FCC Test Report

FCC ID : NKR-P75

Equipment : Wireless LAN Adaptor

Model No. : DNUA-P75

Brand Name : Panasonic

Applicant : Wistron NeWeb Corp.

Address : 20 Park Avenue II, Hsinchu Science Park,

Hsinchu 308, Taiwan, R.O.C.

Standard : 47 CFR FCC Part 15.407

Received Date : Aug. 01, 2013

Tested Date : Aug. 08 ~ Aug. 26, 2013

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Iac-MRA

Page: 1 of 83

Report No.: FR380101AN
Report Version: Rev. 01

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	
1.3	Test Setup Chart	
1.4	The Equipment List	g
1.5	Testing Applied Standards	11
1.6	Measurement Uncertainty	11
2	TEST CONFIGURATION	12
2.1	Testing Condition	12
2.2	The Worst Test Modes and Channel Details	12
3	TRANSMITTER TEST RESULTS	13
3.1	Conducted Emissions	
3.2	Emission Bandwidth	16
3.3	RF Output Power	19
3.4	Peak Power Spectral Density	21
3.5	Peak Excursion	24
3.6	Transmitter Radiated and Band Edge Emissions	27
37	Frequency Stability	82

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Release Record

Report No.	Version	Description	Issued Date
FR380101AN	Rev. 01	Initial issue	Sep. 06, 2013

Report No.: FR380101AN Page: 3 of 83

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.150MHz 45.82 (Margin -10.18dB) - AV	Pass
15.407(b) 15.209	Radiated Emissions	[dBuV/m at 3m]: 5470.00MHz 72.96 (Margin -1.04dB) - Peak	Pass
15.407(a)	Emission Bandwidth	Meet the requirement of limit	Pass
15.407(a)	RF Output Power	Power [dBm]: 5150~5250 MHz:16.51 5250~5350 MHz: 20.43 5470~5725 MHz: 20.00	Pass
15.407(a)	Peak Power Spectral Density	Meet the requirement of limit	Pass
15.407(a)	Peak Excursion	Meet the requirement of limit	Pass
15.407(g)	Frequency Stability	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR380101AN Page: 4 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS		
5150-5250 5250-5350 5470-5725	а	5180-5240 5260-5320 5500-5700	36-48 [4] 52-64 [4] 100-140 [8]	2	6-54 Mbps		
5150-5250 5250-5350 5470-5725	n (HT20)	5180-5240 5260-5320 5500-5700	36-48 [4] 52-64 [4] 100-140 [8]	2	MCS 0-15		
5150-5250 5250-5350 5470-5725	n (HT40)	5190-5230 5270-5310 5510-5670	38-46 [2] 54-62 [2] 102-134 [3]	2	MCS 0-15		

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Details

Ant.	Model	Type	Connector	Ор	erating Fred	quency (MHz	z) / Gain (dB	i)
No.	Wodei	Туре	Connector	2400~2483.5	5150~5250	5250~5350	5470~5725	5725~5850
1	ANT0 (Left)	Printed	NA	1.82	2.49	2.49	2.32	2.32
2	ANT1 (Right)	Printed	NA	-1.56	2.74	2.78	3.28	2.2

1.1.3 EUT Operational Condition

Supply Voltage	☐ AC mains	DC (5Vdc)	
Type of DC Source	☐ Internal DC supply	☐ External DC adapter	

1.1.4 Accessories

N/A

Report No.: FR380101AN Page: 5 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

1.1.5 Channel List

Frequency	y band (MHz)	5150)~5725		
802.11	a / n HT20	802.1	2.11n HT40		
Channel	Frequency(MHz)	Channel	Frequency(MHz)		
36	5180	38	5190		
40	5200	46	5230		
44	5220	54	5270		
48	5240	62	5310		
52	5260	102	5510		
56	5280	110	5550		
60	5300	134	5670		
64	5320				
100	5500				
104	5520				
108	5540				
112	5560				
116	5580				
132	5660				
136	5680				
140	5700				

1.1.6 Test Tool and Duty Cycle

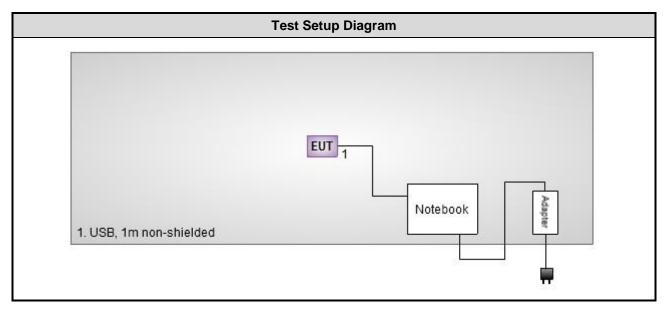
Test Tool	ART2-GUI V2.3
Duty Cycle Of Test Signal (%)	99.23% - IEEE 802.11a 99.17% - IEEE 802.11n (HT20) 98.20% - IEEE 802.11n (HT40)
Duty Factor	0.03 - IEEE 802.11a 0.04 - IEEE 802.11n (HT20) 0.08 - IEEE 802.11n (HT40)

Report No.: FR380101AN Page: 6 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

1.1.7 Power Setting

Ohamad	F		Modulation Mode	
Channel	Frequency(MHz)	11a	HT20	HT40
CH 36	5180	14	14	
CH 40	5200	14	14	
CH 48	5240	14.5	14.5	
CH 52	5260	19	19	
CH 60	5300	19	19	
CH 64	5320	17.5	17.5	
CH 100	5500	16	16	
CH 116	5580	18	18	
CH 140	5700	14.5	14.5	
CH 38	5190			12.5
CH 46	5230			14.5
CH 54	5270			20
CH 62	5310			12.5
CH 102	5510			12.5
CH 110	5550			20
CH 134	5670			16


Report No.: FR380101AN Page: 7 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

1.2 Local Support Equipment List

Support Equipment List							
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)	
1	Notebook	DELL	E5430		DoC	USB 1m non-shielded cable w/o core.	

1.3 Test Setup Chart

Report No.: FR380101AN Page: 8 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

The Equipment List 1.4

Manufacturer R&S SCHWARZBECK ESS-ELEKTRONIK SCHWARZBECK ESS-ELEKTRONIK	Model No. ESCS 30 Schwarzbeck 8127	Serial No. 100169 8127-667	Calibration Date Oct. 02, 2012	Calibration Until Oct. 01, 2013			
R&S SCHWARZBECK ESS-ELEKTRONIK SCHWARZBECK	ESCS 30	100169		2012 Oct. 01, 2013 , 2012 Dec. 03, 2013 , 2012 Dec. 03, 2013 2013 Apr. 07, 2014 2013 Apr. 08, 2014 , 2012 Sep. 16, 2013 , 2013 Jan. 23, 2014			
SCHWARZBECK ESS-ELEKTRONIK SCHWARZBECK			Oct. 02, 2012	Oct. 01, 2013			
ESS-ELEKTRONIK SCHWARZBECK	Schwarzbeck 8127	8127-667		i '			
			Dec. 04, 2012	Dec. 03, 2013			
LOG ELEKTRONIK	Schwarzbeck 8127	8127-666	Dec. 04, 2012	Dec. 03, 2013			
TESEQ	ISN T800	34406	Apr. 08, 2013	Apr. 07, 2014			
TESEQ	ISN T200A	30494	Apr. 09, 2013	Apr. 08, 2014			
TESEQ	ISN T8-Cat6	27262	Sep. 17, 2012	Sep. 16, 2013			
TESEQ	ISN ST08	22589	Jan. 24, 2013	Jan. 23, 2014			
FCC	F-33-4	121630	Dec. 04, 2012	Dec. 03, 2013			
Woken	CFD200-NL	CFD200-NL-001	Dec. 25, 2012	Dec. 24, 2013			
R&S	ESH3-Z6	100920	Nov. 21, 2012	Nov. 20, 2013			
R&S	ESH3-Z6	100951	Jan. 30, 2013	Jan. 29, 2014			
R&S	ENV216	101579	Jan. 07, 2013	Jan. 06, 2014			
NA	50	01	Apr. 22, 2013	Apr. 21, 2014			
NA	50	02	Apr. 22, 2013	Apr. 21, 2014			
NA	50	03	Apr. 22, 2013	Apr. 21, 2014			
NA	50	04	Apr. 22, 2013	Apr. 21, 2014			
	TESEQ TESEQ TESEQ FCC Woken R&S R&S R&S NA NA NA	TESEQ ISN T200A TESEQ ISN T8-Cat6 TESEQ ISN ST08 FCC F-33-4 Woken CFD200-NL R&S ESH3-Z6 R&S ENV216 NA 50 NA 50 NA 50	TESEQ ISN T200A 30494 TESEQ ISN T8-Cat6 27262 TESEQ ISN ST08 22589 FCC F-33-4 121630 Woken CFD200-NL CFD200-NL-001 R&S ESH3-Z6 100920 R&S ESH3-Z6 100951 R&S ENV216 101579 NA 50 01 NA 50 03 NA 50 03 NA 50 04	TESEQ ISN T200A 30494 Apr. 09, 2013 TESEQ ISN T8-Cat6 27262 Sep. 17, 2012 TESEQ ISN ST08 22589 Jan. 24, 2013 FCC F-33-4 121630 Dec. 04, 2012 Woken CFD200-NL CFD200-NL-001 Dec. 25, 2012 R&S ESH3-Z6 100920 Nov. 21, 2012 R&S ESH3-Z6 100951 Jan. 30, 2013 R&S ENV216 101579 Jan. 07, 2013 NA 50 01 Apr. 22, 2013 NA 50 02 Apr. 22, 2013 NA 50 03 Apr. 22, 2013 NA 50 04 Apr. 22, 2013			

Report No.: FR380101AN Page: 9 of 83

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Test Item	Radiated Emission above 1GHz						
Test Site	966 chamber1 / (03Ch	H01-WS)			Calibration Until Jan. 03, 2014 Jan. 23, 2014 Jan. 27, 2014 Jan. 10, 2014 Feb. 17, 2014 Jan. 13, 2014		
Instrument	Manufacturer Model No.		Serial No.	Calibration Date	Calibration Until		
3m semi-anechoic chamber	CHAMPRO	SAC-03	03CH01-WS	Jan. 04, 2013	Jan. 03, 2014		
Spectrum Analyzer	R&S	FSV40	101498	Jan. 24, 2013	Jan. 23, 2014		
Receiver	ROHDE&SCHWAR Z	ESR3	101658	Jan. 28, 2013	Jan. 27, 2014		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jan. 11, 2013	Jan. 10, 2014		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Feb. 18, 2013	Feb. 17, 2014		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Jan. 14, 2013	Jan. 13, 2014		
Amplifier	Burgeon	BPA-530	100219	Nov. 28, 2012	Nov. 27, 2013		
Amplifier	Agilent	83017A	MY39501308	Dec. 18, 2012	Dec. 17, 2013		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 25, 2012	Dec. 24, 2013		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 25, 2012	Dec. 24, 2013		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 25, 2012	Dec. 24, 2013		
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-001	Dec. 25, 2012	Dec. 24, 2013		
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-002	Dec. 25, 2012	Dec. 24, 2013		
control	EM Electronics	EM1000	60612	N/A	N/A		

Loop Antenna	R&S	HFH2-Z2	100330	Nov. 15, 2012	Nov. 14, 2014					
Amplifier	MITEQ	AMF-6F-260400 9121372		Apr. 19, 2013	Apr. 18, 2015					
Note: Calibration Interv	Note: Calibration Interval of instruments listed above is two year.									

Test Item	RF Conducted	RF Conducted												
Test Site	(TH01-WS)	(TH01-WS)												
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until									
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014									
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 29, 2012	Nov. 28, 2013									
Power Meter	Anritsu	ML2495A	1241002	Oct. 15, 2012	Oct. 14, 2013									
Power Sensor	Anritsu	MA2411B	1027366	Oct. 24, 2012	Oct. 23, 2013									
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014									
Note: Calibration Inter-	val of instruments listed	d above is one year.			Note: Calibration Interval of instruments listed above is one year.									

Report No.: FR380101AN Page: 10 of 83

1.5 Testing Applied Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.407

ANSI C63.10-2009

FCC KDB 412172

FCC KDB 789033 D01 General UNII Test procedures v01r03

FCC KDB 662911 D01 Multiple Transmitter Output v02

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty								
Parameters	Uncertainty							
Bandwidth	±74.147 Hz							
Conducted power	±0.717 dB							
Power density	±2.687 dB							
Frequency error	±74.147 Hz							
Temperature	±0.3 °C							
AC conducted emission	±2.43 dB							
Radiated emission	±2.49 dB							

Report No.: FR380101AN Page: 11 of 83

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 68%	Peter Lin
Radiated Emissions	03CH02-WS	24°C / 65%	Mark Liao
RF Conducted	TH01-WS	25°C / 62%	Felix Sung

FCC site registration No.: 657002IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data rate (Mbps) / MCS	Test Configuration
Conducted Emissions	HT40	5270	MCS 0	
Radiated Emissions (below 1GHz)	HT40	5270	MCS 0	
Radiated Emissions >1GHz	11a	5180 / 5200 / 5240 / 5260 / 5300 5320 / 5500 / 5580 / 5700	6	
RF Output Power Emission Bandwidth Peak Power Spectral Density	HT20	5180 / 5200 / 5240 / 5260 / 5300 5320 / 5500 / 5580 / 5700	MCS 0	
	HT40	5190 / 5230/ 5270 / 5310 / 5510 5550 / 5670	MCS 0	
	11a	5180 / 5260 / 5580	6	
Peak Excursion	HT20	5240 / 5300 / 5580	MCS 0	
	HT40	5230 / 5270 / 5550	MCS 0	
Frequency Stability	Un-modulation	5320		

NOTE:

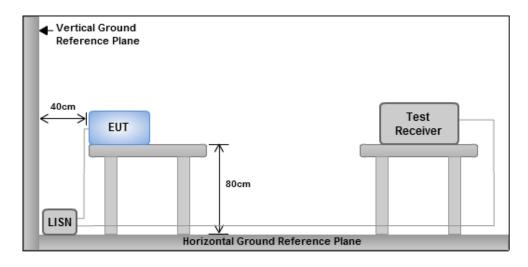
Report No.: FR380101AN Page: 12 of 83

^{1.} The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **X-plane** results were found as the worst case and were shown in this report.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

3 Transmitter Test Results

3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

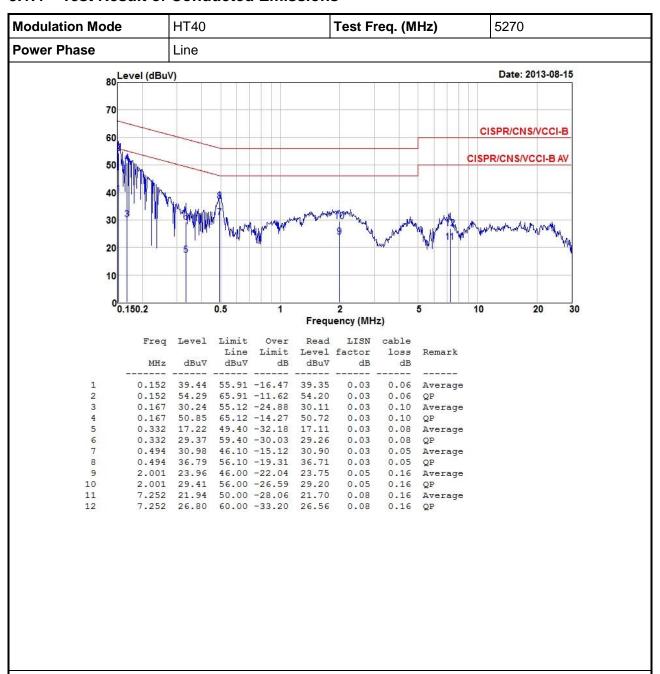
Conducted Emissions Limit								
Frequency Emission (MHz) Quasi-Peak Average								
0.15-0.5	66 - 56 *	56 - 46 *						
0.5-5	56	46						
5-30	60	50						
Note 1: * Decreases with the logarithm of the frequency.								

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

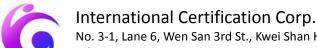
3.1.3 Test Setup

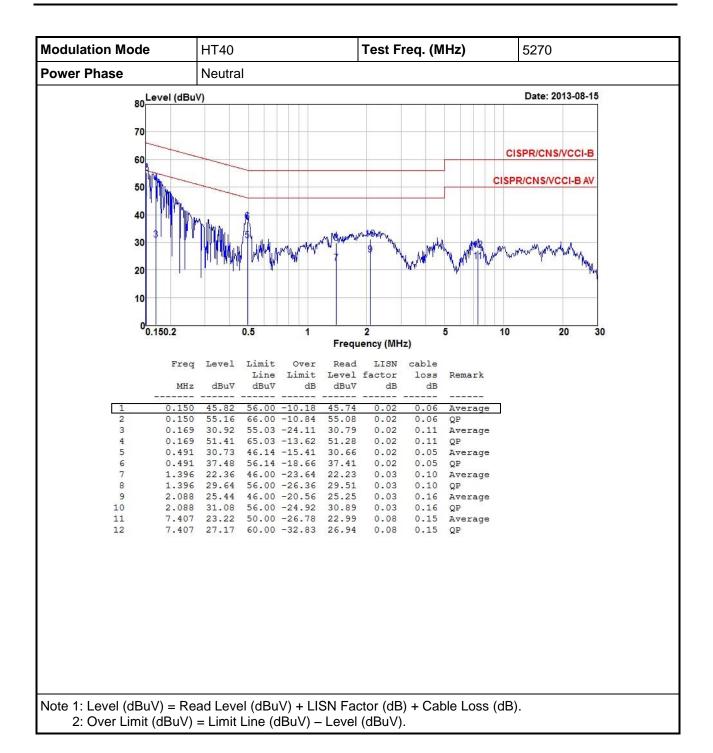
Note: 1. Support units were connected to second LISN.


Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR380101AN Page: 13 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

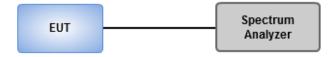

3.1.4 Test Result of Conducted Emissions


Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).

2: Over Limit (dBuV) = Limit Line (dBuV) – Level (dBuV).

Report No.: FR380101AN Page: 14 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155


Report No.: FR380101AN Page: 15 of 83

3.2 Emission Bandwidth

3.2.1 Test Procedures

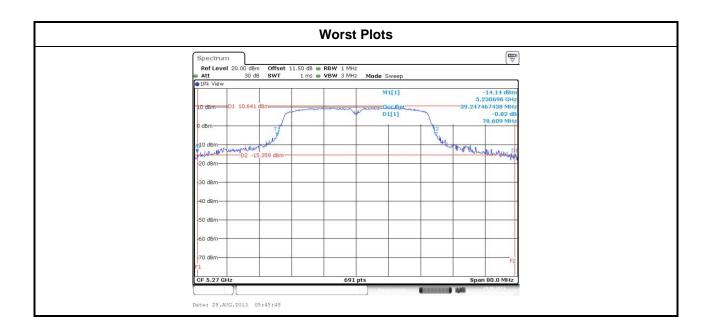
- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set the VBW > RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

3.2.2 Test Setup

Report No.: FR380101AN Page: 16 of 83

International Certification Corp. No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155


3.2.3 Test Result of Emission Bandwidth

Modulation	N	Freq.	26dE	Band	width (l	MHz)	99%	Bandy	vidth (N	ΛΗz)	Limit	(dBm)
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Chain 0	Chain 1	Chain 2	Chain 3	26dB BW	99% BW
11a	2	5180	33.22	27.42			17.42	17.13	1	-	17.00	16.34
11a	2	5200	28.23	31.36			17.19	17.42	-		17.00	16.35
11a	2	5240	28.41	31.54			17.31	17.25			17.00	16.37
11a	2	5260	38.09	37.33			20.55	20.32			24.00	24.00
11a	2	5300	37.33	36.99			19.57	20.03			24.00	23.92
11a	2	5320	36.75	37.74			18.70	19.45			24.00	23.72
11a	2	5500	32.58	33.86			17.66	17.48			24.00	23.43
11a	2	5580	36.00	37.22			18.81	20.72			24.00	23.74
11a	2	5700	30.55	34.61			17.48	17.60			24.00	23.43
HT20	2	5180	24.52	33.74			18.00	18.35			17.00	16.55
HT20	2	5200	24.93	35.71			18.12	18.35			17.00	16.58
HT20	2	5240	26.84	32.64			18.12	18.29			17.00	16.58
HT20	2	5260	38.09	36.12			19.45	18.58			24.00	23.69
HT20	2	5300	36.52	37.68			18.93	19.10			24.00	23.77
HT20	2	5320	36.23	37.97			18.70	20.49			24.00	23.72
HT20	2	5500	33.97	34.72			18.41	18.52			24.00	23.65
HT20	2	5580	37.97	37.91			20.26	21.19			24.00	24.00
HT20	2	5700	30.09	33.04			18.23	18.23			24.00	23.61
HT40	2	5190	49.04	55.88			37.40	37.28			17.00	17.00
HT40	2	5230	52.52	67.83			37.63	37.86			17.00	17.00
HT40	2	5270	78.26	78.61			39.02	39.25			24.00	24.00
HT40	2	5310	50.09	62.84			37.28	37.28			24.00	24.00
HT40	2	5510	47.77	56.00			37.51	37.28			24.00	24.00
HT40	2	5550	71.88	71.88			38.90	38.55			24.00	24.00
HT40	2	5670	78.38	77.68			39.59	39.13			24.00	24.00

Report No.: FR380101AN Page: 17 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Report No.: FR380101AN Page: 18 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

RF Output Power 3.3

3.3.1 **Limit of RF Output Power**

	Frequency Band (GHz)	Limit					
\boxtimes	5.15~5.25	50mW or 4dBm+10 log B					
\boxtimes	5.25~5.35	250mW or 11dBm+10 log B					
	5.47~5.725	250mW or 11dBm+10 log B					
Note	Note: "B" is the 26dB emission bandwidth in MHz.						

3.3.2 Test Procedures

Method PM-G (Measurement using a gated RF average power meter)

Measurements may is performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.3.3 **Test Setup**

Report No.: FR380101AN Page: 19 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

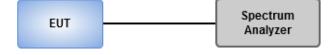
3.3.4 Test Result of Maximum Conducted Output Power

Modulation	F	Freq.	Average Power (dBm)				Total	Total	Limit
Mode	N _{TX}	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	Power (mW)	Power (dBm)	(dBm)
11a	2	5180	13.42	13.51			44.417	16.48	17.00
11a	2	5200	13.16	13.31			42.130	16.25	17.00
11a	2	5240	13.11	13.32			41.943	16.23	17.00
11a	2	5260	16.36	16.92			92.455	19.66	24.00
11a	2	5300	16.11	16.78			88.475	19.47	24.00
11a	2	5320	15.10	15.71			69.599	18.43	24.00
11a	2	5500	14.01	14.32			52.216	17.18	24.00
11a	2	5580	15.11	15.04			64.349	18.09	24.00
11a	2	5700	12.76	12.26			35.707	15.53	24.00
HT20	2	5180	13.11	13.35			42.092	16.24	17.00
HT20	2	5200	13.06	13.32			41.708	16.20	17.00
HT20	2	5240	13.20	13.42			42.872	16.32	17.00
HT20	2	5260	16.40	16.68			90.210	19.55	24.00
HT20	2	5300	15.94	16.92			88.468	19.47	24.00
HT20	2	5320	14.92	15.86			69.593	18.43	24.00
HT20	2	5500	13.89	14.12			50.313	17.02	24.00
HT20	2	5580	15.08	15.29			66.017	18.20	24.00
HT20	2	5700	12.63	12.14			34.691	15.40	24.00
HT40	2	5190	10.21	10.92			22.855	13.59	17.00
HT40	2	5230	13.36	13.63			44.745	16.51	17.00
HT40	2	5270	17.16	17.67			110.479	20.43	24.00
HT40	2	5310	9.28	10.36			19.337	12.86	24.00
HT40	2	5510	9.43	9.51			17.703	12.48	24.00
HT40	2	5550	16.91	17.06			99.907	20.00	24.00
HT40	2	5670	14.19	13.51			48.681	16.87	24.00

Report No.: FR380101AN Page: 20 of 83

3.4 Peak Power Spectral Density

3.4.1 Limit of Peak Power Spectral Density


	Frequency Band (GHz)	Limit (dBm)
\boxtimes	5.15~5.25	4
\boxtimes	5.25~5.35	11
	5.47~5.725	11

3.4.2 Test Procedures

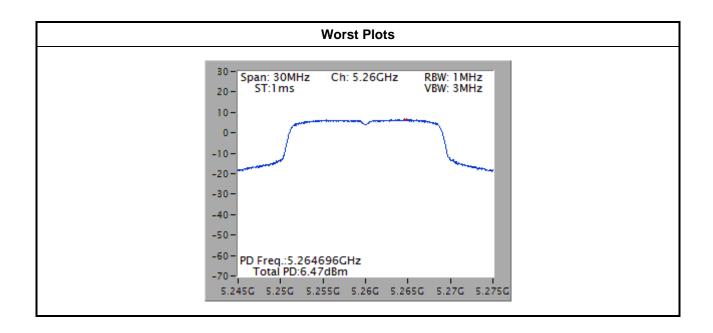
- Method SA-1
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average 100 traces.
 - 3. Use the peak marker function to determine the maximum amplitude level.
- ☐ Method SA-2
 - 1. Set RBW = 1 MHz, VBW = 3 MHz, Sweep time = auto, Detector = RMS.
 - 2. Trace average at 100 traces
 - 3. Use the peak marker function to determine the maximum amplitude level.
 - 4. Add $10 \log(1/x)$, where x is the duty cycle
- - 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = RMS.
 - 2. Set sweep time \geq 10 * (number of points in sweep) * (total on/off period of the transmitted signal).
 - 3. Perform a single sweep.
 - 4. Use the peak marker function to determine the maximum amplitude level.
 - 5. Add 10 $\log(1/x)$, where x is the duty cycle.

Note: 11a and HT20 uses Method SA-1, HT40 uses Method SA-2 Alternative.

3.4.3 Test Setup

Report No.: FR380101AN Page: 21 of 83

3.4.4 Test Result of Peak Power Spectral Density


Modulation Mode	N _{TX}	Freq. (MHz)	PSD (dBm)	Duty Factor (dB)	Total PSD (dBm)	Limit (dBm)
11a	2	5180	3.87	0	3.87	4
11a	2	5200	3.63	0	3.63	4
11a	2	5240	3.44	0	3.44	4
11a	2	5260	6.47	0	6.47	11
11a	2	5300	6.22	0	6.22	11
11a	2	5320	5.12	0	5.12	11
11a	2	5500	4.04	0	4.04	11
11a	2	5580	6.16	0	6.16	11
11a	2	5700	2.30	0	2.30	11
HT20	2	5180	3.57	0	3.57	4
HT20	2	5200	200 3.61 0 3.61		3.61	4
HT20	2	5240	3.60	0	3.60	4
HT20	2	5260	6.20	0	6.20	11
HT20	2	5300	6.07	0	6.07	11
HT20	2	5320	4.75	0	4.75	11
HT20	2	5500	3.27	0	3.27	11
HT20	2	5580	6.10	0	6.10	11
HT20	2	5700	2.22	0	2.22	11
HT40	2	5190	-2.88	0	-2.88	4
HT40	2	5230	-0.24	0	-0.24	4
HT40	2	5270	3.91	0	3.91	11
HT40	2	5310	-3.27	0	-3.27	11
HT40	2	5510	-3.90	0	-3.90	11
HT40	2	5550	3.56	0	3.56	11
HT40	2	5670	0.72	0	0.72	11

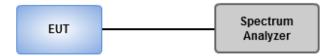
Note: Test result is bin-by-bin summing measured value of each TX port.

Report No.: FR380101AN Page: 22 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Report No.: FR380101AN Page: 23 of 83

3.5 Peak Excursion


3.5.1 Peak Excursion Limit

Peak excursion of the modulation envelope shall not exceed 13 dB across any 1 MHz bandwidth.

3.5.2 Test Procedures

- 1. Set RBW = 1 MHz, VBW = 3 MHz, Detector = peak.
- 2. Trace mode = max-hold. Allow the sweeps to continue until the trace stabilizes.
- 3. Use the peak search function to find the peak of the spectrum.
- 4. Use the procedure of section 3.4.2 to measure the PPSD.
- 5. Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD

3.5.3 Test Setup

Report No.: FR380101AN Page: 24 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

3.5.4 Test Result of Peak Excursion

Mode	Modulation Mode	N _{TX}	Freq. (MHz)	Measured value(dB)	Duty factor (dB)	Peak Excursion (dB)	Limit
11a	BPSK	2	5180	8.95	0.00	8.95	13
11a	QPSK	2	5180	8.79	0.00	8.79	13
11a	16QAM	2	5180	9.37	0.23	9.14	13
11a	64QAM	2	5180	9.84	0.48	9.36	13
HT20	BPSK	2	5240	7.93	0.00	7.93	13
HT20	QPSK	2	5240	9.03	0.00	9.03	13
HT20	16QAM	2	5240	9.64	0.23	9.41	13
HT20	64QAM	2	5240	9.33	0.48	8.85	13
HT40	BPSK	2	5230	9.22	0.00	9.22	13
HT40	QPSK	2	5230	8.9	0.25	8.65	13
HT40	16QAM	2	5230	9.32	0.45	8.87	13
HT40	64QAM	2	5230	9.48	0.87	8.61	13

Mode	Modulation Mode	N _{TX}	Freq. (MHz)	Measured value(dB)	Duty factor (dB)	Peak Excursion (dB)	Limit
11a	BPSK	2	5260	8.05	0.00	8.05	13
11a	QPSK	2	5260	8.99	0.00	8.99	13
11a	16QAM	2	5260	9.43	0.23	9.20	13
11a	64QAM	2	5260	9.8	0.48	9.32	13
HT20	BPSK	2	5300	8.05	0.00	8.05	13
HT20	QPSK	2	5300	8.98	0.00	8.98	13
HT20	16QAM	2	5300	9.75	0.23	9.52	13
HT20	64QAM	2	5300	9.73	0.48	9.25	13
HT40	BPSK	2	5270	7.94	0.00	7.94	13
HT40	QPSK	2	5270	10.18	0.25	9.93	13
HT40	16QAM	2	5270	9.74	0.45	9.29	13
HT40	64QAM	2	5270	9.98	0.87	9.11	13

Note: Measured value = Peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission. Since the duty cycle is < 98 %, duty factor is required to average spectrum Peak exclusion = Measured value – duty factor

Report No.: FR380101AN Page: 25 of 83

HT40

International Certification Corp.

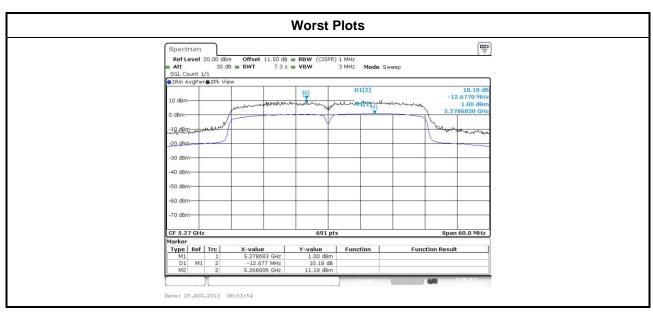
2

5550

64QAM

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Mode	Modulation Mode	N _{TX}	Freq. (MHz)	Measured value(dB)	Duty factor (dB)	Peak Excursion (dB)	Limit
11a	BPSK	2	5580	9.18	0.00	9.18	13
11a	QPSK	2	5580	8.75	0.00	8.75	13
11a	16QAM	2	5580	9.41	0.23	9.18	13
11a	64QAM	2	5580	10.18	0.48	9.70	13
HT20	BPSK	2	5580	8.55	0.00	8.55	13
HT20	QPSK	2	5580	8.25	0.00	8.25	13
HT20	16QAM	2	5580	9.18	0.23	8.95	13
HT20	64QAM	2	5580	9.62	0.48	9.14	13
HT40	BPSK	2	5550	8.62	0.00	8.62	13
HT40	QPSK	2	5550	9.09	0.25	8.84	13
HT40	16QAM	2	5550	9.9	0.45	9.45	13


Note: Measured value = Peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission. Since the duty cycle is < 98 %, duty factor is required to average spectrum Peak exclusion = Measured value – duty factor

10.07

0.87

9.20

13

Note: Measured value

= Peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission

= Mark 2 - Mark 1

Report No.: FR380101AN Page: 26 of 83

3.6 Transmitter Radiated and Band Edge Emissions

3.6.1 Limit of Transmitter Radiated and Band Edge Emissions

Restricted Band Emissions Limit					
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)		
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300		
0.490~1.705	24000/F(kHz)	33.8 - 23	30		
1.705~30.0	30	29	30		
30~88	100	40	3		
88~216	150	43.5	3		
216~960	200	46	3		
Above 960	500	54	3		

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Un-restricted band emissions above 1GHz Limit				
Operating Band	Limit			
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]			
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]			
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]			
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]			

Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

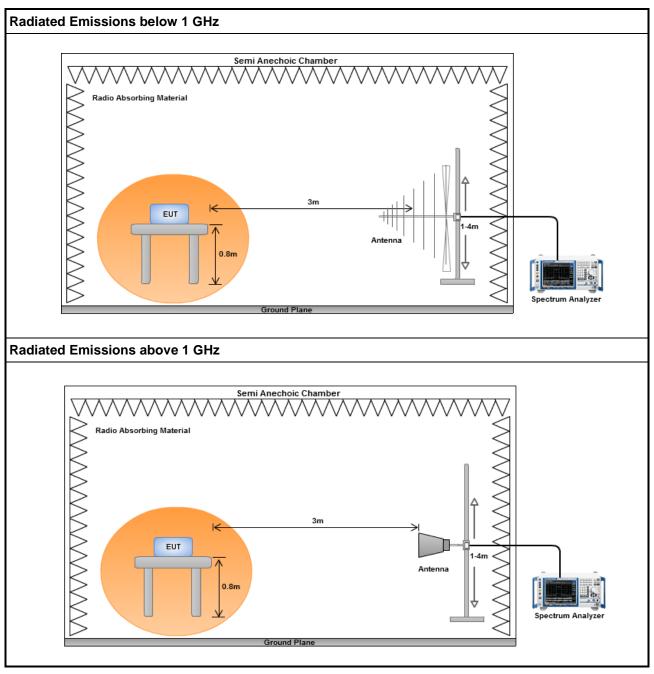
Report No.: FR380101AN Page: 27 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

3.6.2 Test Procedures

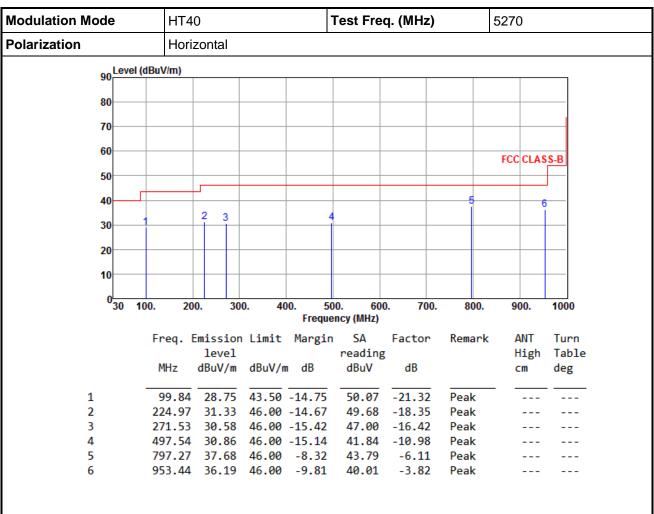
- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:


- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR380101AN Page: 28 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

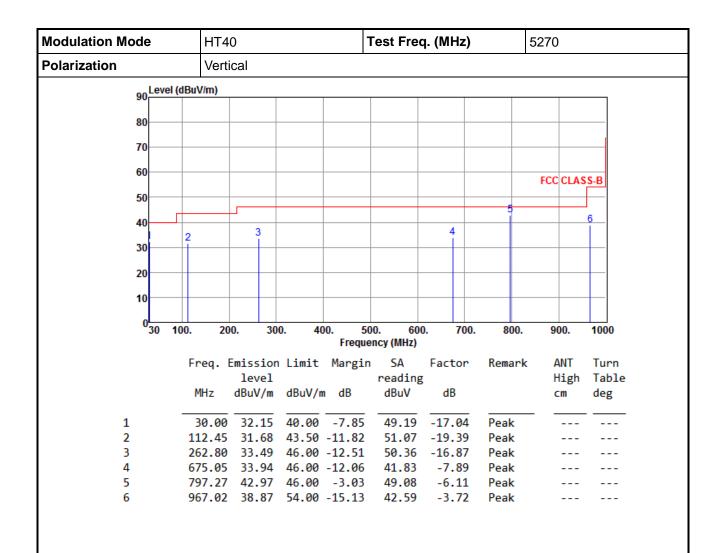

3.6.3 Test Setup

Report No.: FR380101AN Page: 29 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

3.6.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

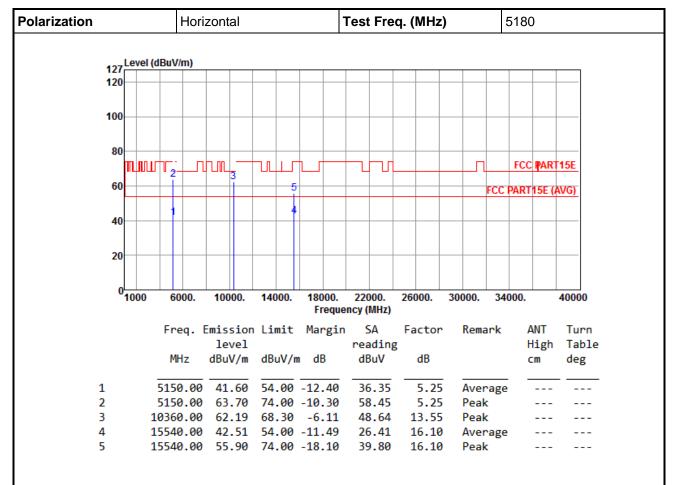

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR380101AN Page: 30 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

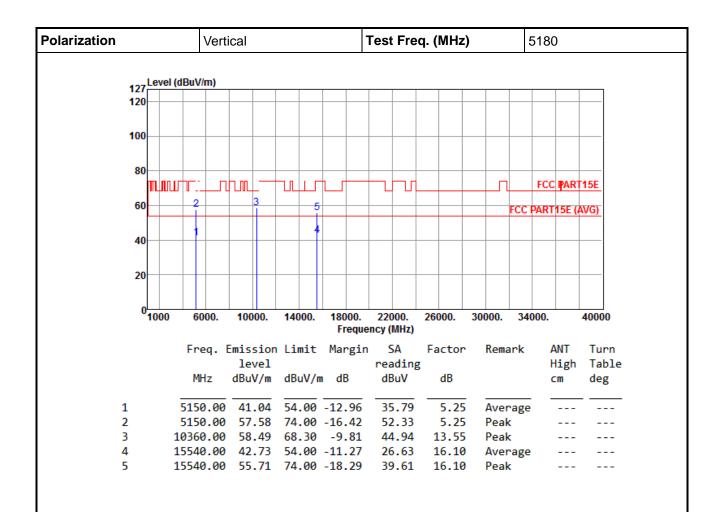

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR380101AN Page: 31 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

3.6.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11a

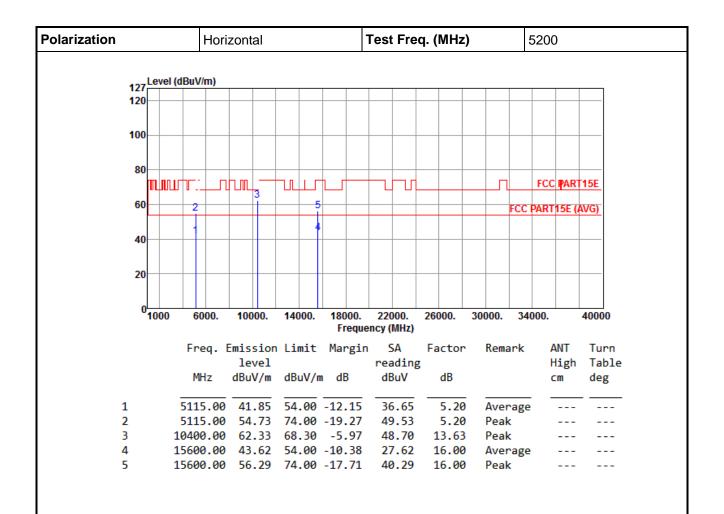


Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 32 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 33 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in

addition.

Report No.: FR380101AN Page: 34 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Vertical Test Freq. (MHz) 5200 127 Level (dBuV/m) 120 100 80 FCC PART15E ىللان Т 60 FCC PART15E (AVG) 40 20 0 1000 26000. 30000. 34000. 40000 6000. 10000. 14000. 18000. 22000. Frequency (MHz) Freq. Emission Limit Margin SA ANT Turn Factor Remark reading High Table level MHz dBuV/m dBuV/m dB dBuV dB deg cmAverage 1 5115.00 41.40 54.00 -12.60 36.20 5.20 2 5115.00 55.07 74.00 -18.93 49.87 5.20 Peak 3 10400.00 60.12 68.30 -8.18 46.49 13.63 Peak 4 15600.00 43.75 54.00 -10.25 27.75 16.00 Average 5 15600.00 56.28 74.00 -17.72 40.28 16.00 Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 35 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Horizontal Test Freq. (MHz) 5240 127 Level (dBuV/m) 120 100 80 FCC PART15E ىللان Т 60 FCC PART15E (AVG) 40 20 0 1000 26000. 30000. 34000. 40000 6000. 10000. 14000. 18000. 22000. Frequency (MHz) Freq. Emission Limit Margin SA ANT Turn Factor Remark reading High Table level MHz dBuV/m dBuV/m dB dBuV dB deg cmAverage 1 4952.00 42.66 54.00 -11.34 37.76 4.90 2 4952.00 53.96 74.00 -20.04 49.06 4.90 Peak 3 10480.00 62.11 68.30 -6.19 48.31 13.80 Peak 4 15720.00 43.63 54.00 -10.37 27.81 15.82 Average 5 15720.00 56.78 74.00 -17.22 15.82 40.96 Peak

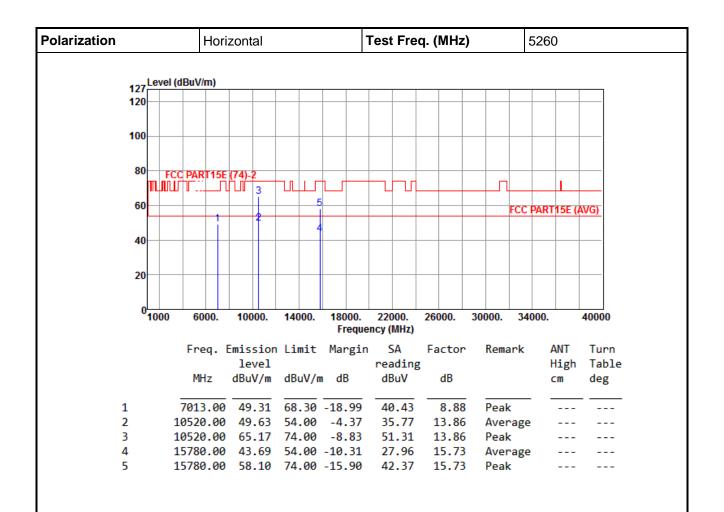
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 36 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

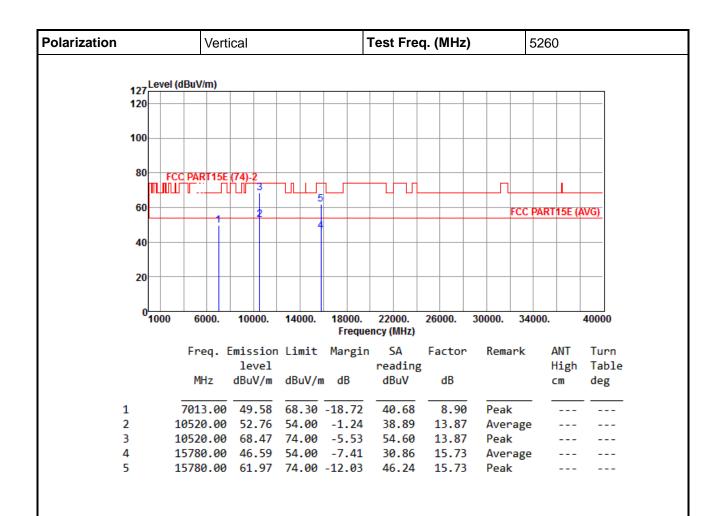
Polarization Vertical Test Freq. (MHz) 5240 127 Level (dBuV/m) 120 100 80 FCC PART15E ىللان Т 60 FCC PART15E (AVG) 40 20 0 1000 26000. 30000. 34000. 40000 6000. 10000. 14000. 18000. 22000. Frequency (MHz) Freq. Emission Limit Margin SA ANT Turn Factor Remark reading High Table level MHz dBuV/m dBuV/m dB dBuV dB deg cmAverage 1 4952.00 41.75 54.00 -12.25 36.85 4.90 2 4952.00 53.71 74.00 -20.29 48.81 4.90 Peak 3 10480.00 60.63 68.30 -7.67 46.83 13.80 Peak 4 15720.00 43.12 54.00 -10.88 27.30 15.82 Average 5 15720.00 56.32 74.00 -17.68 40.50 15.82 Peak


Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 37 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

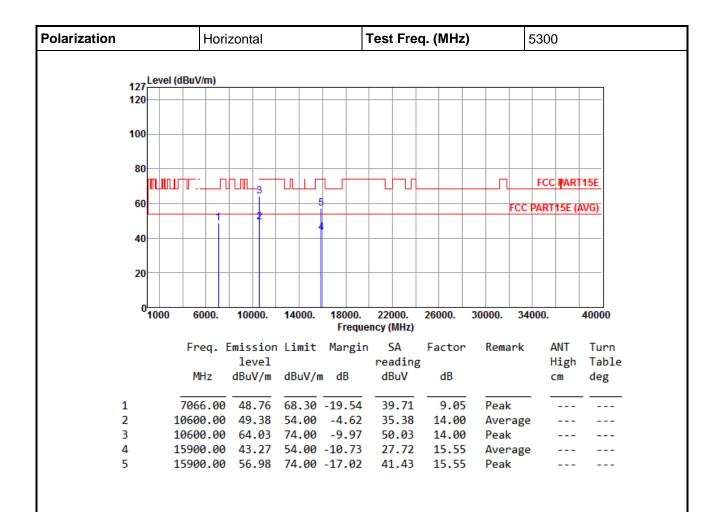

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 38 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

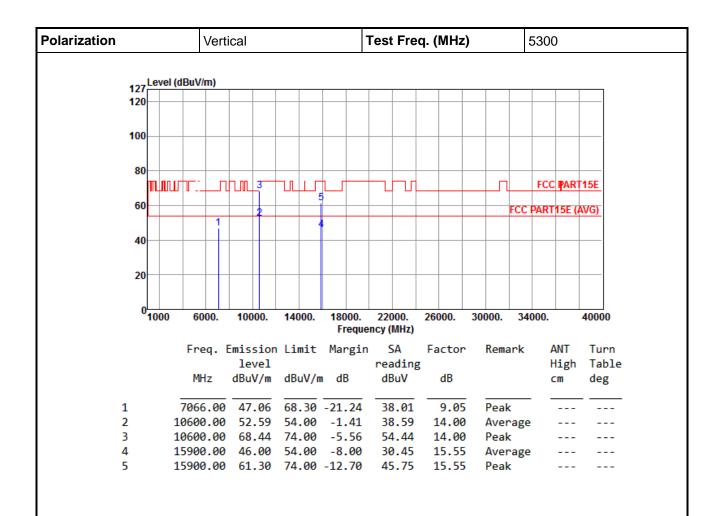

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 39 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in


addition.

Report No.: FR380101AN Page: 40 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 41 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Horizontal Test Freq. (MHz) 5320 127 Level (dBuV/m) 120 100 80 FCC PART15E ىللان Т 60 FCC PART15E (AVG) 40 20 0 1000 26000. 30000. 34000. 40000 6000. 10000. 14000. 18000. 22000. Frequency (MHz) Freq. Emission Limit Margin SA ANT Turn Factor Remark reading High Table level MHz dBuV/m dBuV/m dB dBuV dB deg cm-3.35 1 5350.00 50.65 54.00 45.24 5.41 Average 2 5350.00 72.80 74.00 -1.20 67.39 5.41 Peak 3 10640.00 47.68 54.00 -6.32 33.61 14.07 Average

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 42 of 83

Report Version: Rev. 01

4

5

6

10640.00

15960.00 42.12

62.42

15960.00 55.22 74.00 -18.78

74.00 -11.58

54.00 -11.88

48.35

26.67

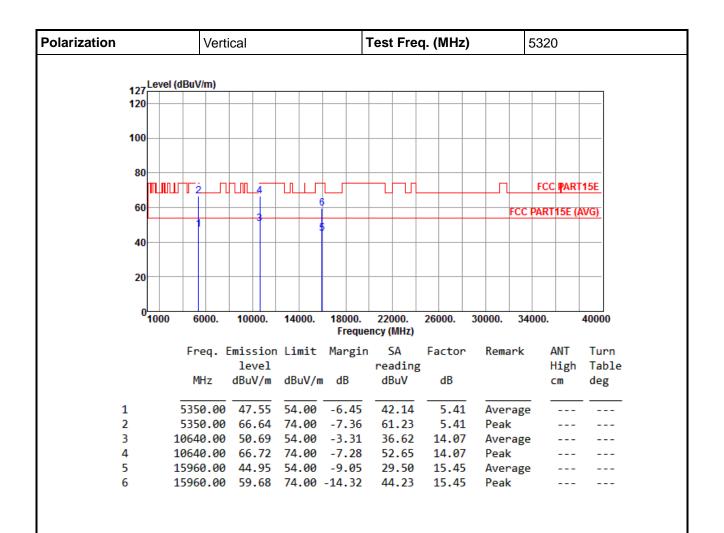
39.77

14.07

15.45

15.45

Peak

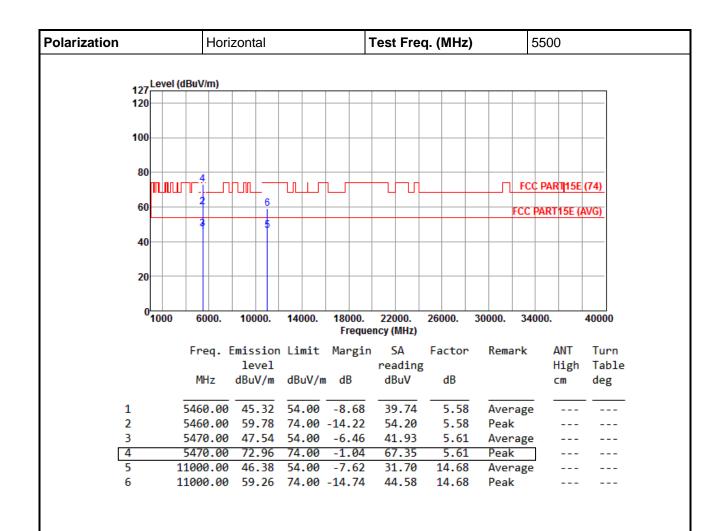

Peak

Average

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

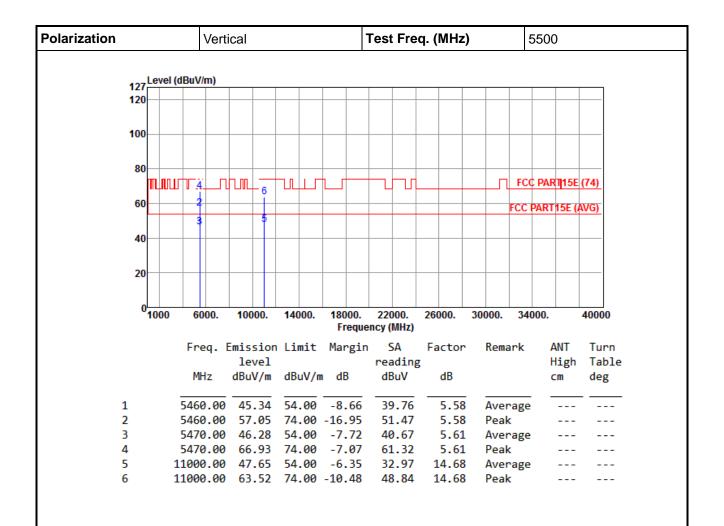
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measurement.


Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 43 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

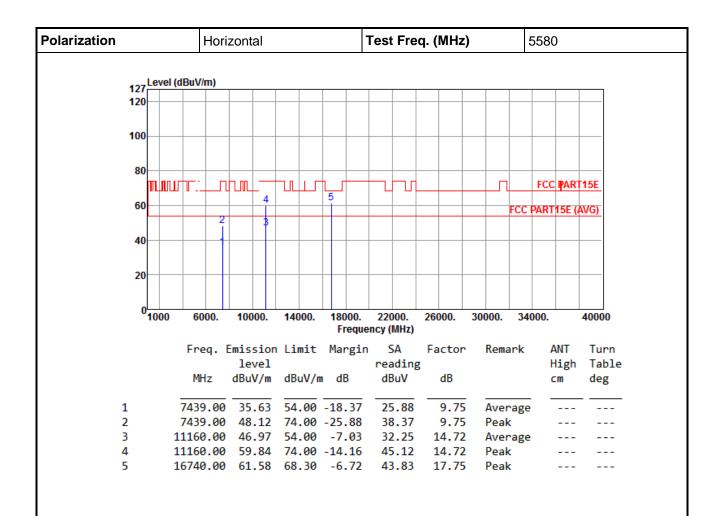
Tel: 886-3-271-8666 Fax: 886-3-318-0155


Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 44 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155


Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 45 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 46 of 83

4

5

11160.00

16740.00 65.87

66.48

74.00

-7.52

68.30 -2.43

51.76

48.12

14.72

17.75

Peak

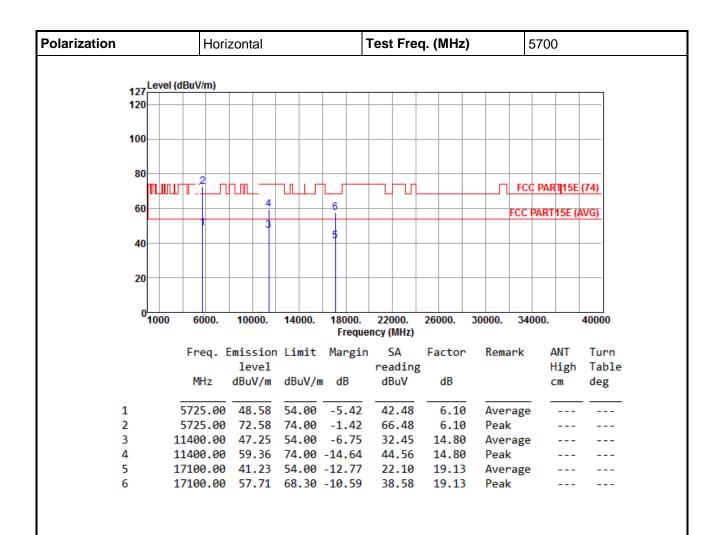
Peak

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Vertical Test Freq. (MHz) 5580 127 Level (dBuV/m) 120 100 80 FCC PART15E Т 60 FCC PART15E (AVG) 40 20 0 1000 26000. 30000. 34000. 40000 6000. 10000. 14000. 18000. 22000. Frequency (MHz) Freq. Emission Limit Margin SA ANT Turn Factor Remark reading High Table level MHz dBuV/m dBuV/m dB dBuV dB deg cm7439.00 Average 1 36.53 54.00 -17.47 26.78 9.75 2 7439.00 49.88 74.00 -24.12 40.13 9.75 Peak 3 11160.00 52.55 54.00 -1.45 37.83 14.72 Average

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

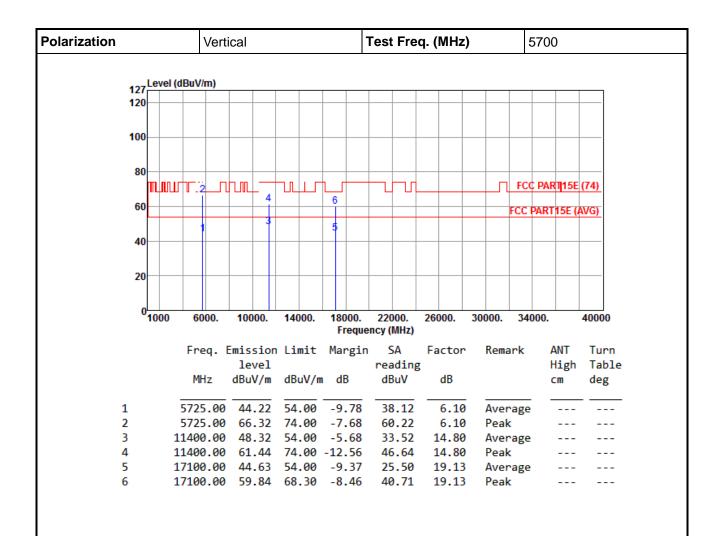

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 47 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured

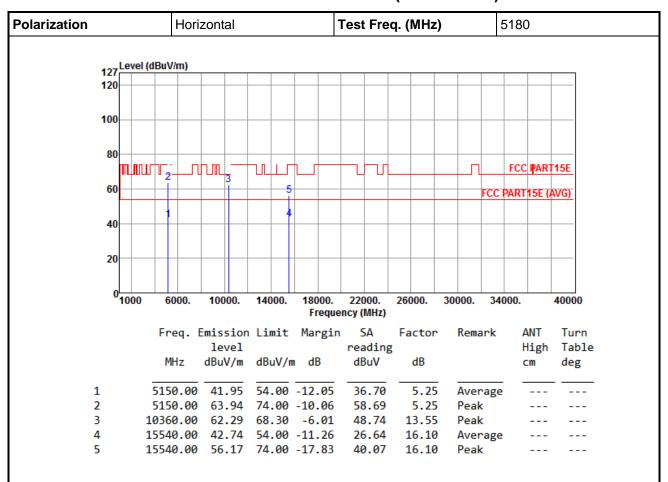

with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 48 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measurement.

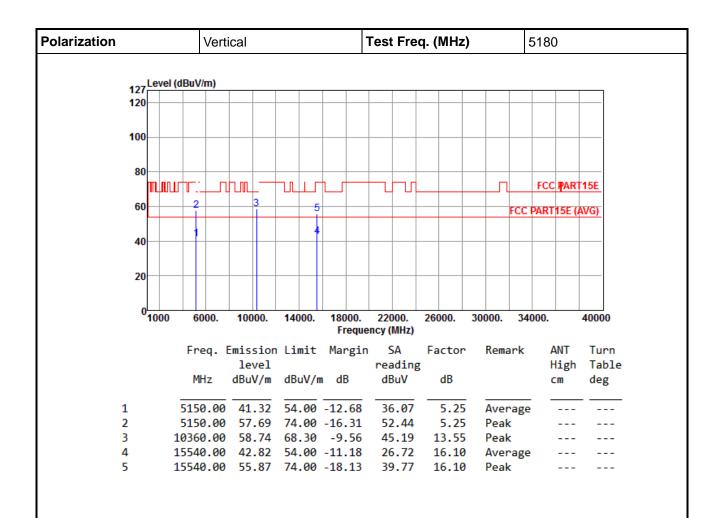

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 49 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

3.6.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT20

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

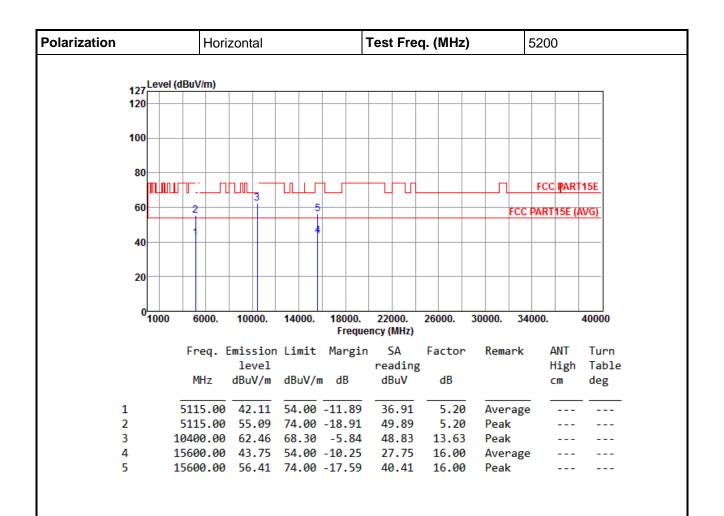

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page : 50 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 51 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured

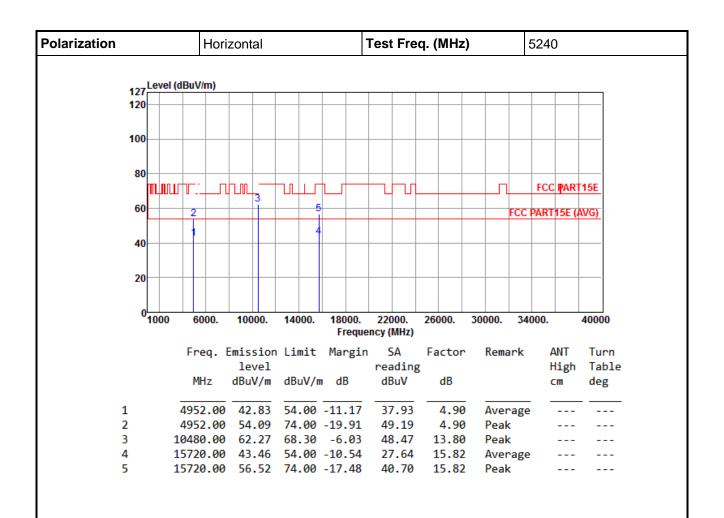
with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 52 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Vertical Test Freq. (MHz) 5200 127 Level (dBuV/m) 120 100 80 FCC PART15E سلال U 60 FCC PART15E (AVG) 40 20 0 1000 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000 6000. Frequency (MHz) SA ANT Turn Freq. Emission Limit Margin Remark Factor reading High Table level MHz dBuV/m dBuV/m dB dBuV dB cmdeg 5115.00 41.55 54.00 -12.45 1 36.35 5.20 Average 2 5115.00 55.27 74.00 -18.73 50.07 5.20 Peak 3 10400.00 60.42 68.30 -7.88 46.79 13.63 Peak 4 15600.00 43.94 54.00 -10.06 27.94 16.00 Average 5 15600.00 56.61 74.00 -17.39 40.61 16.00 Peak

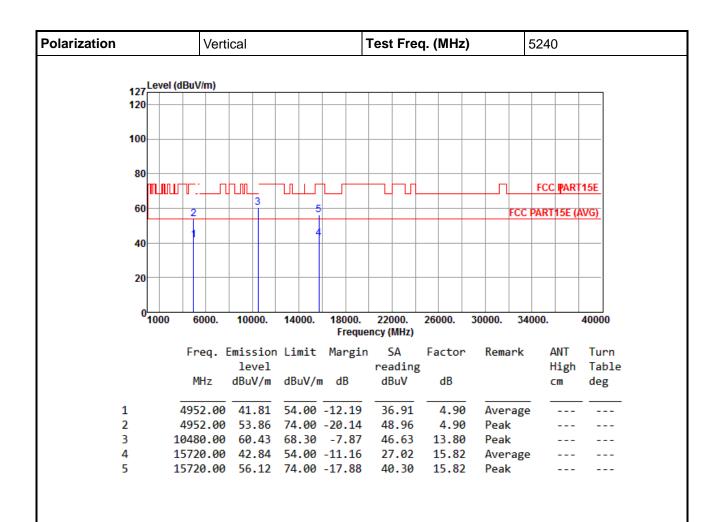
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 53 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155


Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured

with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 54 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 55 of 83

4

5

15780.00 44.57

54.00

15780.00 57.43 74.00 -16.57

-9.43

15.73

15.73

Average

Peak

28.84

41.70

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Horizontal Test Freq. (MHz) 5260 127 Level (dBuV/m) 120 100 FCC PART15E (74)-سلال U 60 FCC PART15E (AVG) 40 20 0 1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000 Frequency (MHz) SA ANT Turn Freq. Emission Limit Margin Remark Factor reading High Table level MHz dBuV/m dBuV/m dB dBuV dB deg cm7013.00 1 50.08 68.30 -18.22 41.20 8.88 Peak 2 10520.00 49.71 54.00 -4.29 35.85 13.86 Average 3 10520.00 64.61 74.00 -9.39 50.75 13.86 Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 56 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Vertical Test Freq. (MHz) 5260 127 Level (dBuV/m) 120 100 FCC PART15E (74)-┰┷┷╤ U 60 FCC PART15E (AVG) 40 20 0 1000 6000. 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000 Frequency (MHz) SA ANT Turn Freq. Emission Limit Margin Remark Factor reading High Table level MHz dBuV/m dBuV/m dB dBuV dB deg cm7013.00 49.93 1 68.30 -18.37 41.03 8.90 Peak 2 10520.00 52.89 54.00 -1.11 39.02 13.87 Average 55.03 3 10520.00 68.90 74.00 -5.10 13.87 Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 57 of 83

Report Version: Rev. 01

4

5

15780.00 48.22

15780.00 65.27

54.00

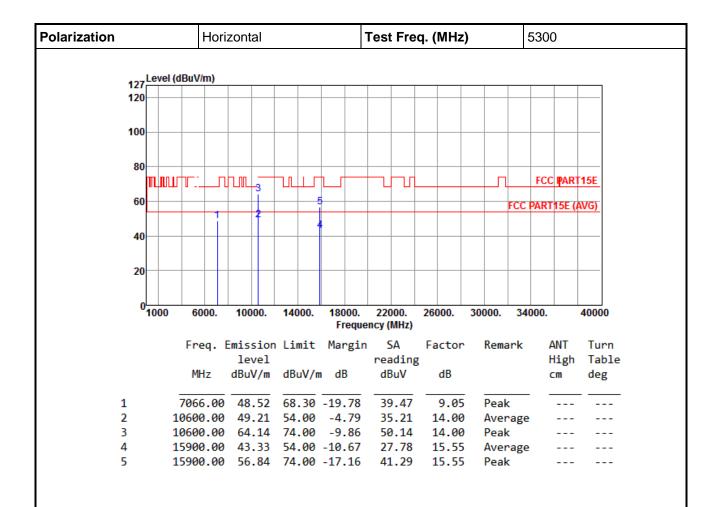
74.00 -8.73

-5.78

32.49

49.54

15.73

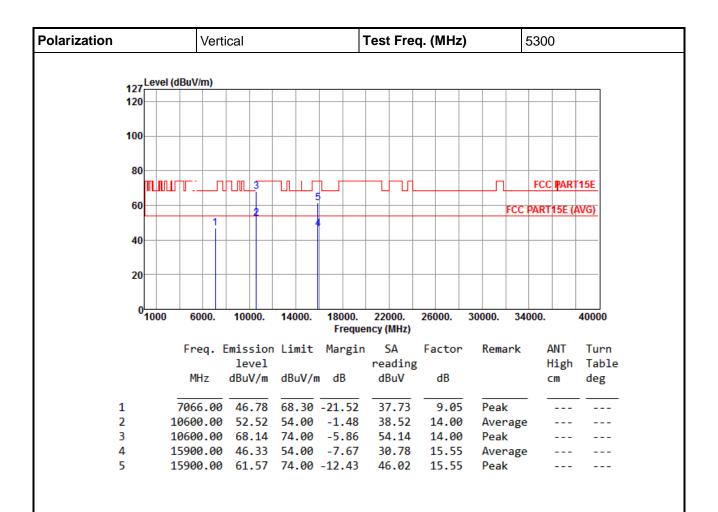

15.73

Average

Peak

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 58 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

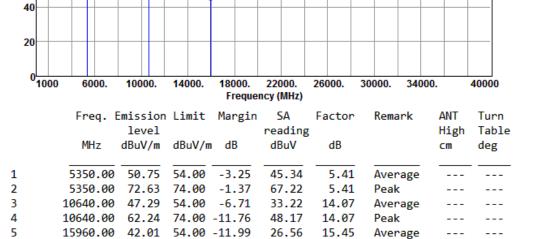
Report No.: FR380101AN Page: 59 of 83

100

80

60

6


سلال

15960.00 55.14 74.00 -18.86

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Horizontal Test Freq. (MHz) 5320

39.69

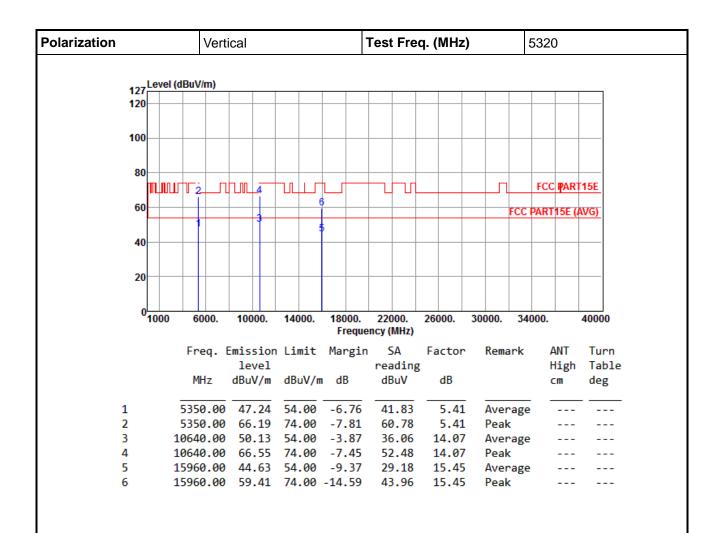
15.45

Peak

FCC PART15E

FCC PART15E (AVG)

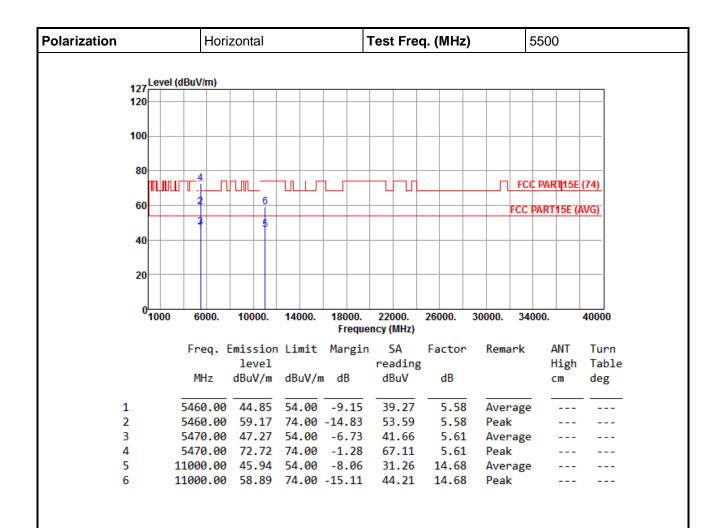
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 60 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

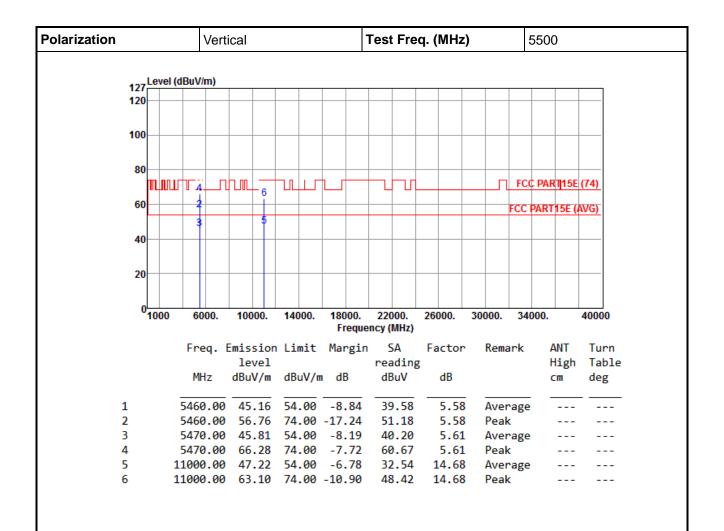

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 61 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 62 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

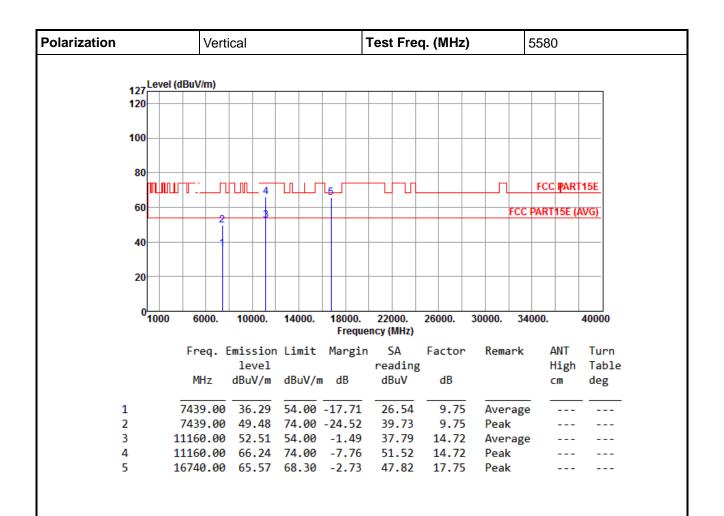
Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 63 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

5580 **Polarization** Horizontal Test Freq. (MHz) 127 Level (dBuV/m) 120 100 80 FCC PART15E UL 60 FCC PART15E (AVG) 40 20 0 1000 18000. 34000. 6000. 10000. 14000. 22000. 26000. 30000. 40000 Frequency (MHz) Freq. Emission Limit Margin Factor ANT Turn SA Remark High Table level reading MHz dBuV/m dBuV/m dB dBuV dΒ cmdeg 54.00 -18.73 7439.00 9.75 1 35.27 25.52 Average 9.75 2 7439.00 47.64 74.00 -26.36 37.89 Peak 11160.00 46.58 54.00 -7.42 31.86 3 14.72 Average 4 11160.00 59.49 74.00 -14.51 44.77 14.72 Peak 5 16740.00 61.22 68.30 -7.08 43.47 17.75 Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

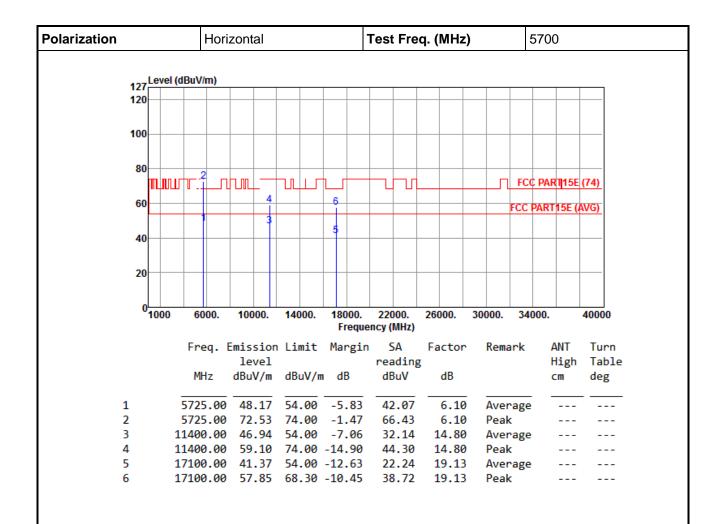

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 64 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

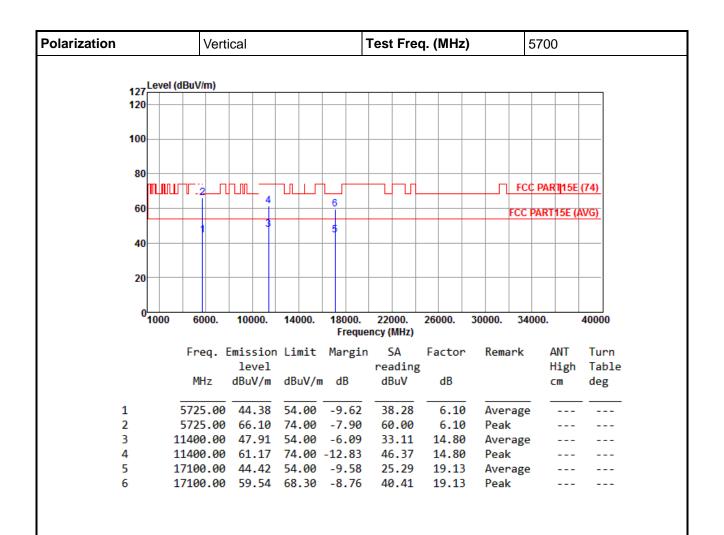
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured


with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report Version: Rev. 01

Report No.: FR380101AN Page: 65 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

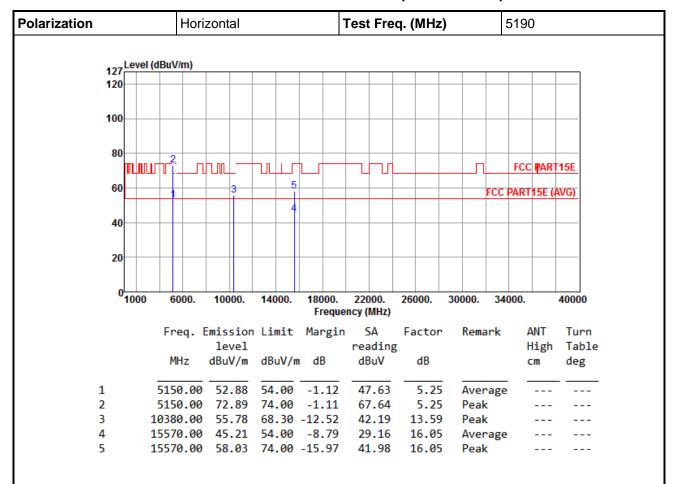

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 66 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

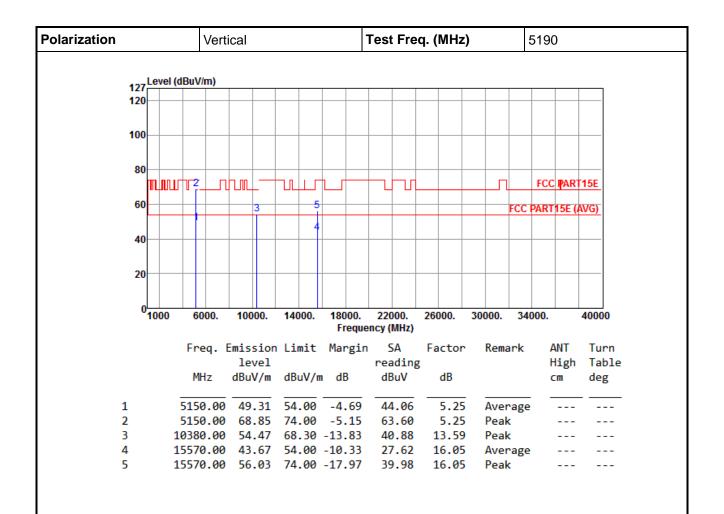

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 67 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT40


Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 68 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 69 of 83

3

4

5

10460.00

15690.00 43.73

55.34

15690.00 57.40 74.00 -16.60

68.30 -12.96

54.00 -10.27

41.59

27.86

41.53

13.75

15.87

15.87

Peak

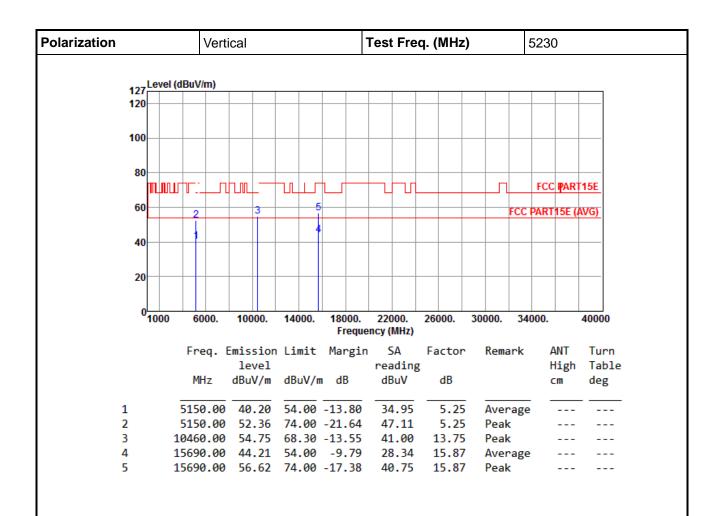
Peak

Average

International Certification Corp.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

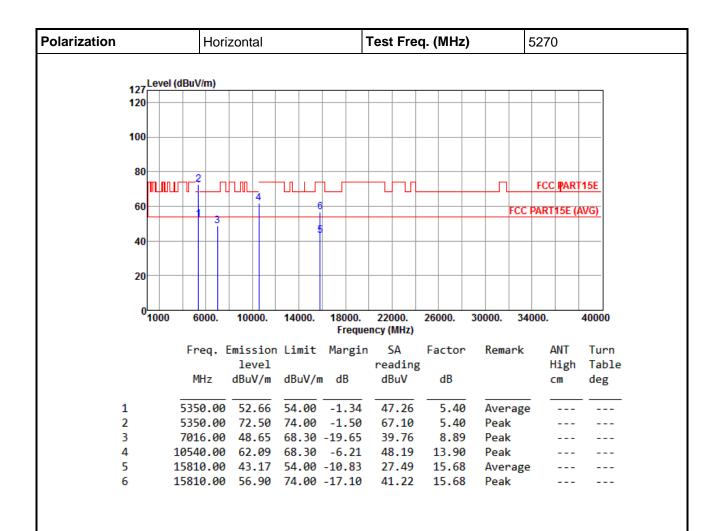
Polarization Horizontal Test Freq. (MHz) 5230 127 Level (dBuV/m) 120 100 80 FCC PART15E سلال U 60 FCC PART15E (AVG) 40 20 0 1000 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000 6000. Frequency (MHz) SA ANT Turn Freq. Emission Limit Margin Remark Factor reading High Table level MHz dBuV/m dBuV/m dB dBuV dB cmdeg 5150.00 40.57 54.00 -13.43 1 35.32 5.25 Average 2 5150.00 54.64 74.00 -19.36 49.39 5.25 Peak


Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 70 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Fax: 886-3-318-0155



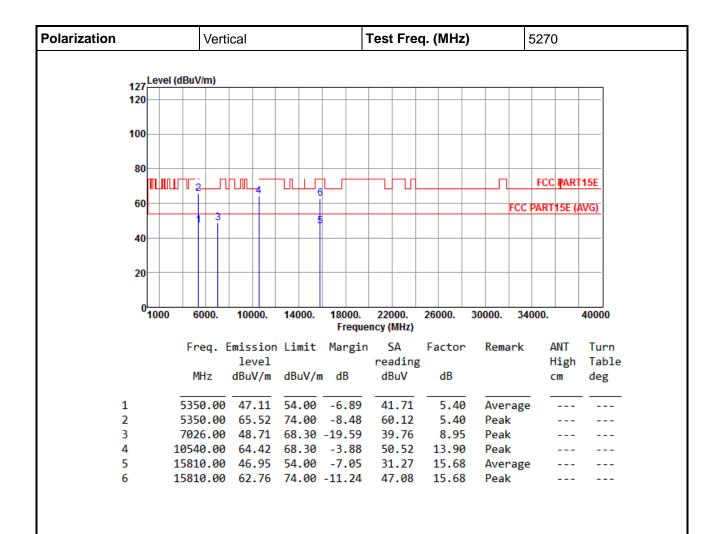
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 71 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in


addition.

Report No.: FR380101AN Page: 72 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

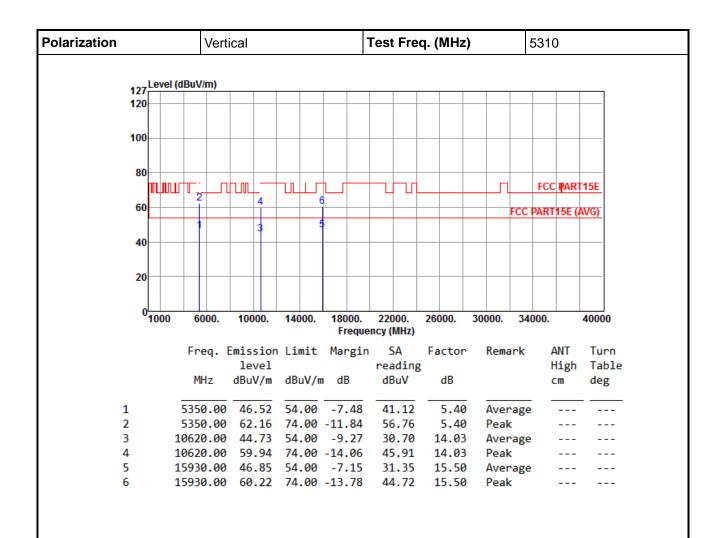
Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 73 of 83

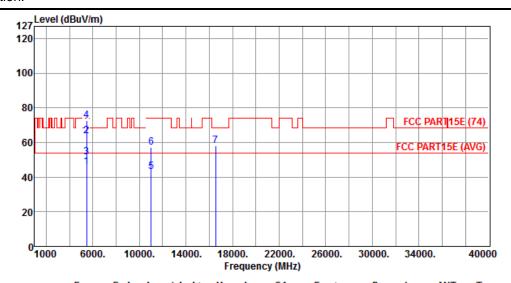

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Horizontal Test Freq. (MHz) 5310 127 Level (dBuV/m) 120 100 80 FCC PART15E سلال U 60 FCC PART15E (AVG) 40 20 0 1000 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000 6000. Frequency (MHz) ANT Turn Freq. Emission Limit Margin SA Remark Factor reading High Table level MHz dBuV/m dBuV/m dB dBuV dB cmdeg 5350.00 50.97 54.00 1 -3.03 45.57 5.40 Average 2 5350.00 72.87 74.00 -1.13 67.47 5.40 Peak 3 10620.00 42.84 54.00 -11.16 28.81 14.03 Average 4 10620.00 56.61 74.00 -17.39 42.58 14.03 Peak 5 15930.00 45.96 54.00 -8.04 30.46 15.50 Average 6 15930.00 58.48 74.00 -15.52 42.98 15.50 Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

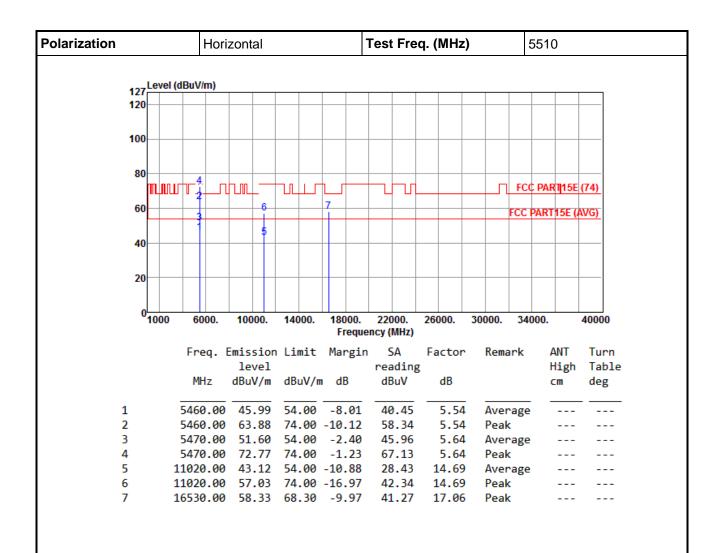

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 74 of 83


No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

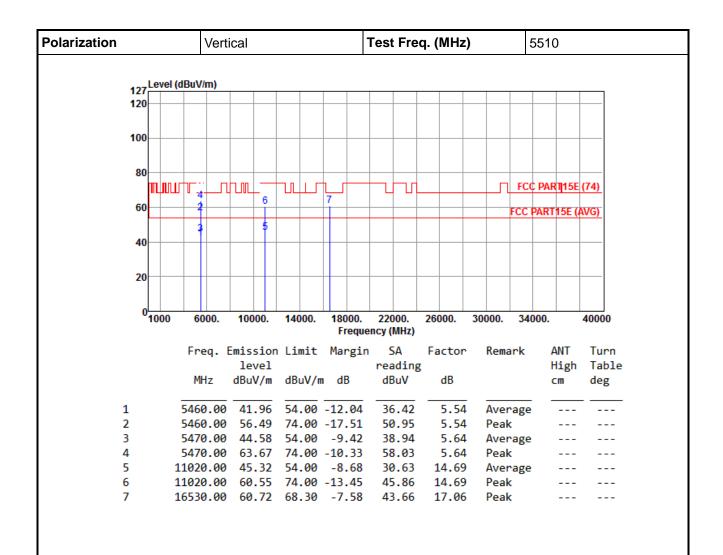
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 76 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured

with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 77 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

Polarization Horizontal Test Freq. (MHz) 5550 127 Level (dBuV/m) 120 100 80 ☐ FCC PART[15E (74) سلال U 60 FCC PART15E (AVG) 40 20 0 1000 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000 6000. Frequency (MHz) ANT Turn Freq. Emission Limit Margin SA Factor Remark reading High Table level MHz dBuV/m dBuV/m dB dBuV dB cmdeg 5460.00 45.94 54.00 1 -8.06 40.40 5.54 Average 2 5460.00 71.17 74.00 -2.83 65.63 5.54 Peak 3 5470.00 49.79 54.00 -4.2144.15 5.64 Average

67.24

32.03

44.85

41.64

5.64

14.71

14.71

17.45

Peak

Peak

Peak

Average

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 78 of 83

Report Version: Rev. 01

4

5

6

7

5470.00

11100.00

16650.00

11100.00 46.74

72.88

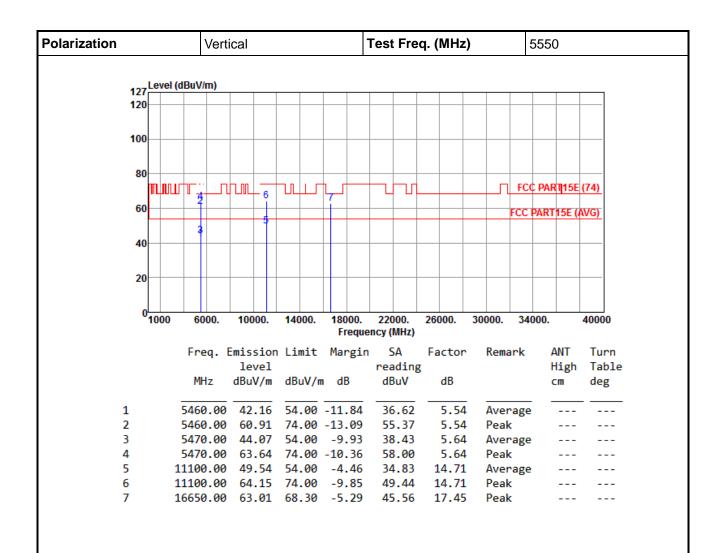
59.56

74.00

54.00

59.09 68.30 -9.21

74.00 -14.44


-1.12

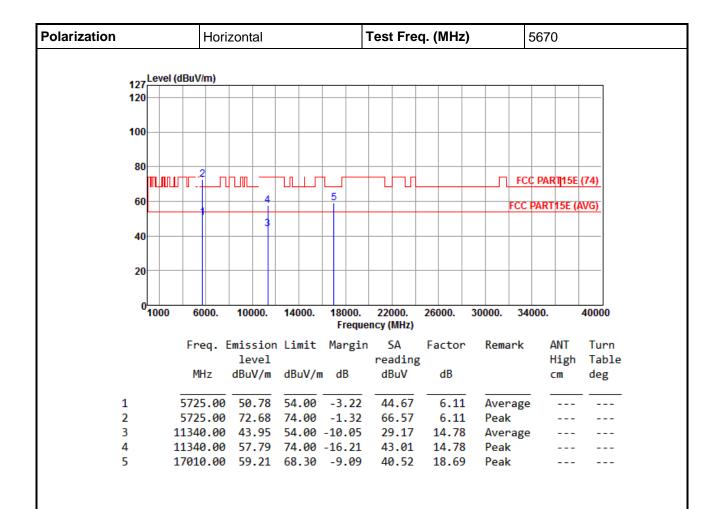
-7.26

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in


addition.

Report No.: FR380101AN Page: 79 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 80 of 83

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C. Tel: 886-3-271-8666 Fax: 886-3-318-0155

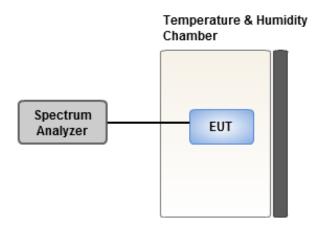
Polarization Vertical Test Freq. (MHz) 5670 127 Level (dBuV/m) 120 100 80 ☐ FCC PART[15E (74) υШ U 60 FCC PART15E (AVG) 40 20 0 1000 10000. 14000. 18000. 22000. 26000. 30000. 34000. 40000 6000. Frequency (MHz) SA ANT Turn Freq. Emission Limit Margin Remark Factor reading High Table level MHz dBuV/m dBuV/m dB dBuV dB cmdeg 5725.00 44.09 54.00 1 -9.91 37.98 6.11 Average 2 5725.00 62.17 74.00 -11.83 56.06 6.11 Peak 3 11340.00 45.71 54.00 -8.29 30.93 14.78 Average 4 74.00 -12.97 46.25 14.78 11340.00 61.03 Peak 5 68.30 -7.21 17010.00 61.09 42.40 18.69 Peak

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measured with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition.

Report No.: FR380101AN Page: 81 of 83

3.7 Frequency Stability


3.7.1 Limit of Frequency Stability

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

3.7.2 Test Procedures

- 1. The EUT is installed in an environment test chamber with external power source.
- Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT.
- 3. A sufficient stabilization period at each temperature is used prior to each frequency measurement.
- 4. When temperature is stabled, measure the frequency stability.
- 5. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions.

3.7.3 Test Setup

Report No.: FR380101AN Page: 82 of 83

Tel: 886-3-271-8666 Fax: 886-3-318-0155

3.7.4 Test Result of Frequency Stability

Frequency: 5320 MHz	Frequency Drift (ppm)				
Temperature (°C)	0 minute	2 minutes	5 minutes		10 minutes
T20°CVmax	0.57	0.38	0.30		1.33
T20°CVmin	4.71	4.71	5.18		4.76
T60°CVnom	3.93	4.10	3.72		4.41
T50°CVnom	-1.63	-1.61	-1.20		-1.52
T40°CVnom	-0.40	-0.32	-0.58		-0.24
T30°CVnom	0.75	0.49	0.84		0.97
T20°CVnom	0.62	1.11	0.70		0.23
T10°CVnom	-0.39	0.33	-0.28		0.30
T0°CVnom	-1.27	-1.69	-0.94		-0.82
T-10°CVnom	-0.69	-0.50	-0.35		-0.77
T-20°CVnom	-0.03	0.63	0.65		-0.16
T-30°CVnom	-1.00	-0.66	-0.87		-0.86
Vnom [V]: 110		Vmax [V]: 126.5		Vmin [V]: 93.5	
Tnom [°C]: 20		Tmax [°C]: 60		Tmin [°C]: -30	

Report No.: FR380101AN Page: 83 of 83