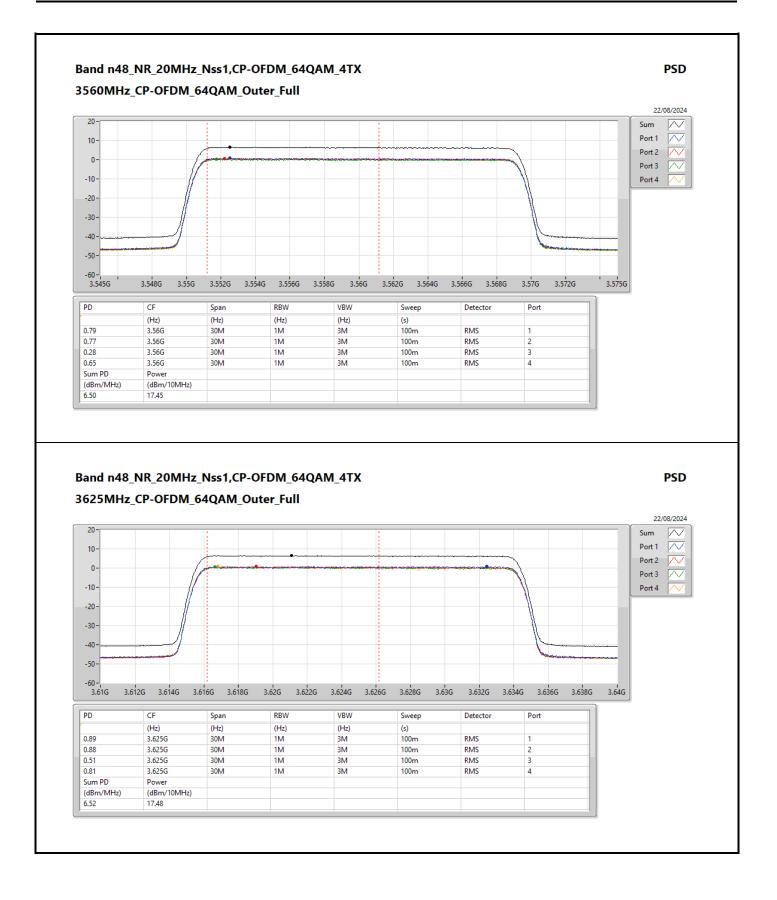
Mode	PD	EIRP PD	
	(dBm/MHz)	(dBm/MHz)	
Band n48	-	-	
NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	6.48	18.63	
NR_20MHz_Nss1,CP-OFDM_16QAM_4TX	7.08	19.23	
NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	6.55	18.70	
NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	6.72	18.87	

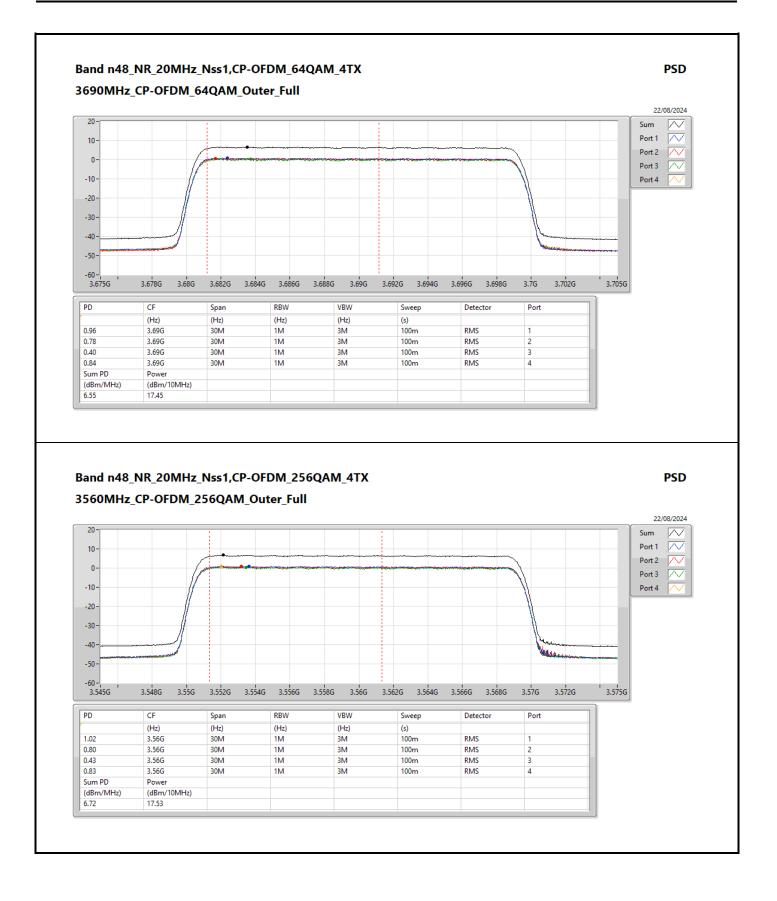


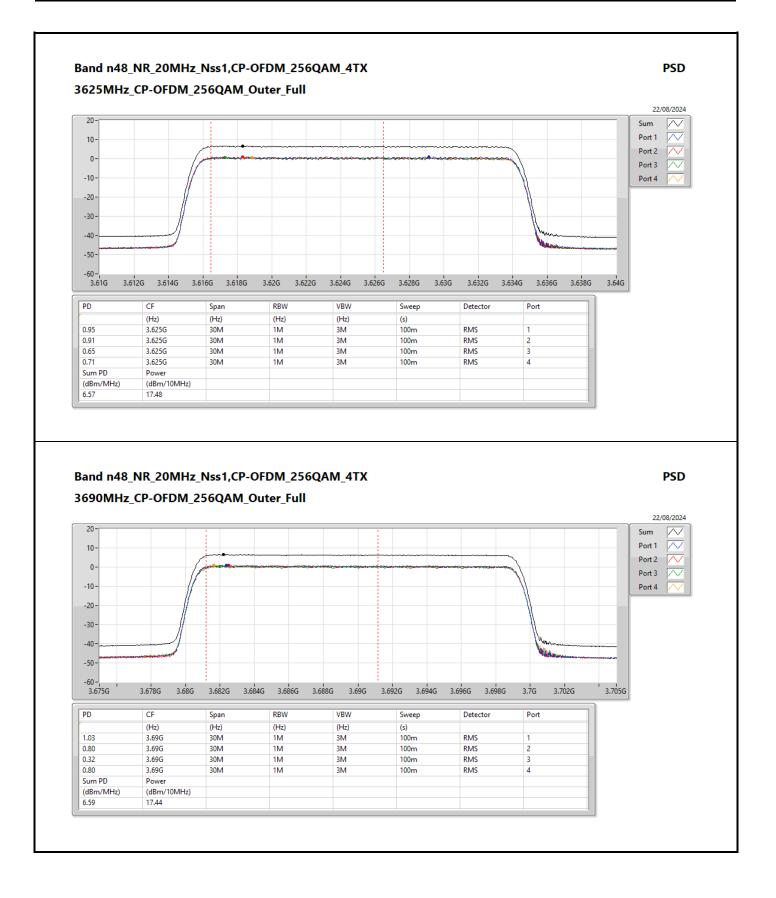
Appendix B


Result

Mode	Result	DG	Port 1	Port 2	Port 3	Port 4	Sum	PD	EIRP PD	EIRP PD Limi
		(dBi)	(dBm/MHz)							
Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	-	-	-	-	-	-	-	-	-	-
3560MHz_Outer_Full	Pass	12.15	0.67	0.67	0.23	0.67	6.45	6.45	18.60	20.00
3625MHz_Outer_Full	Pass	12.15	0.77	0.65	0.40	0.50	6.48	6.48	18.63	20.00
3690MHz_Outer_Full	Pass	12.15	0.80	0.79	0.32	0.66	6.45	6.45	18.60	20.00
Band n48_NR_20MHz_Nss1,CP-OFDM_16QAM_4TX		-	-	-	-	-		-	-	
3560MHz_Outer_Full	Pass	12.15	1.46	1.26	0.95	1.17	7.08	7.08	19.23	20.00
3625MHz_Outer_Full	Pass	12.15	1.18	1.13	0.91	1.23	7.03	7.03	19.18	20.00
3690MHz_Outer_Full	Pass	12.15	1.13	1.12	1.08	1.25	7.01	7.01	19.16	20.00
Band n48_NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	-	-	-	-	-	-	-	-	-	-
3560MHz_Outer_Full	Pass	12.15	0.79	0.77	0.28	0.65	6.50	6.50	18.65	20.00
3625MHz_Outer_Full	Pass	12.15	0.89	0.88	0.51	0.81	6.52	6.52	18.67	20.00
3690MHz_Outer_Full	Pass	12.15	0.96	0.78	0.40	0.84	6.55	6.55	18.70	20.00
Band n48_NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	-	-	-	-			-	-	-	
3560MHz_Outer_Full	Pass	12.15	1.02	0.80	0.43	0.83	6.72	6.72	18.87	20.00
3625MHz_Outer_Full	Pass	12.15	0.95	0.91	0.65	0.71	6.57	6.57	18.72	20.00
3690MHz_Outer_Full	Pass	12.15	1.03	0.80	0.32	0.80	6.59	6.59	18.74	20.00



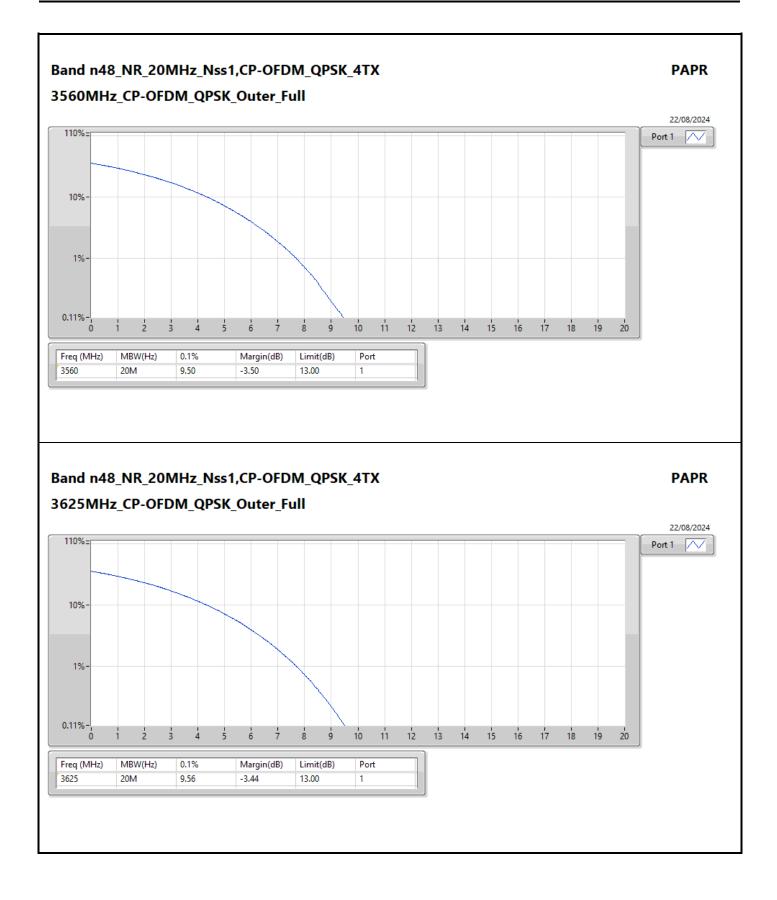


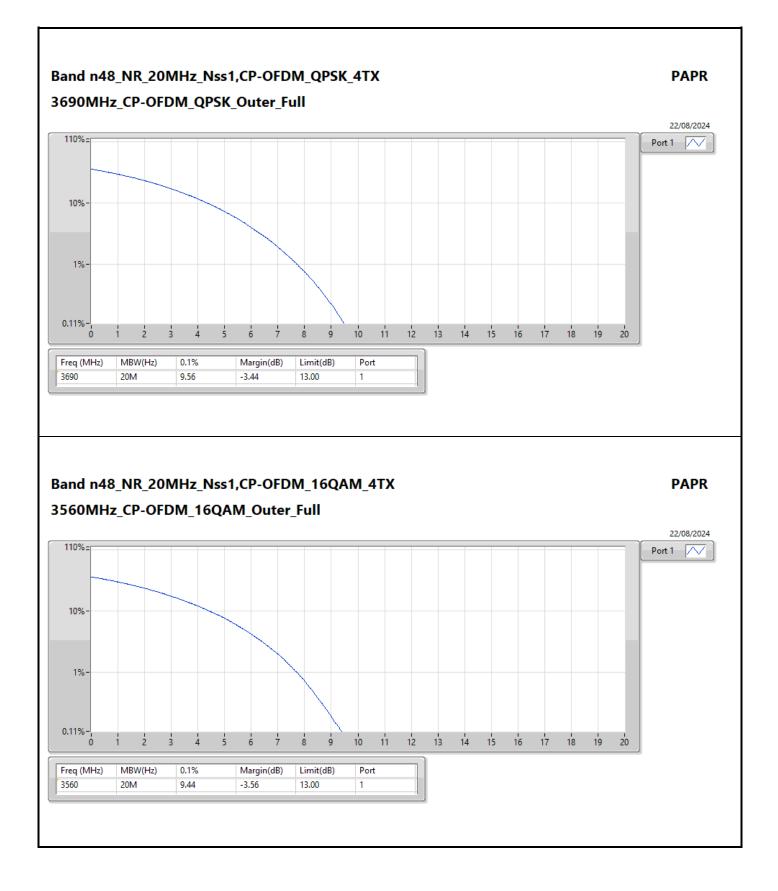


Peak to Average Power Ratio (PAPR)

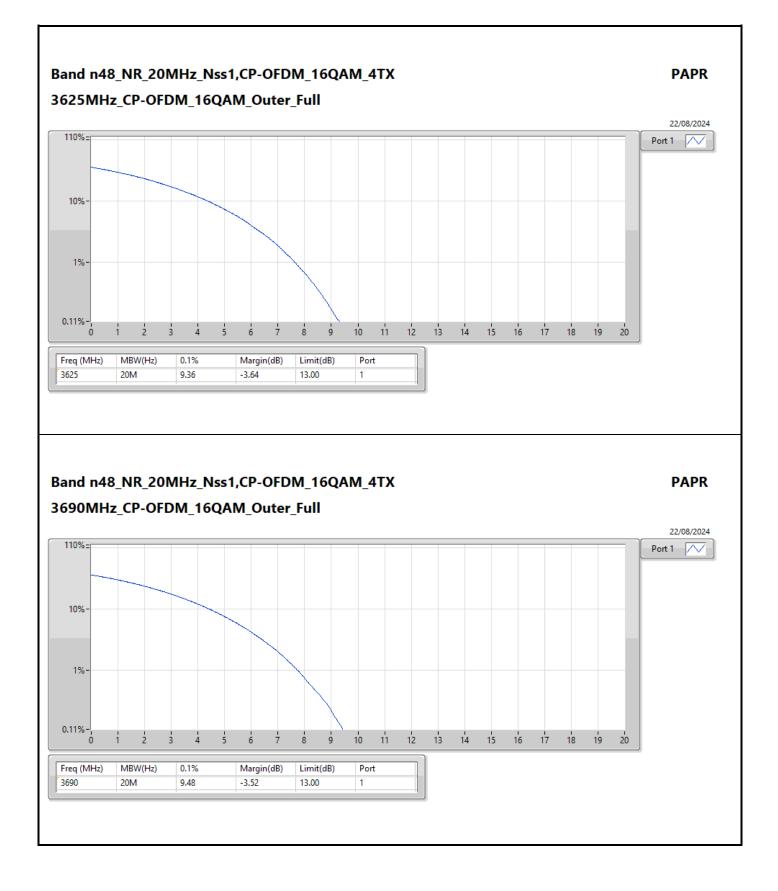
Appendix C

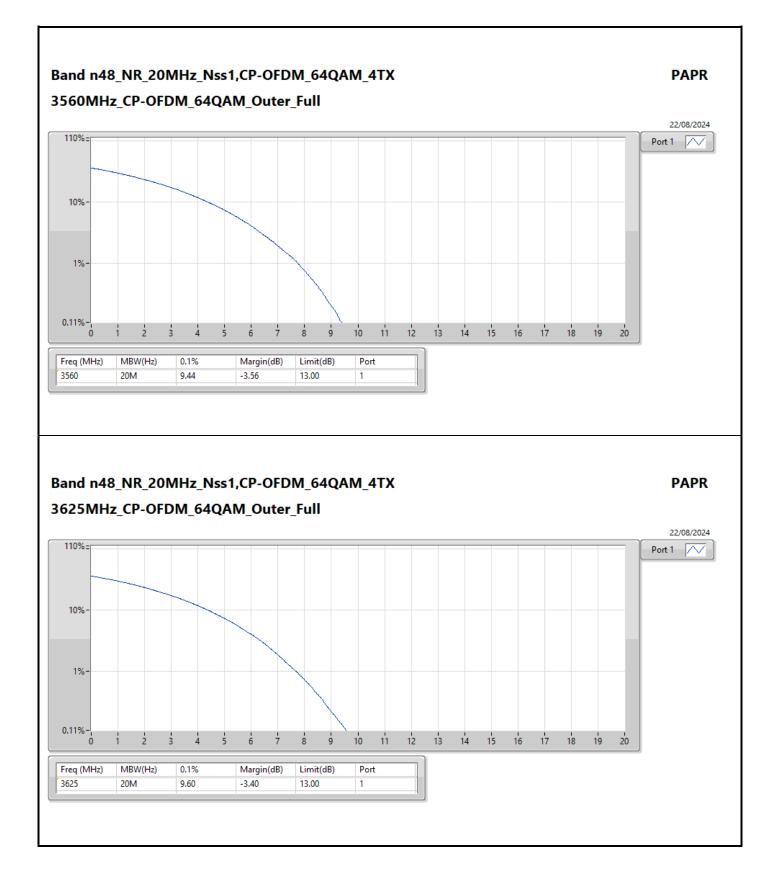
Sur	nma	arv

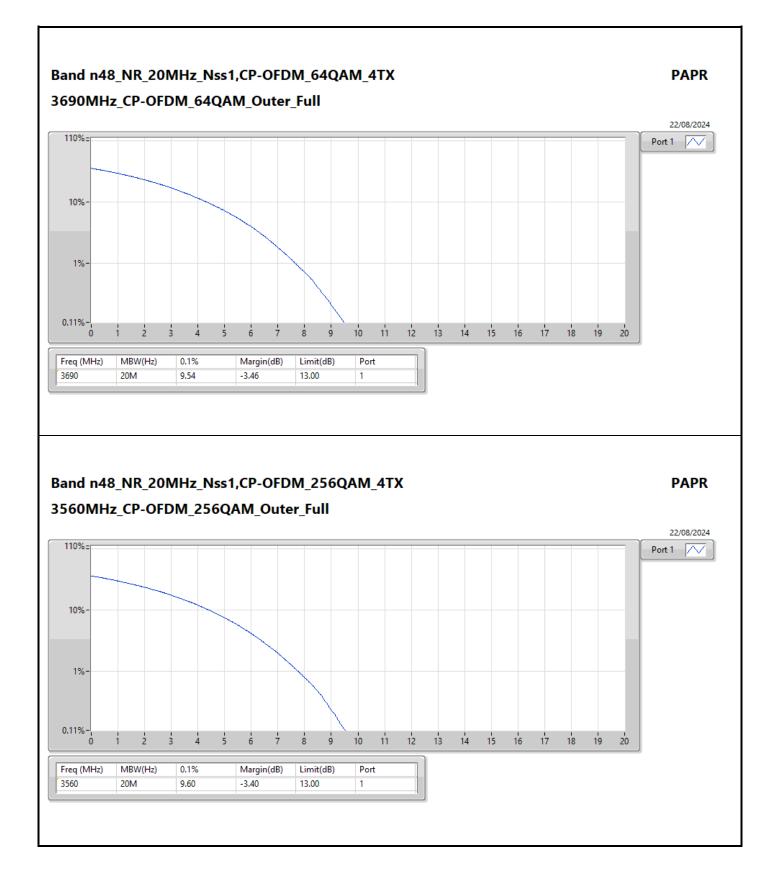

		-		0.404	.
Mode	Result	Freq	Limit	0.1%	Port
		(MHz)	(dB)		
Band n48	-	-	-	-	-
NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	Pass	3625	13.00	9.56	1
NR_20MHz_Nss1,CP-OFDM_16QAM_4TX	Pass	3690	13.00	9.48	1
NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	Pass	3625	13.00	9.60	1
NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	Pass	3625	13.00	9.64	1

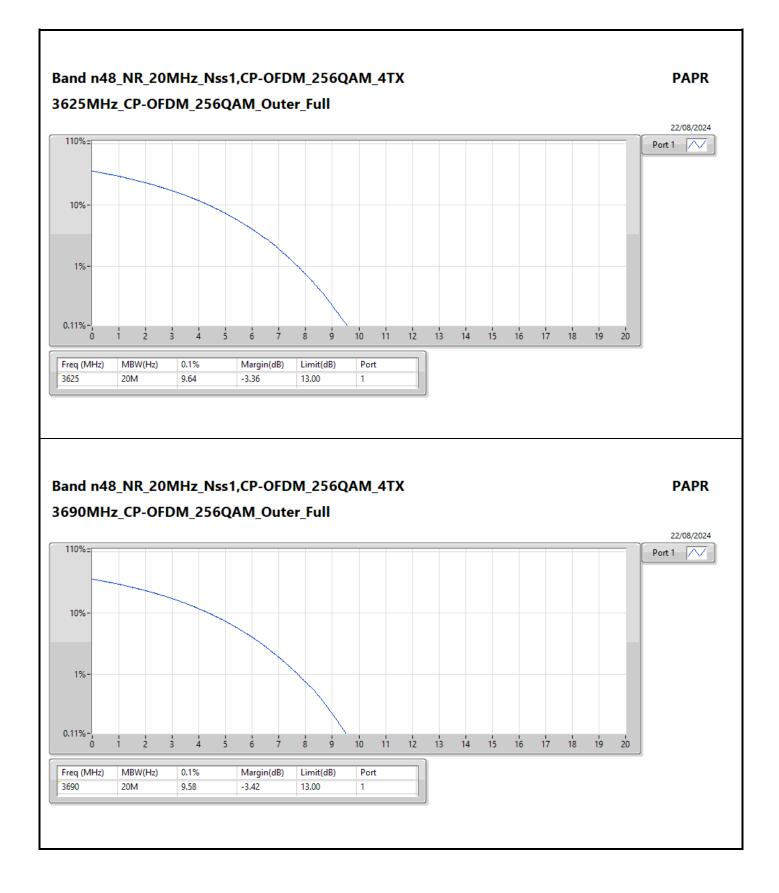

Result

Mode	Result	Freq	Limit	0.1%	Port
		(MHz)	(dB)		
Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	-	-	-	-	-
3560MHz_Outer_Full	Pass	3560	13.00	9.50	1
3625MHz_Outer_Full	Pass	3625	13.00	9.56	1
3690MHz_Outer_Full	Pass	3690	13.00	9.56	1
Band n48_NR_20MHz_Nss1,CP-OFDM_16QAM_4TX	-	-	-	-	-
3560MHz_Outer_Full	Pass	3560	13.00	9.44	1
3625MHz_Outer_Full	Pass	3625	13.00	9.36	1
3690MHz_Outer_Full	Pass	3690	13.00	9.48	1
Band n48_NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	-	-	-	-	-
3560MHz_Outer_Full	Pass	3560	13.00	9.44	1
3625MHz_Outer_Full	Pass	3625	13.00	9.60	1
3690MHz_Outer_Full	Pass	3690	13.00	9.54	1
Band n48_NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	-	-	-	-	-
3560MHz_Outer_Full	Pass	3560	13.00	9.60	1
3625MHz_Outer_Full	Pass	3625	13.00	9.64	1
3690MHz_Outer_Full	Pass	3690	13.00	9.58	1







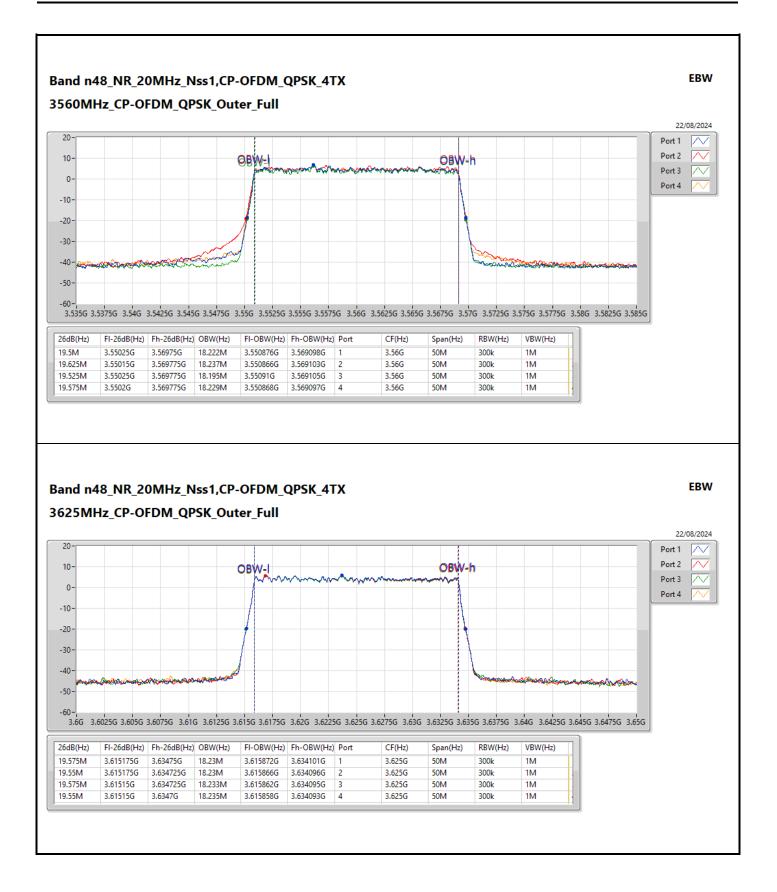


Summary

Mode	Max-NdB	Max-OBW	ITU-Code	Min-NdB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
Band n48	-	-	-	-	-
NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	19.625M	18.26M	18M3G7D	19.5M	18.195M
NR_20MHz_Nss1,CP-OFDM_16QAM_4TX	19.65M	18.27M	18M3W7D	19.45M	18.256M
NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	19.55M	18.226M	18M2W7D	19.35M	18.204M
NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	19.45M	18.193M	18M2W7D	19.275M	18.171M

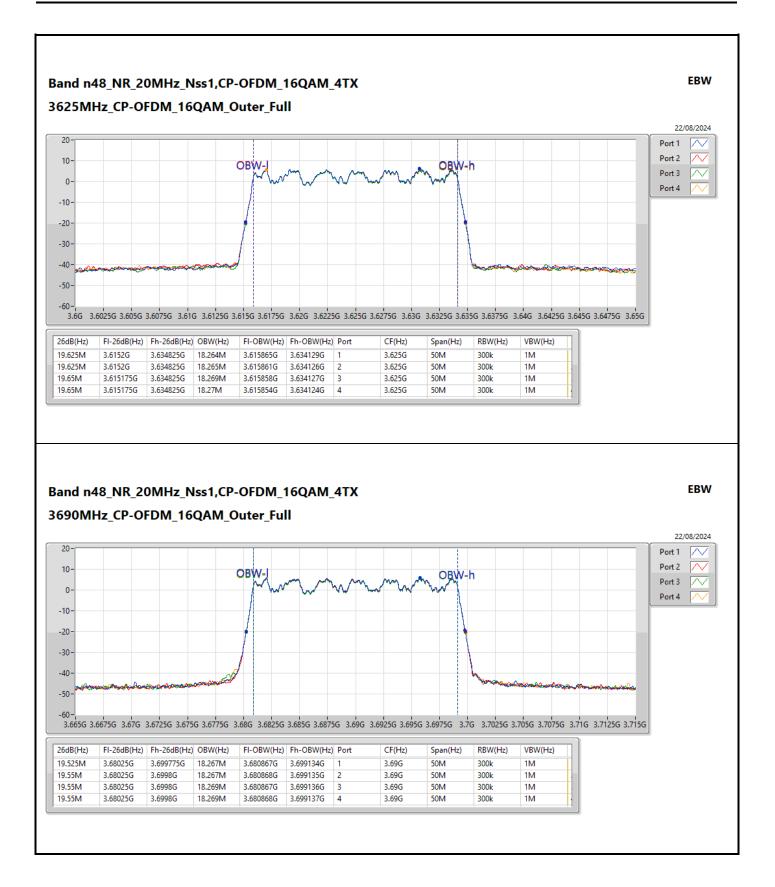
 $\label{eq:max-NdB} \begin{array}{l} Max-N \ dB = Maximum 26 dB \ down \ bandwidth; \ Max-OBW = Maximum 99\% \ occupied \ bandwidth; \\ Min-N \ dB = Minimum 26 dB \ down \ bandwidth; \ Min-OBW = Minimum 99\% \ occupied \ bandwidth; \\ \end{array}$

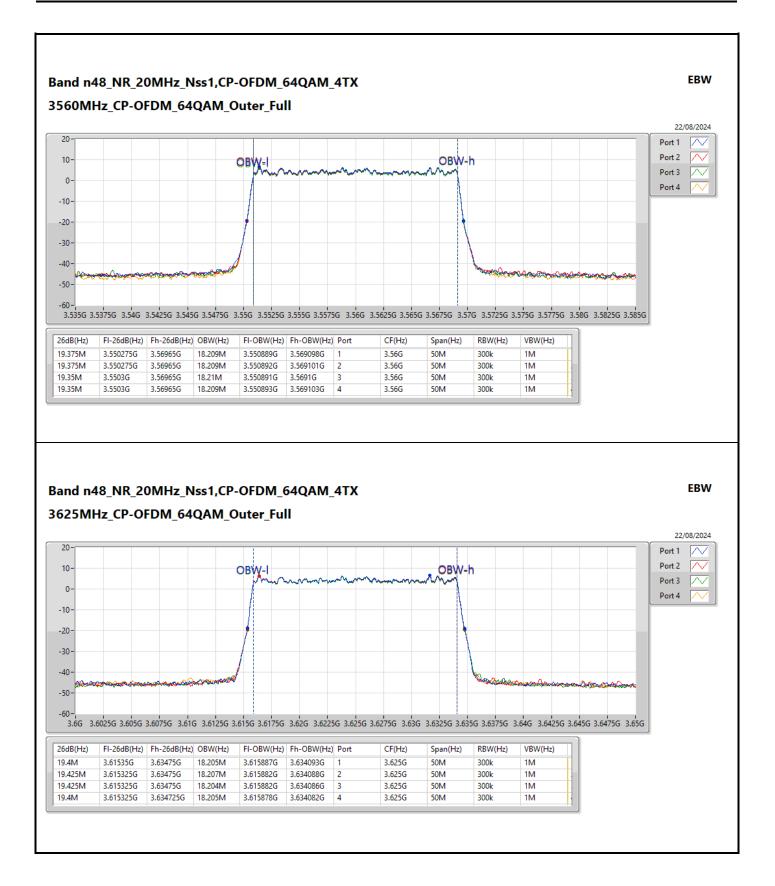
Appendix D

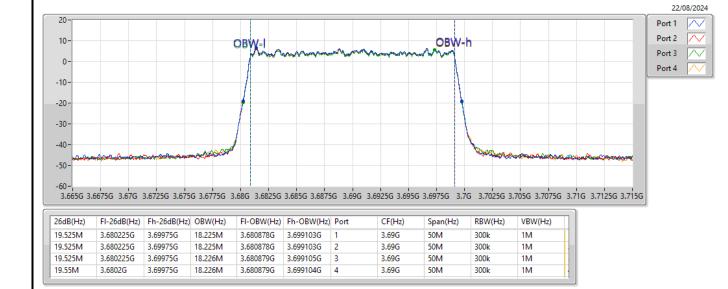

Result

Mode	Result	Port 1-NdB	Port 1-OBW	Limit	Port 2-NdB	Port 2-OBW	Limit	Port 3-NdB	Port 3-OBW	Limit	Port 4-NdB	Port 4-OBW	Limit
		(Hz)	(Hz)	(Hz)									
Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	-	-	-	-		-	-			-			-
3560MHz_Outer_Full	Pass	19.5M	18.222M	Inf	19.625M	18.237M	Inf	19.525M	18.195M	Inf	19.575M	18.229M	Inf
3625MHz_Outer_Full	Pass	19.575M	18.23M	Inf	19.55M	18.23M	Inf	19.575M	18.233M	Inf	19.55M	18.235M	Inf
3690MHz_Outer_Full	Pass	19.625M	18.26M	Inf									
Band n48_NR_20MHz_Nss1,CP-OFDM_16QAM_4TX	-		-	-		-	-			-	-		-
3560MHz_Outer_Full	Pass	19.45M	18.257M	Inf	19.45M	18.256M	Inf	19.45M	18.256M	Inf	19.45M	18.257M	Inf
3625MHz_Outer_Full	Pass	19.625M	18.264M	Inf	19.625M	18.265M	Inf	19.65M	18.269M	Inf	19.65M	18.27M	Inf
3690MHz_Outer_Full	Pass	19.525M	18.267M	Inf	19.55M	18.267M	Inf	19.55M	18.269M	Inf	19.55M	18.269M	Inf
Band n48_NR_20MHz_Nss1,CP-OFDM_64QAM_4TX	-		-	-	-	-	-		-	-	-	-	-
3560MHz_Outer_Full	Pass	19.375M	18.209M	Inf	19.375M	18.209M	Inf	19.35M	18.21M	Inf	19.35M	18.209M	Inf
3625MHz_Outer_Full	Pass	19.4M	18.205M	Inf	19.425M	18.207M	Inf	19.425M	18.204M	Inf	19.4M	18.205M	Inf
3690MHz_Outer_Full	Pass	19.525M	18.225M	Inf	19.525M	18.225M	Inf	19.525M	18.226M	Inf	19.55M	18.226M	Inf
Band n48_NR_20MHz_Nss1,CP-OFDM_256QAM_4TX	-		-	-		-	-			-	-		-
3560MHz_Outer_Full	Pass	19.45M	18.186M	Inf	19.425M	18.185M	Inf	19.45M	18.186M	Inf	19.45M	18.186M	Inf
3625MHz_Outer_Full	Pass	19.3M	18.171M	Inf	19.275M	18.172M	Inf	19.275M	18.176M	Inf	19.275M	18.177M	Inf
3690MHz_Outer_Full	Pass	19.35M	18.192M	Inf	19.35M	18.191M	Inf	19.35M	18.193M	Inf	19.35M	18.192M	Inf

Port X-N dB = Port X 26dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth







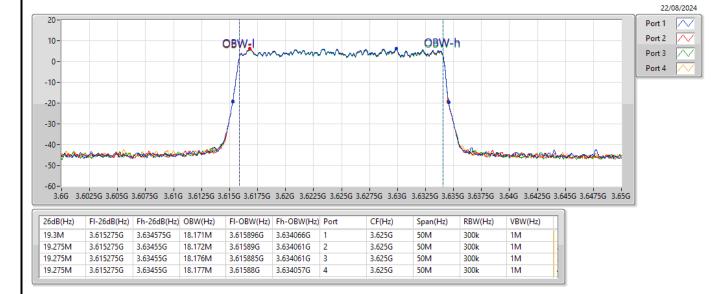
FBW

Band n48_NR_20MHz_Nss1,CP-OFDM_64QAM_4TX 3690MHz_CP-OFDM_64QAM_Outer_Full

Band n48_NR_20MHz_Nss1,CP-OFDM_256QAM_4TX

EBW

3560MHz_CP-OFDM_256QAM_Outer_Full 22/08/2024 20-Port 1 $\wedge \prime$ 10-Port 2 \wedge OBW-h OBW-Port 3 \sim 0-Port 4 -10 -20--30--40 -50--60 3.335G 3.5375G 3.54G 3.5425G 3.545G 3.545G 3.557G 3.5525G 3.5555G 3.5575G 3.5625G 3.56525G 3.5675G 3.5725G 3.5725G 3.5775G 3.5786 3.5825G 3.5825G 3.5855G 26dB(Hz) FI-26dB(Hz) Fh-26dB(Hz) OBW(Hz) FI-OBW(Hz) Fh-OBW(Hz) Port CF(Hz) RBW(Hz) VBW(Hz) Span(Hz) 19.45M 3.550275G 3.569725G 18.186M 3.550897G 3.569083G 3.56G 50M 300k 1M 1 19.425M 3.5503G 3.569725G 18.185M 3.5509G 3.569086G 3.56G 50M 300k 1M 2 19.45M 3.550275G 3.569725G 18.186M 3.550899G 3.569085G 3 3.56G 50M 300k 1M 19.45M 3.550275G 3.569725G 18.186M 3.550902G 3.569088G 4 3.56G 50M 300k 1M


FBW

Band n48_NR_20MHz_Nss1,CP-OFDM_256QAM_4TX

3625MHz_CP-OFDM_256QAM_Outer_Full

Band n48_NR_20MHz_Nss1,CP-OFDM_256QAM_4TX

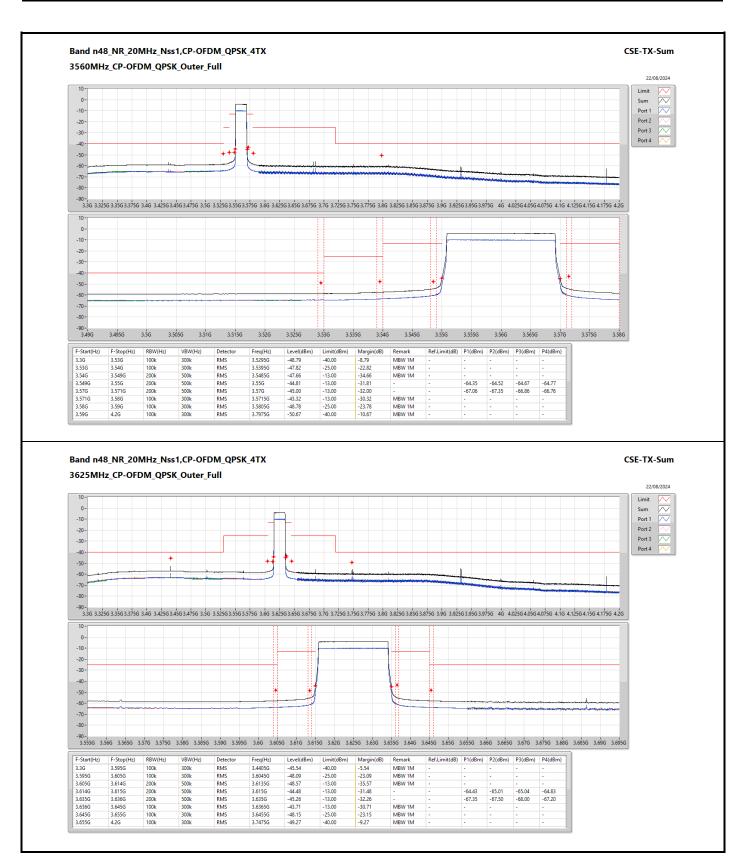
EBW

3690MHz_CP-OFDM_256QAM_Outer_Full 22/08/2024 20-Port 1 \wedge Port 2 \wedge 10-OBW-h OBW-I Port 3 \sim 0-Port 4 -10 -20--30--40 -50 -60 3.6655 3.6675 3.676 3.67256 3.6756 3.67756 3.686 3.68256 3.6856 3.68756 3.696 3.69256 3.6956 3.76 3.70256 3.70256 3.7056 3.716 3.71256 3.7156 26dB(Hz) FI-26dB(Hz) Fh-26dB(Hz) OBW(Hz) FI-OBW(Hz) Fh-OBW(Hz) Port CF(Hz) RBW(Hz) VBW(Hz) Span(Hz) 19.35M 3.6802G 3.69955G 18.192M 3.68088G 3.699072G 3.69G 50M 300k 1M 19.35M 3.680225G 3.699575G 18.191M 3.680881G 3.699072G 3.69G 50M 300k 1M 2 19.35M 3.680225G 3.699575G 18.193M 3.680881G 3.699074G 3 3.69G 50M 300k 1M 19.35M 3.680225G 3.699575G 18.192M 3.680881G 3.699073G 4 3.69G 50M 300k 1M

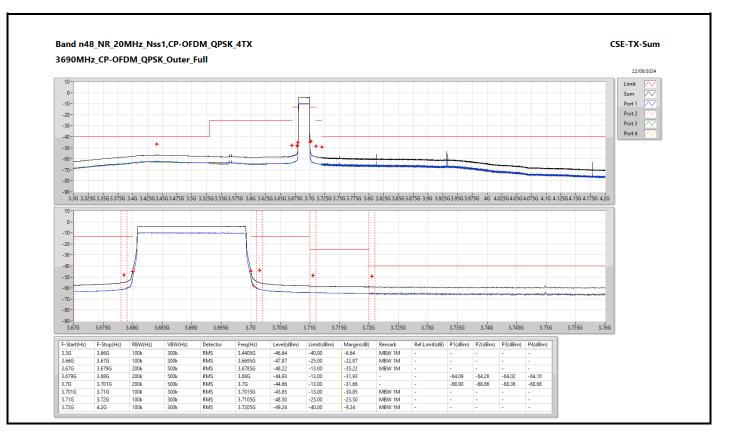
Appendix E.1

Summary

Mode	Result	F-Start (Hz)	F-Stop (Hz)	RBW (Hz)	VBW (Hz)	Detector	Freq (Hz)	Level (dBm)	Limit (dBm)	Margin (dB)	Remark	Ref.Limit (dB)
Band n48	-	-	-	-	-	-	-	-	-	-	-	-
NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	Pass	3.3G	3.595G	100k	300k	RMS	3.4405G	-45.54	-40.00	-5.54	MBW 1M	



Appendix E.1


Result

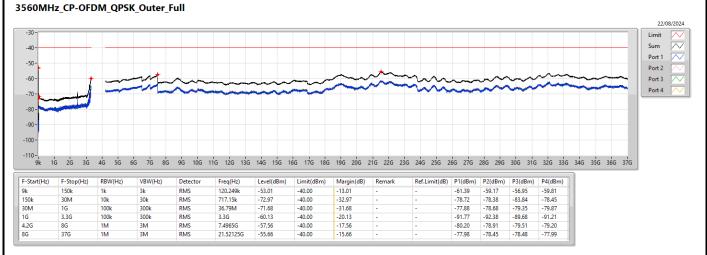
Mode	Result	F-Start	F-Stop	RBW	VBW	Detector	Freq	Level	Limit	Margin	Remark	Ref.Limit
		(Hz)	(Hz)	(Hz)	(Hz)		(Hz)	(dBm)	(dBm)	(dB)		(dB)
Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	-	-	-	-	-	-	-	-	-	-	-	-
3560MHz_Outer_Full	Pass	3.3G	3.53G	100k	300k	RMS	3.5295G	-48.79	-40.00	-8.79	MBW 1M	-
3560MHz_Outer_Full	Pass	3.53G	3.54G	100k	300k	RMS	3.5395G	-47.82	-25.00	-22.82	MBW 1M	-
3560MHz_Outer_Full	Pass	3.54G	3.549G	200k	500k	RMS	3.5485G	-47.66	-13.00	-34.66	MBW 1M	-
3560MHz_Outer_Full	Pass	3.549G	3.55G	200k	500k	RMS	3.55G	-44.81	-13.00	-31.81	-	-
3560MHz_Outer_Full	Pass	3.57G	3.571G	200k	500k	RMS	3.57G	-45.00	-13.00	-32.00	-	-
3560MHz_Outer_Full	Pass	3.571G	3.58G	100k	300k	RMS	3.5715G	-43.32	-13.00	-30.32	MBW 1M	-
3560MHz_Outer_Full	Pass	3.58G	3.59G	100k	300k	RMS	3.5805G	-48.78	-25.00	-23.78	MBW 1M	-
3560MHz_Outer_Full	Pass	3.59G	4.2G	100k	300k	RMS	3.7975G	-50.67	-40.00	-10.67	MBW 1M	-
3625MHz_Outer_Full	Pass	3.3G	3.595G	100k	300k	RMS	3.4405G	-45.54	-40.00	-5.54	MBW 1M	-
3625MHz_Outer_Full	Pass	3.595G	3.605G	100k	300k	RMS	3.6045G	-48.09	-25.00	-23.09	MBW 1M	-
3625MHz_Outer_Full	Pass	3.605G	3.614G	200k	500k	RMS	3.6135G	-48.57	-13.00	-35.57	MBW 1M	-
3625MHz_Outer_Full	Pass	3.614G	3.615G	200k	500k	RMS	3.615G	-44.48	-13.00	-31.48	-	-
3625MHz_Outer_Full	Pass	3.635G	3.636G	200k	500k	RMS	3.635G	-45.26	-13.00	-32.26	-	-
3625MHz_Outer_Full	Pass	3.636G	3.645G	100k	300k	RMS	3.6365G	-43.71	-13.00	-30.71	MBW 1M	-
3625MHz_Outer_Full	Pass	3.645G	3.655G	100k	300k	RMS	3.6455G	-48.15	-25.00	-23.15	MBW 1M	-
3625MHz_Outer_Full	Pass	3.655G	4.2G	100k	300k	RMS	3.7475G	-49.27	-40.00	-9.27	MBW 1M	-
3690MHz_Outer_Full	Pass	3.3G	3.66G	100k	300k	RMS	3.4405G	-46.64	-40.00	-6.64	MBW 1M	-
3690MHz_Outer_Full	Pass	3.66G	3.67G	100k	300k	RMS	3.6695G	-47.87	-25.00	-22.87	MBW 1M	-
3690MHz_Outer_Full	Pass	3.67G	3.679G	200k	500k	RMS	3.6785G	-48.22	-13.00	-35.22	MBW 1M	-
3690MHz_Outer_Full	Pass	3.679G	3.68G	200k	500k	RMS	3.68G	-44.93	-13.00	-31.93	-	-
3690MHz_Outer_Full	Pass	3.7G	3.701G	200k	500k	RMS	3.7G	-44.66	-13.00	-31.66	-	-
3690MHz_Outer_Full	Pass	3.701G	3.71G	100k	300k	RMS	3.7015G	-43.85	-13.00	-30.85	MBW 1M	-
3690MHz_Outer_Full	Pass	3.71G	3.72G	100k	300k	RMS	3.7105G	-48.50	-25.00	-23.50	MBW 1M	-
3690MHz_Outer_Full	Pass	3.72G	4.2G	100k	300k	RMS	3.7205G	-49.24	-40.00	-9.24	MBW 1M	-

Appendix E.2

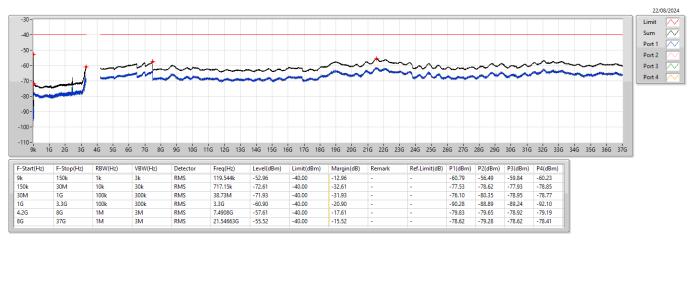
Summary

Mode	Result	F-Start (Hz)	F-Stop (Hz)	RBW (Hz)	VBW (Hz)	Detector	Freq (Hz)	Level (dBm)	Limit (dBm)	Margin (dB)	Remark	Ref.Limit (dB)
Band n48	-	-	-	-	-	-		-	-	-	-	-
NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	Pass	9k	150k	1k	3k	RMS	119.826k	-52.86	-40.00	-12.86	-	-

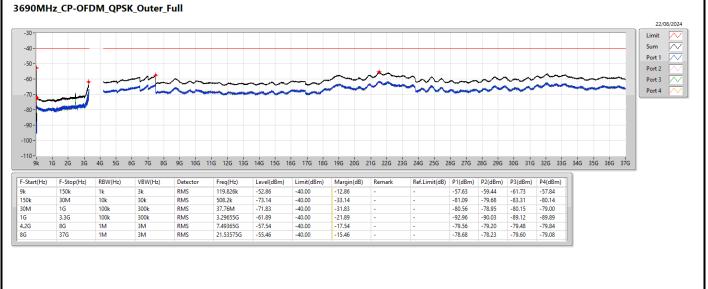
Appendix E.2


Result

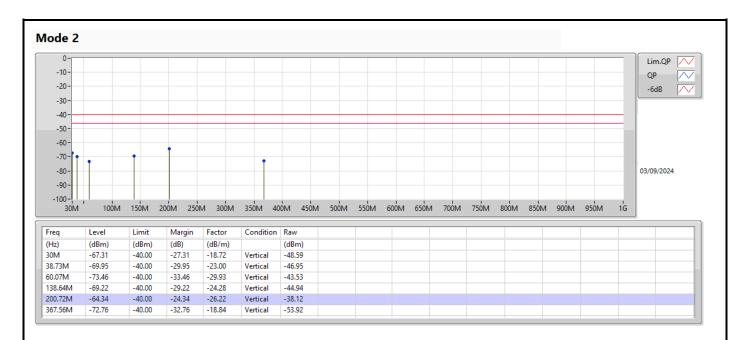
Mode	Result	F-Start	F-Stop	RBW	VBW	Detector	Freq	Level	Limit	Margin	Remark	Ref.Limit
	_	(Hz)	(Hz)	(Hz)	(Hz)		(Hz)	(dBm)	(dBm)	(dB)		(dB)
Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	-	-	-	-	-	-	-	-	-	-	-	-
3560MHz_Outer_Full	Pass	9k	150k	1k	3k	RMS	120.249k	-53.01	-40.00	-13.01	-	-
3560MHz_Outer_Full	Pass	150k	30M	10k	30k	RMS	717.15k	-72.97	-40.00	-32.97		-
3560MHz_Outer_Full	Pass	30M	1G	100k	300k	RMS	36.79M	-71.68	-40.00	-31.68	-	-
3560MHz_Outer_Full	Pass	1G	3.3G	100k	300k	RMS	3.3G	-60.13	-40.00	-20.13	-	-
3560MHz_Outer_Full	Pass	4.2G	8G	1M	3M	RMS	7.4965G	-57.56	-40.00	-17.56	-	-
3560MHz_Outer_Full	Pass	8G	37G	1M	3M	RMS	21.52125G	-55.66	-40.00	-15.66	-	-
3625MHz_Outer_Full	Pass	9k	150k	1k	3k	RMS	119.544k	-52.96	-40.00	-12.96	-	-
3625MHz_Outer_Full	Pass	150k	30M	10k	30k	RMS	717.15k	-72.61	-40.00	-32.61	-	-
3625MHz_Outer_Full	Pass	30M	1G	100k	300k	RMS	38.73M	-71.93	-40.00	-31.93	-	-
3625MHz_Outer_Full	Pass	1G	3.3G	100k	300k	RMS	3.3G	-60.90	-40.00	-20.90	-	-
3625MHz_Outer_Full	Pass	4.2G	8G	1M	3M	RMS	7.4908G	-57.61	-40.00	-17.61	-	-
3625MHz_Outer_Full	Pass	8G	37G	1M	3M	RMS	21.54663G	-55.52	-40.00	-15.52	-	-
3690MHz_Outer_Full	Pass	9k	150k	1k	3k	RMS	119.826k	-52.86	-40.00	-12.86	-	-
3690MHz_Outer_Full	Pass	150k	30M	10k	30k	RMS	508.2k	-73.14	-40.00	-33.14	-	-
3690MHz_Outer_Full	Pass	30M	1G	100k	300k	RMS	37.76M	-71.83	-40.00	-31.83	-	-
3690MHz_Outer_Full	Pass	1G	3.3G	100k	300k	RMS	3.29655G	-61.89	-40.00	-21.89	-	-
3690MHz_Outer_Full	Pass	4.2G	8G	1M	3M	RMS	7.49365G	-57.54	-40.00	-17.54	-	-
3690MHz_Outer_Full	Pass	8G	37G	1M	3M	RMS	21.53575G	-55.46	-40.00	-15.46	-	-

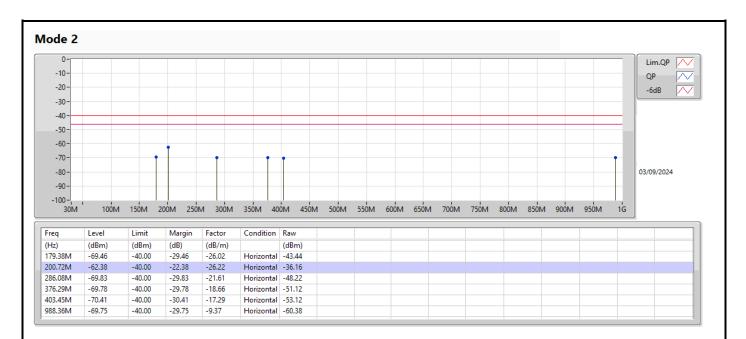


Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX


Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX 3625MHz_CP-OFDM_QPSK_Outer_Full

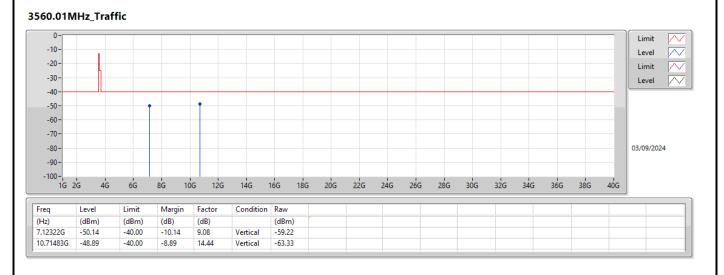
CSE-TX-Sum


Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX



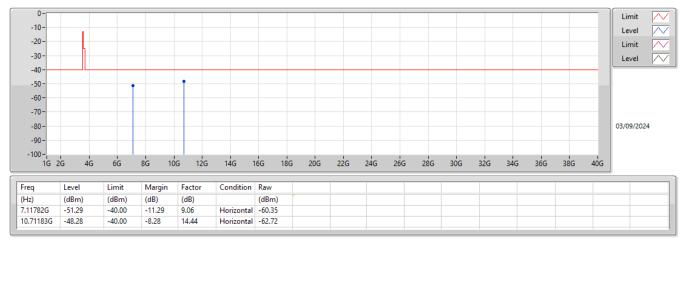
Summary							
Mode	Result	Туре	Freq	Level	Limit	Margin	Condition
			(Hz)	(dBm)	(dBm)	(dB)	
Mode 2	Pass	PK	200.72M	-62.38	-40.00	-22.38	Horizontal

Summary


Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBm)	(dBm)	(dB)	(dB)	(m)		(°)	(m)	
Band n48	-	-	-		-		-	-	-	-	-	-
NR_20MHz_CP-OFDM_QPSK	Pass	PK	10.92117G	-47.45	-40.00	-7.45	14.70	3	Vertical	183	1.50	-

DG = Directional Gain; Port n = Port n output power

DG = Directional Gain; Port n = Port n output power



Band n48_NR_20MHz_CP-OFDM_QPSK

Band n48_NR_20MHz_CP-OFDM_QPSK

3560.01MHz_Traffic

Frequency Stability

Appendix G

Summary

Mode	Result	Ch	Center	FI	Fh	ppm	Limit	Port	Remark
		(Hz)	(Hz)	(Hz)	(Hz)		(FI,Fh,ppm)		
Band n48	-	-	-	-	-	-	-	-	-
NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	Pass	3.56G	3.559987G	3.550877G	3.569096G	-3.7012	3.55G,3.7G,Inf	1	-

Result

Mode	Result	Ch (Hz)	Center (Hz)	FI (Hz)	Fh (Hz)	ppm	Limit (FI,Fh,ppm)	Port	Remark
Band n48_NR_20MHz_Nss1,CP-OFDM_QPSK_4TX	-	-	-	-	-	-	-	-	-
3560MHz_Outer_Full30°C	Pass	3.56G	3.559983G	3.55088G	3.569086G	-4.7159	3.55G,3.7G,Inf	1	-
3560MHz_Outer_Full20°C	Pass	3.56G	3.559983G	3.550883G	3.569083G	-4.6566	3.55G,3.7G,Inf	1	-
3560MHz_Outer_Full10°C	Pass	3.56G	3.559995G	3.550887G	3.569103G	-1.3318	3.55G,3.7G,Inf	1	-
3560MHz_Outer_Full_0°C	Pass	3.56G	3.559987G	3.550877G	3.569096G	-3.7012	3.55G,3.7G,Inf	1	-
3560MHz_Outer_Full_10°C	Pass	3.56G	3.559988G	3.55089G	3.569086G	-3.276	3.55G,3.7G,Inf	1	-
3560MHz_Outer_Full_20°C	Pass	3.56G	3.559997G	3.550897G	3.569097G	-0.9022	3.55G,3.7G,Inf	1	-
3560MHz_Outer_Full_30°C	Pass	3.56G	3.559994G	3.550895G	3.569094G	-1.5637	3.55G,3.7G,Inf	1	-
3560MHz_Outer_Full_40°C	Pass	3.56G	3.559992G	3.550885G	3.569099G	-2.2235	3.55G,3.7G,Inf	1	-
3560MHz_Outer_Full_50°C	Pass	3.56G	3.559988G	3.550885G	3.56909G	-3.4957	3.55G,3.7G,Inf	1	•
3560MHz_Outer_Full_138V	Pass	3.56G	3.559988G	3.550882G	3.569095G	-3.2477	3.55G,3.7G,Inf	1	
3560MHz_Outer_Full_120V	Pass	3.56G	3.559992G	3.550895G	3.569089G	-2.3345	3.55G,3.7G,Inf	1	-
3560MHz_Outer_Full_102V	Pass	3.56G	3.559988G	3.55089G	3.569086G	-3.3422	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full30°C	Pass	3.625G	3.624973G	3.615878G	3.634068G	-7.5256	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full20°C	Pass	3.625G	3.624982G	3.615883G	3.63408G	-5.0045	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full10°C	Pass	3.625G	3.624976G	3.615877G	3.634076G	-6.5982	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full_0°C	Pass	3.625G	3.624978G	3.615876G	3.634081G	-5.9689	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full_10°C	Pass	3.625G	3.624981G	3.615882G	3.634079G	-5.3471	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full_20°C	Pass	3.625G	3.624976G	3.615879G	3.634072G	-6.718	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full_30°C	Pass	3.625G	3.624979G	3.615872G	3.634086G	-5.7873	3.55G,3.7G,Inf	1	
3625MHz_Outer_Full_40°C	Pass	3.625G	3.624975G	3.615878G	3.634071G	-6.9994	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full_50°C	Pass	3.625G	3.624975G	3.615876G	3.634074G	-6.879	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full_138V	Pass	3.625G	3.624978G	3.615876G	3.63408G	-5.9348	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full_120V	Pass	3.625G	3.624984G	3.615886G	3.634082G	-4.3974	3.55G,3.7G,Inf	1	-
3625MHz_Outer_Full_102V	Pass	3.625G	3.624976G	3.615876G	3.634076G	-6.7277	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full30°C	Pass	3.69G	3.689984G	3.680883G	3.699084G	-4.4151	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full20°C	Pass	3.69G	3.689992G	3.680883G	3.6991G	-2.2748	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full10°C	Pass	3.69G	3.689987G	3.680881G	3.699093G	-3.529	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full_0°C	Pass	3.69G	3.689988G	3.680885G	3.699091G	-3.2836	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full_10°C	Pass	3.69G	3.689986G	3.680886G	3.699087G	-3.6699	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full_20°C	Pass	3.69G	3.689985G	3.680883G	3.699088G	-4.0106	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full_30°C	Pass	3.69G	3.689984G	3.68088G	3.699089G	-4.2365	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full_40°C	Pass	3.69G	3.689992G	3.680884G	3.699099G	-2.2412	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full_50°C	Pass	3.69G	3.689981G	3.680877G	3.699084G	-5.2516	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full_138V	Pass	3.69G	3.689985G	3.680875G	3.699094G	-4.158	3.55G,3.7G,Inf	1	-
3690MHz_Outer_Full_120V	Pass	3.69G	3.689985G	3.680879G	3.699091G	-3.988	3.55G,3.7G,Inf	1	-
3690MHz Outer Full 102V	Pass	3.69G	3.689991G	3.680883G	3.699098G	-2.5346	3.55G,3.7G,Inf	1	-