

# **FCC Test Report**

| FCC ID               | : | NKR-P2                                                                  |
|----------------------|---|-------------------------------------------------------------------------|
| Equipment            | : | Bluetooth Adaptor                                                       |
| Model No.            | : | DBUB-P2                                                                 |
| Brand Name           | : | Panasonic                                                               |
| Applicant            | : | Wistron NeWeb Corp.                                                     |
| Address              | : | 20 Park Avenue II, Hsinchu Science Park,<br>Hsinchu 308, Taiwan, R.O.C. |
| Standard             | : | 47 CFR FCC Part 15.247                                                  |
| <b>Received Date</b> | : | Sep. 21, 2016                                                           |
| Tested Date          | : | Sep. 22 ~ Sep. 30, 2016                                                 |

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

**Reviewed by:** 

Approved by:

ong Cher





Along Cherly/ Assistant Manager Gary Chang / Manager



## **Table of Contents**

| 1   | GENERAL DESCRIPTION                                    | 5  |
|-----|--------------------------------------------------------|----|
| 1.1 | Information                                            | 5  |
| 1.2 | Local Support Equipment List                           | 7  |
| 1.3 | Test Setup Chart                                       | 7  |
| 1.4 | The Equipment List                                     | 8  |
| 1.5 | Test Standards                                         | 9  |
| 1.6 | Measurement Uncertainty                                | 9  |
| 2   | TEST CONFIGURATION                                     | 10 |
| 2.1 | Testing Condition                                      | 10 |
| 2.2 | The Worst Test Modes and Channel Details               | 10 |
| 3   | TRANSMITTER TEST RESULTS                               | 11 |
| 3.1 | Conducted Emissions                                    | 11 |
| 3.2 | Unwanted Emissions into Restricted Frequency Bands     | 14 |
| 3.3 | Unwanted Emissions into Non-Restricted Frequency Bands | 30 |
| 3.4 | Conducted Output Power                                 | 35 |
| 3.5 | Number of Hopping Frequency                            | 36 |
| 3.6 | 20dB and Occupied Bandwidth                            | 39 |
| 3.7 | Channel Separation                                     | 41 |
| 3.8 | Number of Dwell Time                                   | 43 |
| 4   | TEST LABORATORY INFORMATION                            | 46 |



## **Release Record**

| Report No.  | Version | Description   | Issued Date   |
|-------------|---------|---------------|---------------|
| FR570801-04 | Rev. 01 | Initial issue | Oct. 14, 2016 |



| FCC Rules         | Test Items                 | Measured                                         | Result |
|-------------------|----------------------------|--------------------------------------------------|--------|
| 15.207            | Conducted Emissions        | [dBuV]: 1.928MHz<br>20.96 (Margin -25.04dB) - AV | Pass   |
| 15.247(d)         | Radiated Emissions         | [dBuV/m at 3m]: 798.24MHz                        | Pass   |
| 15.209            | Hadiated Emissions         | 38.93 (Margin -7.07dB) - PK                      | 1 455  |
| 15.247(d)         | Band Edge                  | Meet the requirement of limit                    | Pass   |
| 15.247(b)(1)      | Conducted Output Power     | Power [dBm]: 11.84                               | Pass   |
| 15.247(a)(1)(iii) | Number of Hopping Channels | Meet the requirement of limit                    | Pass   |
| 15.247(a)(1)      | Hopping Channel Separation | Meet the requirement of limit                    | Pass   |
| 15.247(a)(1)(iii) | Dwell Time                 | Meet the requirement of limit                    | Pass   |
| 15.203            | Antenna Requirement        | Meet the requirement of limit                    | Pass   |

## Summary of Test Results



#### **General Description** 1

#### Information 1.1

#### 1.1.1 Specification of the Equipment under Test (EUT)

| RF General Information   |                       |                        |                  |           |  |  |  |  |
|--------------------------|-----------------------|------------------------|------------------|-----------|--|--|--|--|
| Frequency Range<br>(MHz) | Bluetooth<br>Mode     | Ch. Frequency<br>(MHz) | Channel Number   | Data Rate |  |  |  |  |
| 2400-2483.5              | BR                    | 2402-2480              | 0-78 [79]        | 1 Mbps    |  |  |  |  |
| 2400-2483.5              | EDR                   | 2402-2480              | 0-78 [79]        | 2 Mbps    |  |  |  |  |
| 2400-2483.5              | EDR                   | 2402-2480              | 0-78 [79]        | 3 Mbps    |  |  |  |  |
| Note 1: RF output pov    | wer specifies that Ma | ximum Peak Conduct     | ed Output Power. |           |  |  |  |  |

Note 2: Bluetooth BR uses a GFSK.

Note 3: Bluetooth EDR uses a combination of  $\pi/4$ -DQPSK and 8DPSK.

### 1.1.2 Antenna Details

| Ant. No. | Туре | Gain (dBi) | Connector | Remark |
|----------|------|------------|-----------|--------|
| 1        | PIFA | 2.68       |           |        |

## 1.1.3 Power Supply Type of Equipment under Test (EUT)

| Power Supply Type         3.3Vdc from host |
|--------------------------------------------|
|--------------------------------------------|

### 1.1.4 Accessories

N/A



## 1.1.5 Channel List

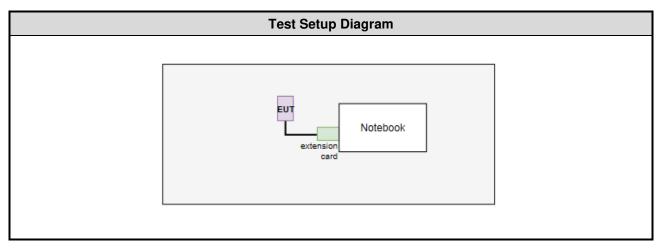
| Frequency band (MHz) |                    |         |                    |         | 2400~2             | 2483.5  |                    |
|----------------------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| Channel              | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
| 0                    | 2402               | 20      | 2422               | 40      | 2442               | 60      | 2462               |
| 1                    | 2403               | 21      | 2423               | 41      | 2443               | 61      | 2463               |
| 2                    | 2404               | 22      | 2424               | 42      | 2444               | 62      | 2464               |
| 3                    | 2405               | 23      | 2425               | 43      | 2445               | 63      | 2465               |
| 4                    | 2406               | 24      | 2426               | 44      | 2446               | 64      | 2466               |
| 5                    | 2407               | 25      | 2427               | 45      | 2447               | 65      | 2467               |
| 6                    | 2408               | 26      | 2428               | 46      | 2448               | 66      | 2468               |
| 7                    | 2409               | 27      | 2429               | 47      | 2449               | 67      | 2469               |
| 8                    | 2410               | 28      | 2430               | 48      | 2450               | 68      | 2470               |
| 9                    | 2411               | 29      | 2431               | 49      | 2451               | 69      | 2471               |
| 10                   | 2412               | 30      | 2432               | 50      | 2452               | 70      | 2472               |
| 11                   | 2413               | 31      | 2433               | 51      | 2453               | 71      | 2473               |
| 12                   | 2414               | 32      | 2434               | 52      | 2454               | 72      | 2474               |
| 13                   | 2415               | 33      | 2435               | 53      | 2455               | 73      | 2475               |
| 14                   | 2416               | 34      | 2436               | 54      | 2456               | 74      | 2476               |
| 15                   | 2417               | 35      | 2437               | 55      | 2457               | 75      | 2477               |
| 16                   | 2418               | 36      | 2438               | 56      | 2458               | 76      | 2478               |
| 17                   | 2419               | 37      | 2439               | 57      | 2459               | 77      | 2479               |
| 18                   | 2420               | 38      | 2440               | 58      | 2460               | 78      | 2480               |
| 19                   | 2421               | 39      | 2441               | 59      | 2461               |         |                    |

## 1.1.6 Test Tool and Duty Cycle

|  | Test Tool / Version | Blue Tool / 1.4.5.4 |
|--|---------------------|---------------------|
|--|---------------------|---------------------|

### 1.1.7 Power Setting

| Modulation Mode  | Test Frequency (MHz) |         |         |  |  |
|------------------|----------------------|---------|---------|--|--|
| modulation mode  | 2402                 | 2441    | 2480    |  |  |
| GFSK/1Mbps       | Default              | Default | Default |  |  |
| π/4-DQPSK /2Mbps | Default              | Default | Default |  |  |
| 8DPSK/3Mbps      | Default              | Default | Default |  |  |




## **1.2 Local Support Equipment List**

|     | Support Equipment List |       |                |        |                           |  |  |  |  |
|-----|------------------------|-------|----------------|--------|---------------------------|--|--|--|--|
| No. | Equipment              | Brand | Model          | FCC ID | Signal cable / Length (m) |  |  |  |  |
| 1   | Notebook               | DELL  | Latitude E6430 | DoC    |                           |  |  |  |  |
| 2   | Extension card         |       |                |        |                           |  |  |  |  |

Note: Extension card is provided by applicant.

## 1.3 Test Setup Chart





#### The Equipment List 1.4

| Test Item               | Conducted Emission            |                        |            |                  |                   |  |  |  |  |
|-------------------------|-------------------------------|------------------------|------------|------------------|-------------------|--|--|--|--|
| Test Site               | Conduction room 1 / (CO01-WS) |                        |            |                  |                   |  |  |  |  |
| Instrument              | Manufacturer                  | Model No.              | Serial No. | Calibration Date | Calibration Until |  |  |  |  |
| EMC Receiver            | R&S                           | ESCS 30                | 100169     | Oct. 21, 2015    | Oct. 20, 2016     |  |  |  |  |
| LISN                    | SCHWARZBECK                   | Schwarzbeck 8127       | 8127-667   | Nov. 13, 2015    | Nov. 12, 2016     |  |  |  |  |
| RF Cable-CON            | EMC                           | EMCCFD300-BM-BM-6000   | 50821      | Dec. 21, 2015    | Dec. 20, 2016     |  |  |  |  |
| Measurement<br>Software | AUDIX                         | e3                     | 6.120210k  | NA               | NA                |  |  |  |  |
| Note: Calibration Inte  | erval of instruments lis      | ted above is one year. |            |                  |                   |  |  |  |  |

| Test Item               | Radiated Emission   |                      |                  |                  |                 |
|-------------------------|---------------------|----------------------|------------------|------------------|-----------------|
| Test Site               | 966 chamber1 / (030 | H01-WS)              |                  |                  |                 |
| Instrument              | Manufacturer        | Model No.            | Serial No.       | Calibration Date | Calibration Unt |
| Spectrum<br>Analyzer    | R&S                 | FSV40                | 101498           | Dec. 13, 2015    | Dec. 12, 2016   |
| Receiver                | R&S                 | ESR3                 | 101658           | Nov. 04, 2015    | Nov. 03, 2016   |
| Bilog Antenna           | SCHWARZBECK         | VULB9168             | VULB9168-522     | Aug. 04, 2016    | Aug. 03, 2017   |
| Horn Antenna<br>1G-18G  | SCHWARZBECK         | BBHA 9120 D          | BBHA 9120 D 1096 | Dec. 16, 2015    | Dec. 15, 2016   |
| Horn Antenna<br>18G-40G | SCHWARZBECK         | BBHA 9170            | BBHA 9170517     | Nov. 04, 2015    | Nov. 03, 2016   |
| Preamplifier            | EMC                 | EMC02325             | 980225           | Aug. 05, 2016    | Aug. 04, 2017   |
| Preamplifier            | Agilent             | 83017A               | MY39501308       | Oct. 02, 2015    | Oct. 01, 2016   |
| Preamplifier            | EMC                 | EMC184045B           | 980192           | Aug. 24, 2016    | Aug. 23, 2017   |
| RF Cable                | HUBER+SUHNER        | SUCOFLEX104          | MY16014/4        | Dec. 10, 2015    | Dec. 09, 2016   |
| RF Cable                | HUBER+SUHNER        | SUCOFLEX104          | MY16019/4        | Dec. 10, 2015    | Dec. 09, 2016   |
| RF Cable                | HUBER+SUHNER        | SUCOFLEX104          | MY16139/4        | Dec. 10, 2015    | Dec. 09, 2016   |
| LF cable 1M             | EMC                 | EMCCFD400-NM-NM-1000 | 16052            | Dec. 10, 2015    | Dec. 09, 2016   |
| LF cable 3M             | Woken               | CFD400NL-LW          | CFD400NL-001     | Dec. 10, 2015    | Dec. 09, 2016   |
| LF cable 10M            | Woken               | CFD400NL-LW          | CFD400NL-002     | Dec. 10, 2015    | Dec. 09, 2016   |
| Loop Antenna            | R&S                 | HFH2-Z2              | 100330           | Nov. 16, 2015    | Nov. 15, 2016   |
| Measurement<br>Software | AUDIX               | e3                   | 6.120210g        | NA               | NA              |



| Test Item               | RF Conducted |           |            |                  |                   |
|-------------------------|--------------|-----------|------------|------------------|-------------------|
| Test Site               | (TH01-WS)    |           |            |                  |                   |
| Instrument              | Manufacturer | Model No. | Serial No. | Calibration Date | Calibration Until |
| Spectrum Analyzer       | R&S          | FSV40     | 101063     | Feb. 17, 2016    | Feb. 16, 2017     |
| Power Meter             | Anritsu      | ML2495A   | 1241001    | Aug. 24, 2016    | Aug. 23, 2017     |
| Power Sensor            | Anritsu      | MA2411B   | 1207362    | Aug. 24, 2016    | Aug. 23, 2017     |
| DC POWER<br>SOURCE      | GW INSTEK    | GPC-3060D | EM884797   | Oct. 20, 2015    | Oct. 19, 2016     |
| Measurement<br>Software | Sporton      | Sporton_1 | 1.3.30     | NA               | NA                |

## 1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013

## 1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

| Measurement Uncertainty  |             |
|--------------------------|-------------|
| Parameters               | Uncertainty |
| Bandwidth                | ±34.134 Hz  |
| Conducted power          | ±0.808 dB   |
| Power density            | ±0.463 dB   |
| Conducted emission       | ±2.670 dB   |
| AC conducted emission    | ±2.90 dB    |
| Radiated emission ≤ 1GHz | ±3.66 dB    |
| Radiated emission > 1GHz | ±5.37 dB    |



## 2 Test Configuration

## 2.1 Testing Condition

| Test Item          | Test Site | Ambient Condition | Tested By    |
|--------------------|-----------|-------------------|--------------|
| AC Conduction      | CO01-WS   | 24°C / 54%        | Howard Huang |
| Radiated Emissions | 03CH01-WS | 23°C / 61%        | Vincent Yeh  |
| RF Conducted       | TH01-WS   | 23°C / 65%        | Alex Huang   |

FCC site registration No.: 181692

➢ IC site registration No.: 10807A-1

## 2.2 The Worst Test Modes and Channel Details

| Test item                  | Mode                        | Test Frequency<br>(MHz)                                  | Data Rate (Mbps)           | Test Configuration |
|----------------------------|-----------------------------|----------------------------------------------------------|----------------------------|--------------------|
| Conducted Emissions        | 8DPSK                       | 2402                                                     | 3Mbps                      |                    |
| Radiated Emissions ≤ 1GHz  | 8DPSK                       | 2402                                                     | 3Mbps                      |                    |
| Radiated Emissions > 1GHz  | GFSK<br>8DPSK               | 2402, 2441, 2480<br>2402, 2441, 2480                     | 1Mbps<br>3Mbps             |                    |
| Conducted Output Power     | GFSK<br>л /4 QDPSK<br>8DPSK | 2402, 2441, 2480<br>2402, 2441, 2480<br>2402, 2441, 2480 | 1 Mbps<br>2 Mbps<br>3 Mbps |                    |
| Number of Hopping Channels | GFSK<br>8DPSK               | 2402~2480<br>2402~2480                                   | 1 Mbps<br>3 Mbps           |                    |
| Hopping Channel Separation | GFSK<br>8DPSK               | 2402, 2441, 2480<br>2402, 2441, 2480                     | 1 Mbps<br>3 Mbps           |                    |
| Dwell Time                 | GFSK<br>8DPSK               | 2402<br>2402                                             | 1 Mbps<br>3 Mbps           |                    |

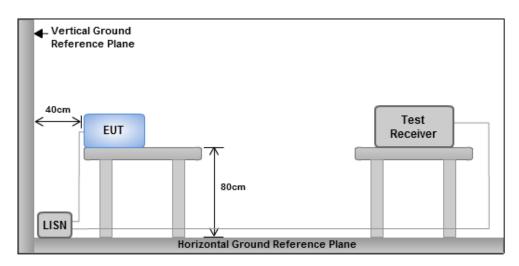
NOTE:

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report.



## 3 Transmitter Test Results

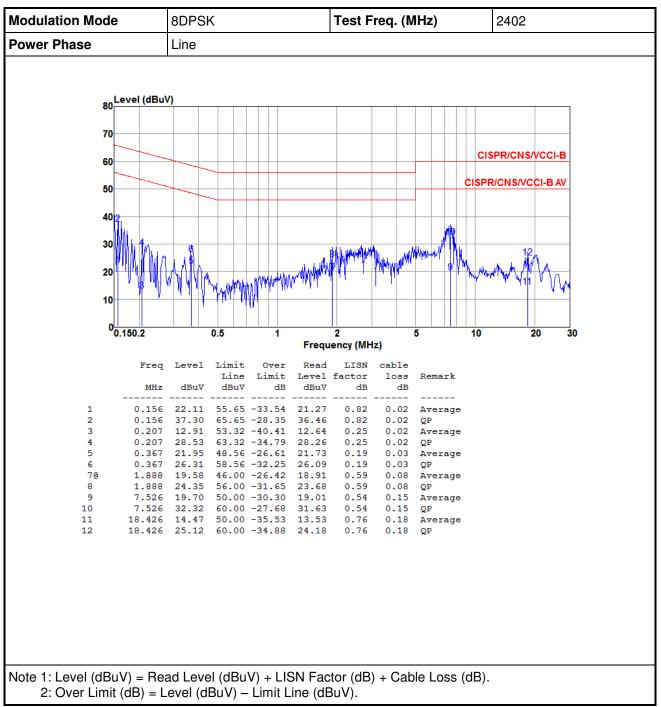
## 3.1 Conducted Emissions


### 3.1.1 Limit of Conducted Emissions

|                                       | Conducted Emissions Limit |           |
|---------------------------------------|---------------------------|-----------|
| Frequency Emission (MHz)              | Quasi-Peak                | Average   |
| 0.15-0.5                              | 66 - 56 *                 | 56 - 46 * |
| 0.5-5                                 | 56                        | 46        |
| 5-30                                  | 60                        | 50        |
| Note 1: * Decreases with the logarith | nm of the frequency.      |           |

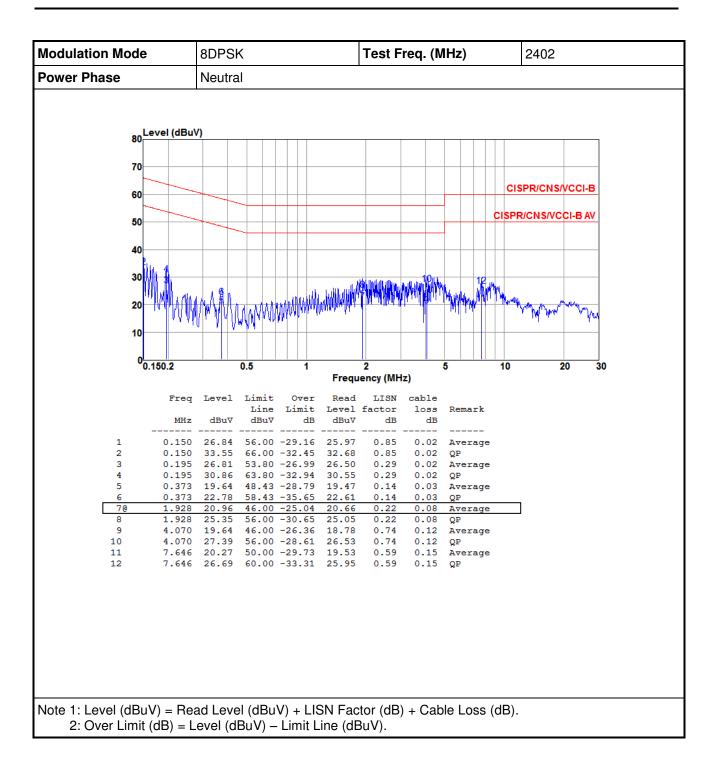
### 3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz


### 3.1.3 Test Setup



Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes





## 3.1.4 Test Result of Conducted Emissions







## 3.2 Unwanted Emissions into Restricted Frequency Bands

### 3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

|                       | Restricted Band       | Emissions Limit         |                      |
|-----------------------|-----------------------|-------------------------|----------------------|
| Frequency Range (MHz) | Field Strength (uV/m) | Field Strength (dBuV/m) | Measure Distance (m) |
| 0.009~0.490           | 2400/F(kHz)           | 48.5 - 13.8             | 300                  |
| 0.490~1.705           | 24000/F(kHz)          | 33.8 - 23               | 30                   |
| 1.705~30.0            | 30                    | 29                      | 30                   |
| 30~88                 | 100                   | 40                      | 3                    |
| 88~216                | 150                   | 43.5                    | 3                    |
| 216~960               | 200                   | 46                      | 3                    |
| Above 960             | 500                   | 54                      | 3                    |

#### Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:** 

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

### 3.2.2 Test Procedures

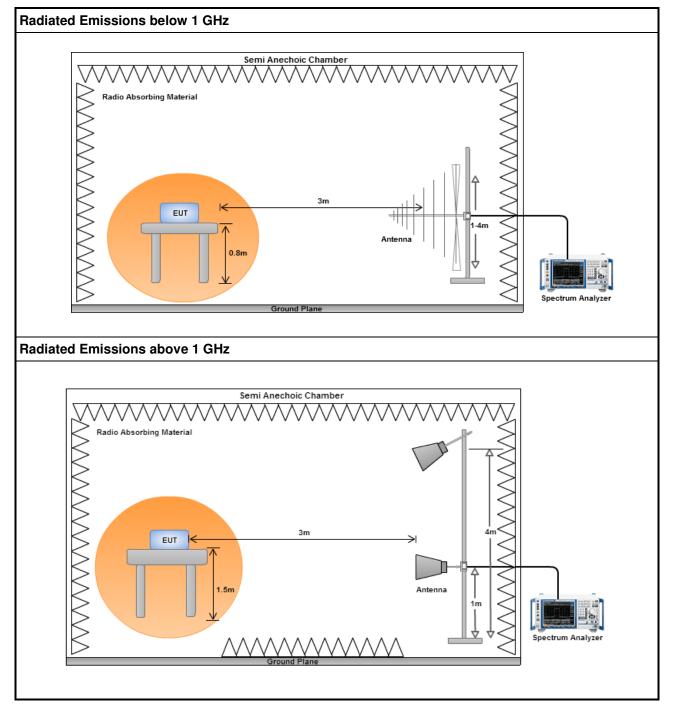
- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

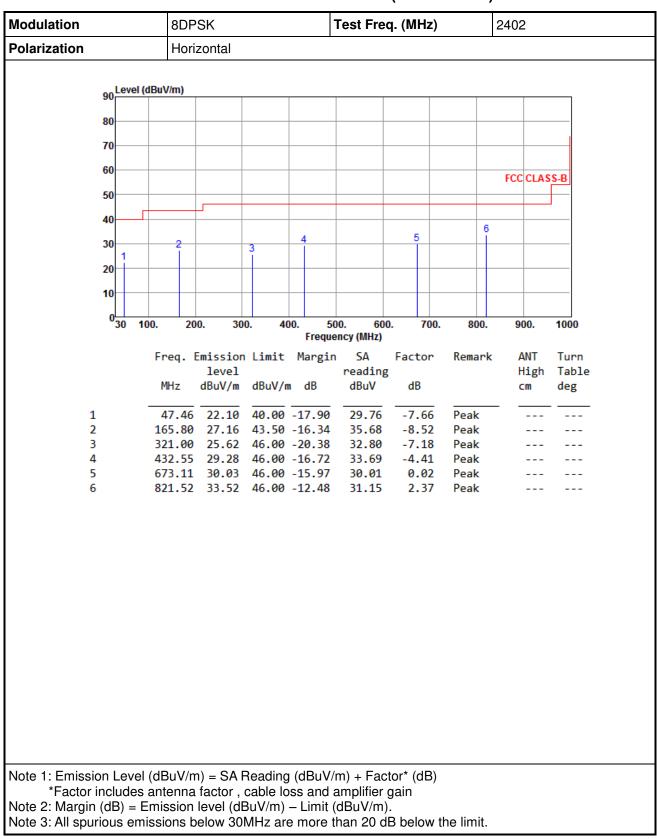
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:

3.


20log (Duty cycle) = 20log 
$$\frac{1s / 1600 * 5}{100 \text{ ms}}$$
 = -30.1dB

4. Radiated emission above 1GHz / Average value for other emissions

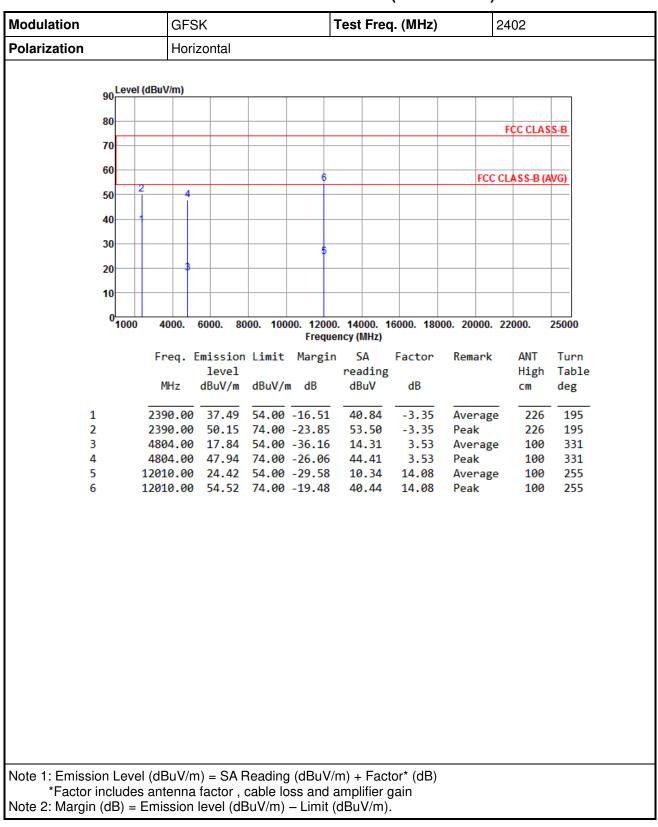

<sup>4.</sup> RBW=1MHz, VBW=1/T and Peak detector



## 3.2.3 Test Setup





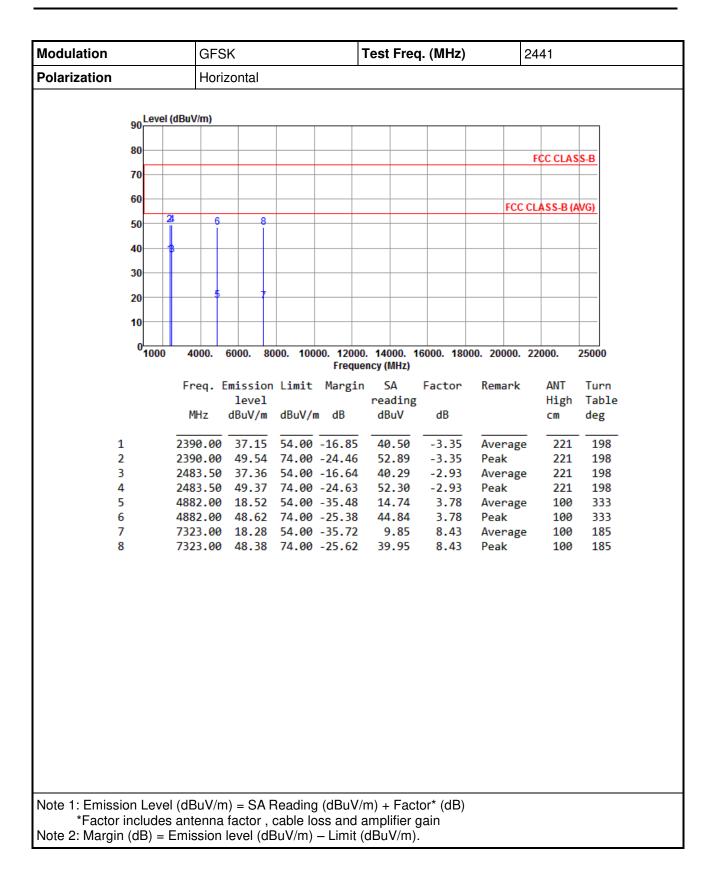



## 3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

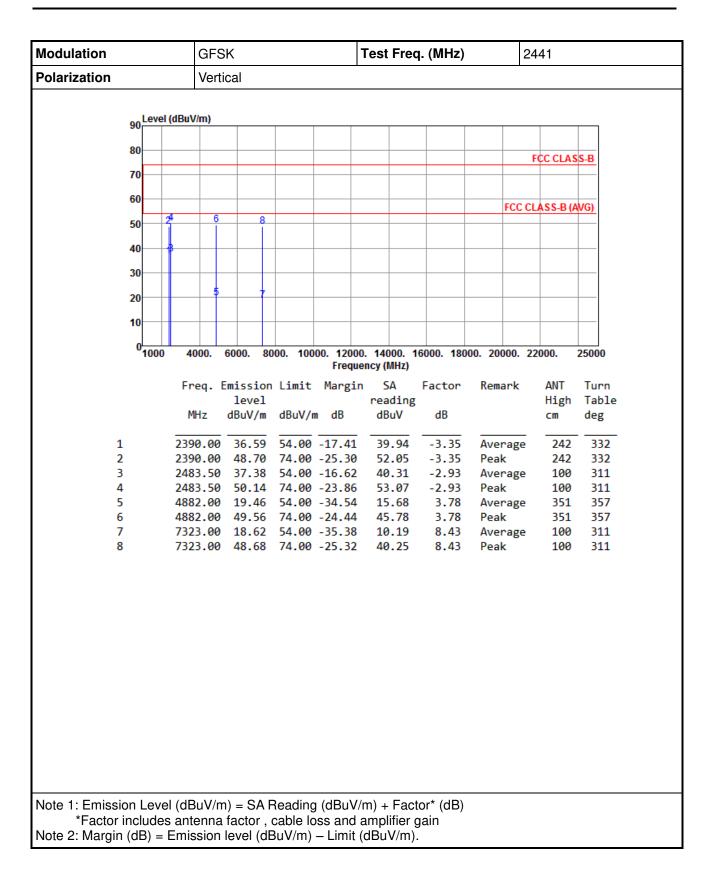



| Polarization         Vertical           90         Level (dBuV/m)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Image: second | Modulation           | 1                   |                   | 8DP                | SK                  |                    | ŀ                      | Test Fre             | q. (MHz)   |        | 2402     |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|-------------------|--------------------|---------------------|--------------------|------------------------|----------------------|------------|--------|----------|-------|
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Polarization         | n                   |                   | Verti              | cal                 |                    | ·                      |                      |            |        |          |       |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                     | l evel (d         | BuV/m)             |                     |                    |                        |                      |            |        |          |       |
| 70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70 <td< th=""><th>70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       <td< th=""><th></th><th>90</th><th>Lever</th><th>buvilly</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<></th></td<> | 70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70       70 <td< th=""><th></th><th>90</th><th>Lever</th><th>buvilly</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 90                  | Lever             | buvilly            |                     |                    |                        |                      |            |        |          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 80                  |                   |                    |                     |                    |                        |                      |            |        |          |       |
| 50       6         40       2         30       3       5         40       2         30       3       4         20       3       5         1       4       4         0       3       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4         1       4       4       4         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50       2       3       5       6         30       2       3       5       6         1       4       4       6       6         10       3       4       6       6         10       3       4       6       6         10       30       100.       200.       300.       400.       500.       600.       700.       800.       900.       1000         Freq. Emission Limit Margin SA Factor Remark ANT Level reading MHz         MHz       dBuV/m dBuV/m dB       dBuV       dB       cm       deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak          2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak          3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak          4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak          5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak <td< td=""><td></td><td>70</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | 70                  |                   |                    |                     |                    |                        |                      |            |        |          |       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 60                  |                   |                    |                     |                    |                        |                      |            |        | TCC CLAS | 2 C D |
| 40       2       3       5       6       6         30       3       4       6       6       6         30       1       4       6       6       6         30       1       4       6       6       6         30       1       4       6       6       6         10       20       30.0.       40.0.       500.       600.       700.       800.       900.       1000         Freq. Emission Limit Margin SA Factor Remark ANT Turn level reading         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           2       142.52       35.13       43.00       -17.46       38.08       -9.54       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4 <td>40       2       3       5       6       6         30       3       5       6       6       6         40       20       3       5       6       6         10       20       3       4       6       6         10       20       30       4       6       6         10       20       300       400       500       600       700       800       900       1000         Freq. Emission Limit Margin SA Factor Remark level reading       ANT Turn High Table cm deg         MHz       dBuV/m dBuV/m dB       dBuV       dB       cm deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.3</td> <td></td> <td>50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FUULAS</td> <td>БЗ-В</td>                                                                                                                                                                                                 | 40       2       3       5       6       6         30       3       5       6       6       6         40       20       3       5       6       6         10       20       3       4       6       6         10       20       30       4       6       6         10       20       300       400       500       600       700       800       900       1000         Freq. Emission Limit Margin SA Factor Remark level reading       ANT Turn High Table cm deg         MHz       dBuV/m dBuV/m dB       dBuV       dB       cm deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 50                  |                   |                    |                     |                    |                        |                      |            |        | FUULAS   | БЗ-В  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                     |                   |                    |                     |                    |                        |                      |            | 6      |          |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                     |                   | 2                  | 2                   |                    | 5                      |                      |            |        |          |       |
| 10       0       30       100.       200.       300.       400.       500.       600.       700.       800.       900.       1000         Freq. Emission Limit Margin SA Factor Remark level reading       Factor Remark dBuV/m       ANT Turn High Table cm         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 30                  | 1                 |                    | 1                   | 4                  |                        |                      |            |        |          |       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | 20                  |                   |                    |                     |                    |                        |                      |            |        |          |       |
| Frequency (MHz)         Freq. Emission Limit Margin SA Factor Remark level       Remark High Table cm         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       High Table deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frequency (MHz)         Freq. Emission Limit Margin SA Factor reading       Remark High Table reading         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       dB       cm       High Table deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 10                  |                   |                    |                     |                    |                        |                      |            |        |          |       |
| Frequency (MHz)         Freq. Emission Limit Margin SA Factor Remark level       Remark High Table cm         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       High Table deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frequency (MHz)         Freq. Emission Limit Margin SA Factor reading       Remark High Table reading         MHz       dBuV/m       dBuV/m       dB       dBuV       dB       dB       cm       High Table deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 0                   | 30 40             | 0 20               | 0 30                | 0 4                | 0 50                   | 0 60                 | 0 700      | 800    | 000      | 1000  |
| level         reading         High         Table           MHz         dBuV/m         dBuV/m         dBuV         dB         cm         deg           1         47.46         23.31         40.00         -16.69         30.97         -7.66         Peak             2         142.52         35.13         43.50         -8.37         43.55         -8.42         Peak             3         231.76         28.54         46.00         -17.46         38.08         -9.54         Peak             4         365.62         25.50         46.00         -20.50         31.57         -6.07         Peak             5         439.34         30.46         46.00         -15.54         34.71         -4.25         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | level         reading         High         Table           MHz         dBuV/m         dBuV/m         dBuV         dB         cm         deg           1         47.46         23.31         40.00         -16.69         30.97         -7.66         Peak             2         142.52         35.13         43.50         -8.37         43.55         -8.42         Peak             3         231.76         28.54         46.00         -17.46         38.08         -9.54         Peak             4         365.62         25.50         46.00         -20.50         31.57         -6.07         Peak             5         439.34         30.46         46.00         -15.54         34.71         -4.25         Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                     | 50 10             | 0. 20              | 0. 30               | 0. 4               |                        |                      | 0. 700.    | 800.   | 900.     | 1000  |
| MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MHz       dBuV/m       dBuV/m       dB       dBuV       dB       cm       deg         1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                     |                   | Freq. B            |                     | n Limit            | Margin                 |                      |            | Remark |          |       |
| 1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1       47.46       23.31       40.00       -16.69       30.97       -7.66       Peak           2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                   | MHz                |                     | dBuV/r             | n dB                   |                      |            |        | -        |       |
| 2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2       142.52       35.13       43.50       -8.37       43.55       -8.42       Peak           3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     | -                 |                    |                     |                    |                        |                      |            |        |          |       |
| 3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3       231.76       28.54       46.00       -17.46       38.08       -9.54       Peak           4       365.62       25.50       46.00       -20.50       31.57       -6.07       Peak           5       439.34       30.46       46.00       -15.54       34.71       -4.25       Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
| 5 439.34 30.46 46.00 -15.54 34.71 -4.25 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 439.34 30.46 46.00 -15.54 34.71 -4.25 Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Г                    |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
| Jote 1: Emission Level (dBuV/m) - SA Beading (dBuV/m) + Eactor* (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Note 1: Emission Level (dBuV/m) – SA Beading (dBuV/m) + Eactor* (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Note 1: Emi          | ssion I             | ا امریحا          | dBuV/m             | n) – SA I           | Reading            | ı (dRuV/               | m) + Fac             | tor* (dR)  |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)<br>*Factor includes antenna factor , cable loss and amplifier gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                   |                    |                     |                    |                        |                      |            |        |          |       |
| *Factor includes antenna factor , cable loss and amplifier gain<br>Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *Fact<br>Note 2: Mar | tor incl<br>gin (dE | udes a<br>3) = Ei | antenna<br>mission | factor,<br>level (d | cable lo<br>BuV/m) | oss and a<br>– Limit ( | amplifier<br>dBuV/m) | gain<br>). |        |          |       |

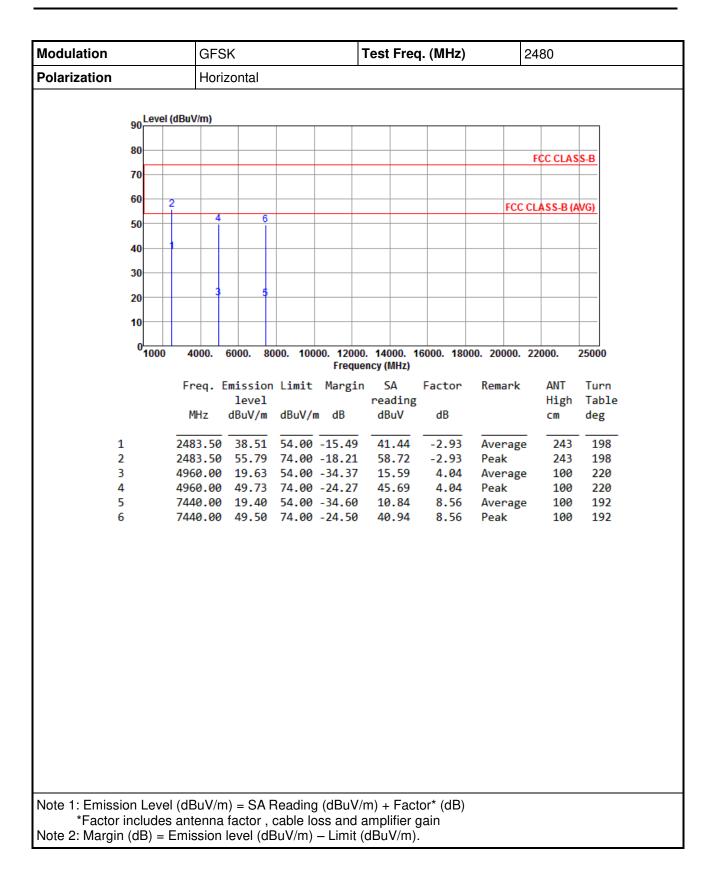




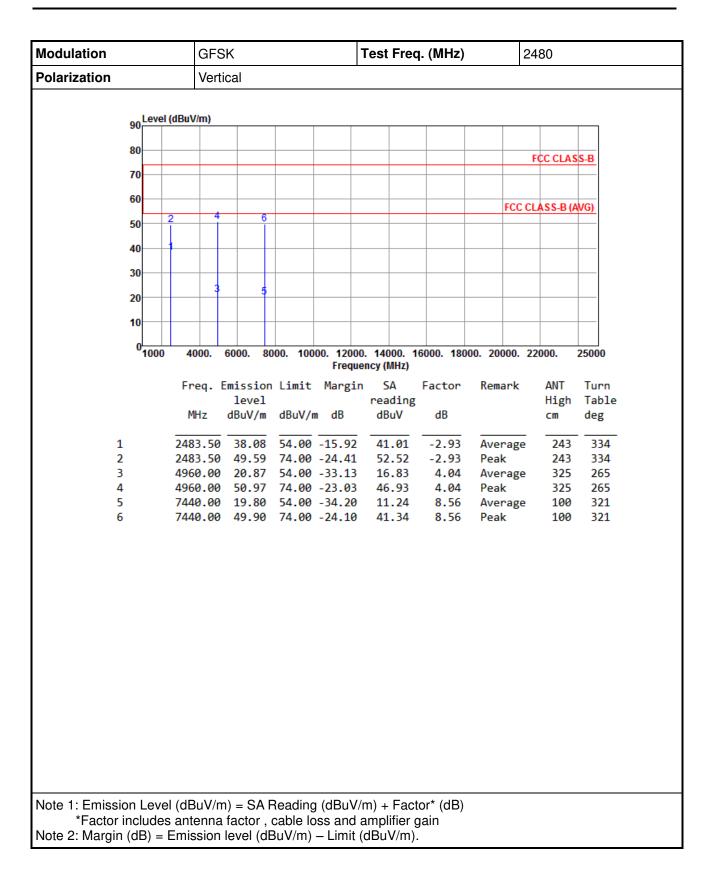

## 3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK









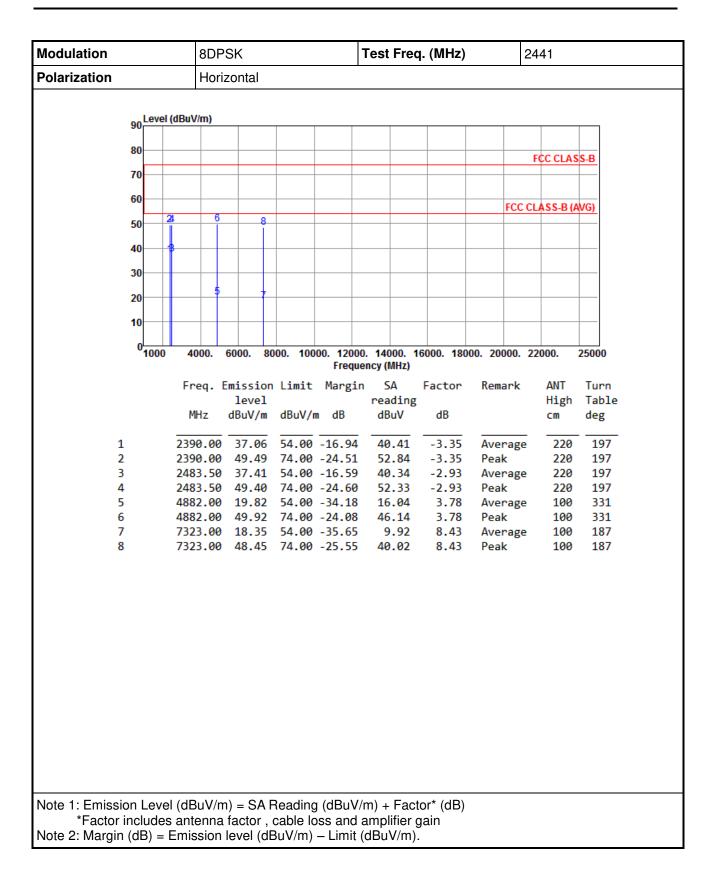




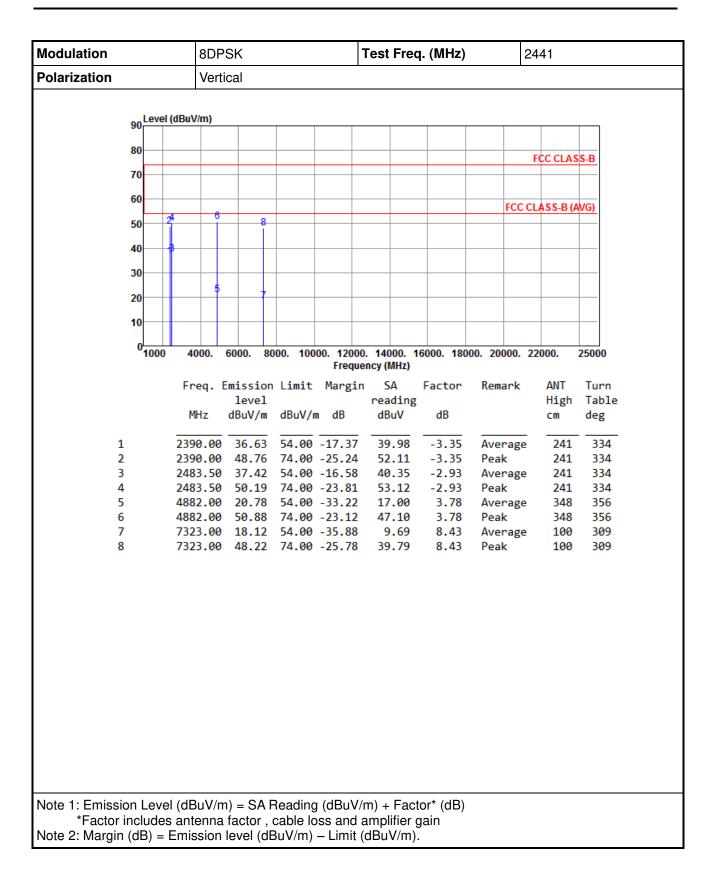




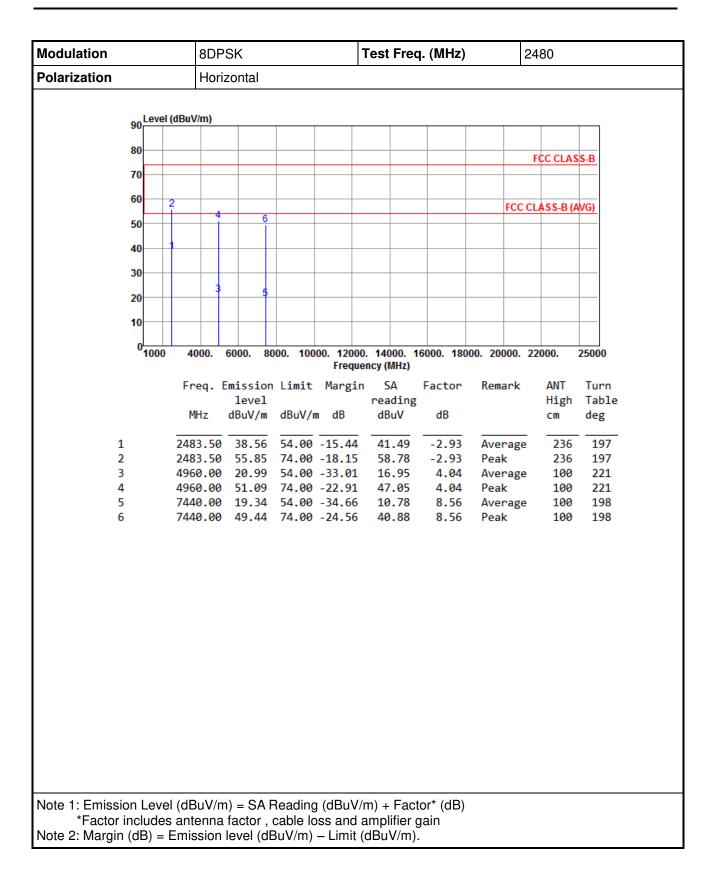




| Modulation                                           |                        |         | 8DP   | SK              |          |         | Te   | est Fred        | I. (MHz)      |          | 24    | 02         |              |
|------------------------------------------------------|------------------------|---------|-------|-----------------|----------|---------|------|-----------------|---------------|----------|-------|------------|--------------|
| Polarization                                         |                        |         | Hori  | zontal          |          |         |      |                 |               |          |       |            |              |
| ٥                                                    | Leve                   | l (dBu\ | //m)  |                 |          |         |      |                 |               |          |       |            |              |
| 9                                                    |                        |         |       |                 |          |         |      |                 |               |          |       |            |              |
| 8                                                    | 0                      |         |       |                 |          |         |      |                 |               |          | F     | CC CLAS    | S-B          |
| 7                                                    | 0                      |         |       |                 |          |         |      |                 |               |          |       |            |              |
|                                                      |                        |         |       |                 |          |         |      |                 |               |          |       |            |              |
| 6                                                    | 0                      |         |       |                 |          | 6       |      |                 |               | F        | CC CL | ASS-B (A   | VG)          |
| 5                                                    | 0                      | 2       | 4     |                 |          |         |      |                 |               |          |       |            |              |
| 4                                                    | 0                      | -       |       |                 |          |         |      |                 |               |          |       |            |              |
|                                                      |                        |         |       |                 |          |         |      |                 |               |          |       |            |              |
| 3                                                    | 0                      |         |       |                 |          | 5       |      |                 |               |          |       |            |              |
| 2                                                    | 0                      |         |       |                 |          |         |      |                 |               |          |       |            |              |
| 1                                                    |                        |         |       |                 |          |         |      |                 |               |          |       |            |              |
|                                                      |                        |         |       |                 |          |         |      |                 |               |          |       |            |              |
|                                                      | 0 <sup>L</sup><br>1000 | ) 4(    | 000.  | 6000. 80        | 00. 100  |         |      |                 | 6000. 180     | 00. 2000 | 0. 22 | 000.       | 25000        |
|                                                      |                        |         |       |                 |          |         |      | cy (MHz)        |               |          |       |            |              |
|                                                      |                        | Fr      | eq. I | Emission        | Limit    | Margi   |      |                 | Factor        | Remar    | rk    | ANT        | Turn         |
|                                                      |                        | м       | Hz    | level<br>dBuV/m | dBuV/r   | n dR    |      | reading<br>dBuV | dB            |          |       | High<br>cm | Table<br>deg |
|                                                      |                        |         | 112   | 0000/1          | ubuv/i   |         |      | abav            | ab            |          |       | CIII       | ucg          |
| 1                                                    |                        |         |       | 37.56           |          |         |      | 40.91           | -3.35         | Avera    |       | 224        | 195          |
| 2                                                    |                        |         | 0.00  |                 |          |         |      | 53.62           | -3.35         | Peak     |       | 224        | 195          |
| 3<br>4                                               |                        |         | 4.00  |                 |          |         |      | 14.49           | 3.53          |          | _     | 100        | 330          |
| 4 5                                                  |                        |         |       | 48.12<br>24.38  |          |         |      | 44.59<br>10.30  | 3.53<br>14.08 |          |       | 100<br>100 | 330<br>252   |
| 6                                                    |                        |         |       | 54.48           |          |         |      | 40.40           | 14.08         | Peak     | _     | 100        | 252          |
|                                                      |                        |         |       |                 |          |         |      |                 |               |          |       |            |              |
| Note 1: Emission<br>*Factor inc<br>Note 2: Margin (c | clude                  | s ant   | enna  | factor, o       | cable lo | oss and | l an | nplifier g      | gain          |          |       |            |              |

## 3.2.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK




| Modulation    |                    |            | 8DPS   | SK        |         |         | Test F    | req.  | (MHz)    |         | 24      | 02       |       |
|---------------|--------------------|------------|--------|-----------|---------|---------|-----------|-------|----------|---------|---------|----------|-------|
| Polarization  |                    |            | Vertio | cal       |         |         |           |       |          |         |         |          |       |
|               | Lev                | /el (dBuV/ | /m)    |           |         |         |           |       |          |         |         |          |       |
|               | 90                 |            |        |           |         |         |           |       |          |         |         |          |       |
|               | 80                 |            |        |           |         |         |           |       |          |         |         | CC CLAS  | C D   |
|               | 70                 |            |        |           |         |         |           |       |          |         |         | UU ULAS  | 3-0   |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               | 60                 |            |        |           |         | 6       |           |       |          |         | FCC CL  | ASS-B (A | VG)   |
|               | 50                 | 2          | 4      |           |         |         |           |       |          |         |         |          |       |
|               | 40—                |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               | 30                 |            |        |           |         | 5       |           |       |          |         |         |          |       |
|               | 20                 |            | 3      |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               | 10                 |            |        |           |         |         |           |       |          |         |         |          |       |
|               | 0 <mark>100</mark> | 00 40      | 00. 6  | 5000. 80  | 00. 100 | 00. 120 | 00. 1400  | 0. 16 | 000. 180 | 00. 200 | )00. 22 | 000.     | 25000 |
|               |                    |            |        |           |         |         | uency (MI |       |          |         |         |          |       |
|               |                    | Fre        | eq. E  | mission   | Limit   | Margi   | in SA     | 1     | Factor   | Rema    | ark     | ANT      | Turn  |
|               |                    |            |        | level     |         |         | read      | · · · |          |         |         | High     | Table |
|               |                    | MH         | lz     | dBuV/m    | dBuV/ı  | n dB    | dBu       | v     | dB       |         |         | cm       | deg   |
|               | 1                  | 2396       | 00     | 36.73     | 54 00   | -17 27  | 40.       | 08 -  | -3.35    |         | rage    | 257      | 331   |
|               | 2                  |            |        | 49.24     |         |         |           |       | -3.35    | Peal    |         | 257      | 331   |
|               | 3                  |            |        | 19.68     |         |         |           |       | 3.53     |         | rage    | 284      | 353   |
|               | 4                  |            |        | 49.78     |         |         |           |       | 3.53     |         |         | 284      |       |
|               | 5                  |            |        | 24.67     |         |         |           |       | 14.08    |         | rage    | 100      |       |
| e e           | D                  | 12016      | 0.00   | 54.77     | 74.00   | -19.23  | 3 40.     | 69    | 14.08    | Peal    | ¢       | 100      | 169   |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
| Note 1: Emiss | ion Le             | vel (dRi   | uV/m   |           | Reading | ı (dBu\ | //m) + F  | acto  | or* (dR) |         |         |          |       |
|               |                    |            |        |           |         |         |           |       |          |         |         |          |       |
|               | includ             | les ante   |        | factor, o |         |         |           |       |          |         |         |          |       |
















| Modulation                |                |         | 8DF     | PSK            |          |          | Test Fred                 | ą. (MHz)     |               | 248    | 30         |       |
|---------------------------|----------------|---------|---------|----------------|----------|----------|---------------------------|--------------|---------------|--------|------------|-------|
| Polarization              |                |         | Ver     | tical          |          |          |                           |              |               |        |            |       |
|                           | on L           | evel (d | lBuV/m) |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           | 80             |         |         |                |          |          |                           |              |               | FC     | C CLAS     | S-B   |
|                           | 70             |         |         |                |          |          |                           |              |               |        |            |       |
|                           | 60-            |         |         |                |          |          |                           |              |               |        |            |       |
|                           | , vu           |         | - 4     | 6              |          |          |                           |              | FC            | C CLA  | SS-B (A    | VG)   |
|                           | 50             | 2       |         | 0              |          |          |                           |              |               |        |            |       |
|                           | 40             |         |         |                |          |          |                           |              |               |        |            |       |
|                           | 30-            |         |         |                |          |          |                           |              |               |        |            |       |
|                           | 50             |         | 3       |                |          |          |                           |              |               |        |            |       |
|                           | 20             |         |         |                |          |          |                           |              |               |        |            |       |
|                           | 10             |         |         |                | _        |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           | <sup>0</sup> 1 | 000     | 4000.   | 6000. 8        | 000. 100 |          | ). 14000. 1<br>ency (MHz) | 6000. 180    | 00. 20000     | ). 220 | 00.        | 25000 |
|                           |                |         | Freq.   | Emissior       | n Limit  | Margir   | SA                        | Factor       | Remar         | k      | ANT        | Turn  |
|                           |                |         |         | level          |          |          | reading                   |              |               |        | High       | Table |
|                           |                |         | MHz     | dBuV/m         | dBuV/r   | n dB     | dBuV                      | dB           |               |        | cm         | deg   |
|                           | 1              |         | 2483.50 | 38.15          | 54.00    | -15.85   | 41.08                     | -2.93        | Avera         | ge     | 156        | 332   |
|                           | 2              |         |         | 49.68          |          |          | 52.61                     | -2.93        | Peak          | 0-     | 156        | 332   |
|                           | 3              |         |         | 21.13          |          |          |                           | 4.04         | Avera         | ge     | 330        |       |
|                           | 4<br>5         |         |         | 51.23<br>19.73 |          |          |                           | 4.04         |               | -      | 330<br>100 |       |
|                           | 6              |         |         | 49.83          |          |          |                           | 8.56<br>8.56 | Avera<br>Peak | ge     | 100        | 314   |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
|                           |                |         |         |                |          |          |                           |              |               |        |            |       |
| Note 1: Emiss             | ion L          | evel    | (dBuV/r | n) = SA        | Reading  | ∫ (dBuV/ | m) + Fact                 | tor* (dB)    |               |        |            |       |
| *Factor<br>Note 2: Margir | inclu          | des     | antenna | a factor,      | cable lo | ss and   | amplifier (               | gain         |               |        |            |       |
|                           |                |         |         |                | D (1/1)  |          |                           |              |               |        |            |       |

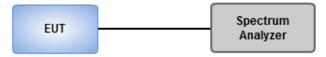


## 3.3 Unwanted Emissions into Non-Restricted Frequency Bands

### 3.3.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

### 3.3.2 Test Procedures


#### **Reference Level Measurement**

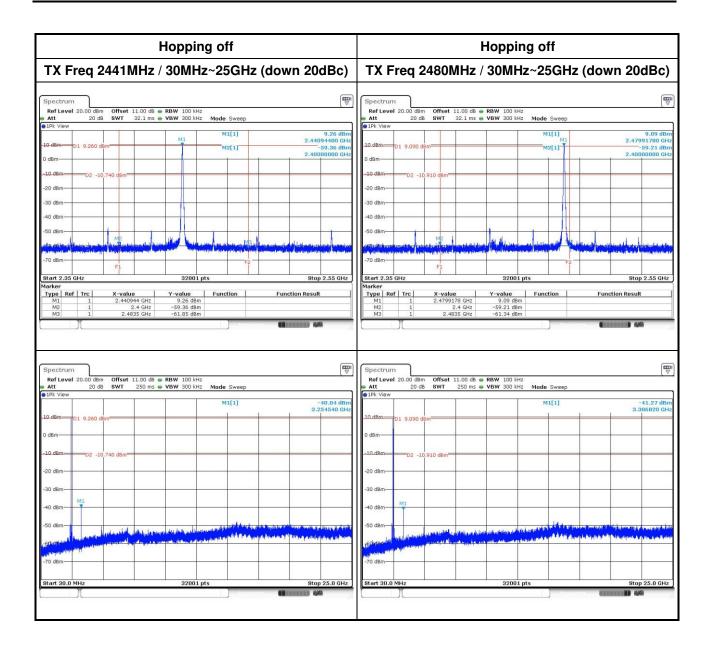
- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

#### Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

### 3.3.3 Test Setup



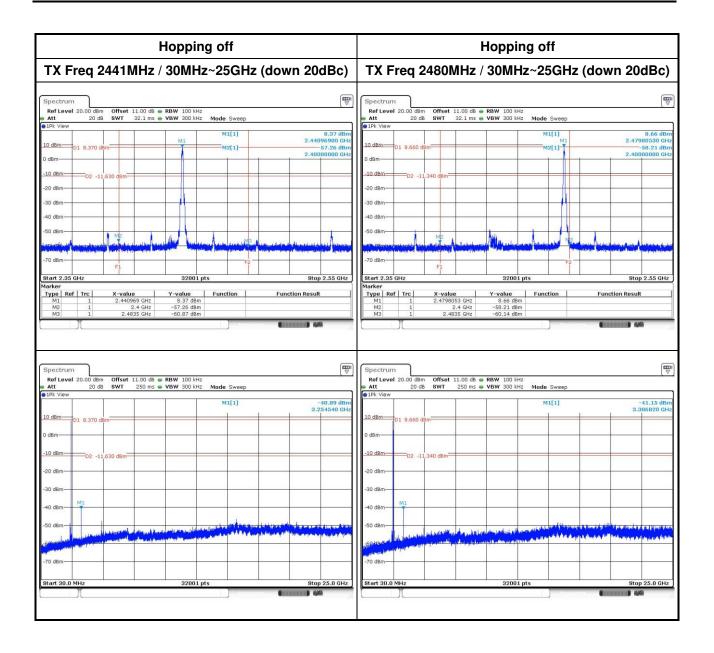



## 3.3.4 Unwanted Emissions into Non-Restricted Frequency Bands

### GFSK

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hopping o                                                                                                   | on         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          | Hoppi                                                              | ng off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                     |                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|---------------------------|
| 30MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lz~25GHz (do                                                                                                | wn 20dBc)  |                              | TX Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | q 2402MH                                                 | z / 30MH                                                           | lz∼25Gŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lz (dov | wn 20d              | Bc)                       |
| Spectrum<br>Ref Level 20.00 dBm Offset 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00 dB 👄 RBW 100 kHz                                                                                       |            |                              | Spectrum<br>Ref Level 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dBm Offset 11.00                                         | dB 🖷 RBW 100 kt                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     | [                         |
| Att 20 dB SWT 3<br>1Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.1 ms 🖷 VBW 300 kHz 🛛 Mod                                                                                  | e Sweep    | ]                            | Att 2     IPk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 dB SWT 32.1                                           | ms 🖷 VBW 300 kł                                                    | Hz Mode Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                     |                           |
| 0 dBm D1 9.870 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N(1                                                                                                         | M1[1]      | 9.87 dBm<br>2.43114430 GHz   | 10 dBmD1 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1                                                       |                                                                    | M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 2.40214             | 9.74 dB<br>1520 G         |
| dBmD2 -10.130 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |            | -50.09 dBm<br>2.40000000 GHz | 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 -10.260 dBm                                            |                                                                    | M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | 2.40000             | 5.40 dE<br>0000 G         |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d                                                                                                           |            |                              | -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                           |
| e0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             |            |                              | -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MPL                                                      | -                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                     |                           |
| 70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                             | F2         |                              | -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F1                                                       | d taget which the                                                  | and a global state of the state | F2      | top at subside on   | interior interior         |
| tart 2.35 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32001 pts                                                                                                   |            | Stop 2.55 GHz                | Start 2.35 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ĭ.                                                       | 32001                                                              | L pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Stop 2.             | .55 GF                    |
| arker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             | and I have | nction Result                | Marker<br>Type   Ref   Trc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X-value                                                  | Y-value                                                            | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fun     | nction Result       |                           |
| Period         Ref         Trc         X-value           M1         1         2.431144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 GHz -50.09 dBm                                                                                            |            | 1111 <b>D</b> 40             | M1 1<br>M2 1<br>M3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.4 G                                                    | Hz -56.40 dBi                                                      | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | <b></b>             | -                         |
| ype Ref Trc X-value<br>M1 1 2.431144<br>M2 1 2.431144<br>M3 1 2.483<br>M3 1 2.483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 GHz 9.87 dBm<br>4 GHz -50.09 dBm<br>S GHz -59.03 dBm                                                      | e Sweep    | (ŢŢ                          | M1         1           M2         1           M3         1           Spectrum         Ref Level 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 2.4 G<br>2.4835 G                                      | Hz -56.40 dBi                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | NUMBER <b>1</b> 449 | (                         |
| Trc         X-value           M1         1         2.431144           M2         1         2.431144           M3         1         2.483           M3         1         2.483           Epectrum         RefLevel 20.00 dBm         Offset 1:<br>Att           Att         20 dB         SWT           DPK View         IPK View         IPK View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 GHz 9.87 dBm<br>4 GHz -50.09 dBm<br>5 GHz -59.03 dBm<br>1.00 dB ● RBW 100 kHz<br>250 ms ● VBW 300 kHz Mod | Management | unne <b>n</b> 49             | M1         1           M2         1           M3         1           Spectrum         Ref Level 20.00           Att         2           1Pk View         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4 G<br>2.4835 G<br>0 dBm Offset 11.00<br>20 dB SWT 250 | 42 -56.40 dB<br>42 -64.26 dB<br>dB ● RBW 100 kB                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                     | ).33 dE                   |
| ype         Ref         Trc         X-value           M1         1         2.431144           M2         1         2.43114           M3         1         2.43144           Peters         State         State           Peters         20.00 dBm         Offset 1:           Att         20.06 BWT         SWT           PdBm         01         9.870 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 GHz 9.87 dBm<br>4 GHz -50.09 dBm<br>5 GHz -59.03 dBm<br>1.00 dB ● RBW 100 kHz<br>250 ms ● VBW 300 kHz Mod | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           Spectrum         Ref Level 20.00           Att         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4 G<br>2.4835 G<br>0 dBm Offset 11.00<br>20 dB SWT 250 | 42 -56.40 dB<br>42 -64.26 dB<br>dB ● RBW 100 kB                    | n<br>n<br>42<br>42 <b>Mode</b> Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     | ).33 dE                   |
| ype         Ref         Trc         X-value           M1         1         2.431144           M2         1         2.43114           M3         1         2.483           M3         1         2.483           Pectrum         Ref Level 20.00 dbm         Offset 1           Att         20 dB         SWT           Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 GHz 9.87 dBm<br>4 GHz -50.09 dBm<br>5 GHz -59.03 dBm<br>1.00 dB ● RBW 100 kHz<br>250 ms ● VBW 300 kHz Mod | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           M3         1           Spectrum         Ref Level 20.00           Att         2           @1Pk View         1           10 dBm         01 9.7           0 dBm         1                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4 G<br>2.4835 G<br>0 dBm Offset 11.00<br>20 dB SWT 250 | 42 -56.40 dB<br>42 -64.26 dB<br>dB ● RBW 100 kB                    | n<br>n<br>42<br>42 <b>Mode</b> Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     | ).33 di                   |
| ype         Ref         Trc         X-value           M1         1         2.431144           M2         1         2.43144           M3         1         2.43144           M3         1         2.483           Pectrum         Ref Level 20.00 dBm         Offset 1           Att         20 dB         SWT           Pk View         01 9.870 dBm         dBm           0-dBm         D2 -10.130 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 GHz 9.87 dBm<br>4 GHz -50.09 dBm<br>5 GHz -59.03 dBm<br>1.00 dB ● RBW 100 kHz<br>250 ms ● VBW 300 kHz Mod | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           M3         1           Spectrum         Ref Level 20.00           Att         2           @1Pk View         1           10 dBm         01 9.7           0 dBm         1                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4 G<br>2.4835 G<br>0 dBm Offset 11.00<br>20 dB SWT 250 | 42 -56.40 dB<br>42 -64.26 dB<br>dB ● RBW 100 kB                    | n<br>n<br>42<br>42 <b>Mode</b> Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     | ).33 dE                   |
| ype         Ref         Trc         X-value           M1         1         2.431144           M2         1         2.43114           M3         1         2.483           M3         1         2.483           Pectrum         Ref Lavel 20.00 dBm         Offset 11           Att         20 dB         SWT           D-dBm         D1 9.870 dBm         dBm           dBm         D2 -10,130 dBm         dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 GHz 9.87 dBm<br>4 GHz -50.09 dBm<br>5 GHz -59.03 dBm<br>1.00 dB ● RBW 100 kHz<br>250 ms ● VBW 300 kHz Mod | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           M3         1           Gef Level 20.00         Att 2           IPk View         1           10 dBm         01 9.7           0 dBm         02           -20 dBm         02                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4 G<br>2.4835 G<br>0 dBm Offset 11.00<br>20 dB SWT 250 | 42 -56.40 dB<br>42 -64.26 dB<br>dB ● RBW 100 kB                    | n<br>n<br>42<br>42 <b>Mode</b> Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     | ).33 dE                   |
| ype         Ref         Trc         X-value           M1         1         2.431144           M2         1         2.431144           M3         1         2.483           J         2.483         1           Pectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 GHz 9.87 dBm<br>4 GHz -50.09 dBm<br>5 GHz -59.03 dBm<br>1.00 dB ● RBW 100 kHz<br>250 ms ● VBW 300 kHz Mod | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           M3         1           M3         1           M3         1           M4         2           Phenology         20.00           Att 2           Phenology         20.00           Att 2           Phenology         10.70           O dBm         01.9.7           O dBm         02           -20 dBm         02           -30 dBm         M1                                                                                                                                                                                                                                                      | 2.4 G<br>2.4835 G<br>0 dBm Offset 11.00<br>20 dB SWT 250 | 42 -56.40 dB<br>42 -64.26 dB<br>dB ● RBW 100 kB                    | n<br>n<br>42<br>42 <b>Mode</b> Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                     | ).33 di                   |
| ype         Ref         Trc         X-value           M1         1         2.431144         M2         1         2.431144           M2         1         2.431144         1         2.431144           M3         1         2.431144         1         2.431144           M3         1         2.431144         1         2.431144           M3         1         2.43144         1         2.483           Poctrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 GHz 9.87 dBm<br>4 GHz -50.09 dBm<br>5 GHz -59.03 dBm<br>1.00 dB ● RBW 100 kHz<br>250 ms ● VBW 300 kHz Mod | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           M3         1           General Control         1           Ref Level 20.00         1           Att         2           IPk View         1           10 dBm         02           -20 dBm         -20 dBm           -40 dBm         M1                                                                                                                                                                                                                                                                                                                                                             | 2.4 G<br>2.4835 G<br>0 dBm Offset 11.00<br>20 dB SWT 250 | 42 -56.40 dB<br>42 -64.26 dB<br>dB ● RBW 100 kB                    | n<br>n<br>42<br>42 <b>Mode</b> Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 3.203               | 0.33 di<br>3040 G         |
| ype         Ref         Trc         X-value           M1         1         2.431144           M2         1         2.431144           M2         1         2.431144           M3         1         2.483           J         2.483         2.483           Pectrum         Ref Level 20.00 dBm         Offset 1           Att         20.6B         SWT           Pk View         01 9.870 dBm         0           0-dBm         D2 -10.130 dBm           0 dBm         0         0           0 dBm         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00 dB • RBW 100 kHz<br>250 ms • VBW 300 kHz Mod                                                           | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           M3         1           M3         1           M3         1           M4         2           Phenology         20.00           Att 2           Phenology         20.00           Att 2           Phenology         10.70           O dBm         01.9.7           O dBm         02           -20 dBm         02           -30 dBm         M1                                                                                                                                                                                                                                                      | 2 -10.260 dBm                                            | 12 -56.40 d8<br>12 -64.26 d8<br>-64.26 d8<br>ms • VBW 300 is<br>13 | 42<br>42 Mode Sweep<br>M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                     | 3.33 di<br>3040 G         |
| Trc         X-value           M1         1         2.431144           M2         1         2.431144           M3         1         2.431144           M3         1         2.483           M3         1         2.483           Intervention         2.483           M3         1         2.483           Intervention         3.483           Intervention         3.483           Intervention         3.483           Intervention         3.483           Intervention         3.443           Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.00 dB ● RBW 100 kHz<br>250 ms ● VBW 300 kHz Mod                                                           | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           M3         1           General Control         1           Ref Level 20.00         1           Att         2           IPk View         1           10 dBm         02           -20 dBm         -20 dBm           -40 dBm         M1                                                                                                                                                                                                                                                                                                                                                             | 2 -10.260 dBm                                            | 12 -56.40 d8<br>12 -64.26 d8<br>-64.26 d8<br>ms • VBW 300 is<br>   | 42<br>42 Mode Sweep<br>M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | 3.203               | 3.33 dE<br>3040 G         |
| Trc         X-value           M1         1         2.431144           M2         1         2.431144           M3         1         2.431144           M3         1         2.431144           M3         1         2.431144           M3         1         2.483           Image: Comparison of the state of the st | 1.00 dB • RBW 100 kHz<br>250 ms • VBW 300 kHz Mod                                                           | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           M3         1           General Control         1           Ref Level 20.00         1           Att         2           IPk View         1           10 dBm         02           -20 dBm         -20 dBm           -40 dBm         M1                                                                                                                                                                                                                                                                                                                                                             | 2 -10.260 dBm                                            | 12 -56.40 d8<br>12 -64.26 d8<br>-64.26 d8<br>ms • VBW 300 is<br>13 | 42<br>42 Mode Sweep<br>M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                     | 3.33 dE<br>3040 G         |
| Type         Ref         Trc         X-value           M1         1         2:431144           M2         1         2:431144           M2         1         2:431144           M2         1         2:431144           M2         1         2:48144           M3         1         2:481           Spectrum         Ref Level 20:00 dBm         Offset 1           Att         20 dB         SWT           Jipk View         01         9:870 dBm           D dBm         02         -10:130 dBm           40 dBm         02         -10:130 dBm           50 dBm         01         -10:130 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00 dB • RBW 100 kHz<br>250 ms • VBW 300 kHz Mod                                                           | e Sweep    | -40.36 dBm                   | M1         1           M2         1           M3         1           M3         1           M3         1           M3         1           M4         2           Phetovel 20.00         Att           M4         2           M5         3           M6         M1           -50         4           M4         4 | 2 -10.260 dBm                                            | 12 -56.40 d8<br>12 -64.26 d8<br>-64.26 d8<br>ms • VBW 300 is<br>13 | 42<br>42 Mode Sweep<br>M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |                     | 994 Y 19 <sup>9</sup> Y 1 |








### 8DPSK

| Hopping on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hopping off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                          |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
| 30MHz~25GHz (down 20dBc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TX Freq 2402MHz / 30MHz~25GHz (dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TX Freq 2402MHz / 30MHz~25GHz (down 20dBc)               |  |  |  |
| Spectrum<br>Reflevel 20.00 dBm Offset 11.00 dB @ RBW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Image: Spectrum         Ref Level 20.00 dBm         Offset 11.00 dB         RBW 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |  |  |  |
| Att 20 dB SWT 32.1 ms  VBW 300 kHz Mode Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Att 20 dB SWT 32.1 ms      VBW 300 kHz Mode Sweep     Pk View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |  |  |  |
| 10 dBm D1 9.910 dBm d. W. L (d. 1. 1) and (0. 0. 10 102)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.91 dBm<br>4370 GHz<br>3.71 dBm<br>0000 GHz<br>0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.95 dBi<br>2.40198900 GH<br>-50.92 dBi<br>2.40000000 GH |  |  |  |
| 10 dBm D2 -10.090 dBm 20 dBm 2 | -10.dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                          |  |  |  |
| 40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -40 dBm - MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |  |  |  |
| 4 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -70 dBm - F1 - F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nin isinin termenun in terminikasi                       |  |  |  |
| larker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.55 GHz 32001 pts<br>Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stop 2.55 GHz<br>ction Result                            |  |  |  |
| Type         Ref         Trc         X-value         Y-value         Function         Function           M1         1         2.4511437 GHz         9.91 dBm         Function         Function Result           M2         1         2.4 GHz         -53.71 dBm         Function         Function Result           M3         1         2.4935 GHz         -58.28 dBm         Function         Function Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type         Ref         Trc         X-value         Y-value         Function         Function           M1         1         2.401999 GHz         8.95 dBm         8.95 dBm         8.95 dBm           M2         1         2.4 GHz         -50.92 dBm         8.95 dBm | anna <b>10</b> 446                                       |  |  |  |
| M1         1         2.4511437 GHz         9.91 dBm           M2         1         2.4 GHz         -53.71 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1 1 2.401989 GHz 8.95 dBm<br>M2 1 2.4 GHz -50.92 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111111 <b>11)</b> 494                                    |  |  |  |
| M1         1         2.4511437 GHz         9.91 dBm           M2         1         2.4 GHz         -53.71 dBm           M3         1         2.44 GHz         -53.71 dBm           M3         1         2.4835 GHz         -58.28 dBm           Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1         1         2.401995 GHz         8.95 GBm           M2         1         2.4 GHz         -50.92 GBm           M3         1         2.4835 GHz         -61.61 dBm           M3         1         2.4835 GHz         -61.61 dBm           Spectrum         Ref Level 20.00 dBm         Offset 11.00 dB • RBW 100 kHz         Node Sweep           • Att         20 dB         SWT         250 ms • VBW 300 kHz         Node Sweep           • 1Pk View         M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>() () () () () () () () () () () () () (</b>          |  |  |  |
| M1         1         2.4511437 GHz         9.91 dBm           M2         1         2.4 GHz         -53.71 dBm           M3         1         2.4635 GHz         -58.28 dBm           M3         1         2.4835 GHz         -58.28 dBm           Spectrum         Ref Level 20.00 dBm         Offset 11.00 dB ⊕ RBW 100 kHz           Att         20 dB SWT         250 ms ♥ VBW 300 kHz         Made Sweep           JPk View         M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1         1         2.4 GH2         6.95 dBm           M2         1         2.4 GH2         -50.92 dBm           M3         1         2.4835 GH2         -61.61 dBm           Spectrum         Ref Level 20.00 dBm         Offset 11.00 dB         RBW 100 kH2           Att         20 dB         SWT         250 ms         VBW 300 kHz           M0         M1[1]         M1[1]         M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>() () () () () () () () () () () () () (</b>          |  |  |  |
| M1         1         2.4511437 GHz         9.91 dBm           M2         1         2.4 GHz         -53.71 dBm           M3         1         2.4695 GHz         -59.28 dBm           M3         1         2.4835 GHz         -59.28 dBm           Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1         1         2.40189 GHz         8.95 dBm           M2         1         2.4 GHz         -50.92 dBm           M3         1         2.4835 GHz         -61.61 dBm           M3         1         2.4835 GHz         -61.61 dBm           M4         20 dB         Spectrum         Spectrum           Ref Level 20.00 dBm         Offset 11.00 dB         RBW 100 kHz           Att         20 dB         SWT         250 ms           9 JPk View         M1[1]         M1[1]           10 dBm         01 8.950 dBm         M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |  |  |  |
| M1         1         2.4511437 GHz         9.91 dBm           M2         1         2.4 GHz         -53.71 dBm           M3         1         2.4635 GHz         -58.28 dBm           M3         1         2.4835 GHz         -58.28 dBm           Spectrum         Ref Level 20.00 dBm         Offset 11.00 dB @ RBW 100 kHz         Made Sweep           Att         20 dB         SWT         250 ms @ VBW 300 kHz         Made Sweep           10 dBm         01 9.910 dBm         M1[1]         3.           10 dBm         02 -10.090 dBm         02 -10.090 dBm         03 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1         1         2.401995 GHz         8.955 dBm           M2         1         2.4 GHz         -50.92 dBm           M3         1         2.4835 GHz         -61.61 dBm           M3         1         2.4835 GHz         -61.61 dBm           M3         1         2.4835 GHz         -61.61 dBm           M4         20 dB         Spectrum         Ref Level 20.00 dBm         Offset 11.00 dB         RBW 100 kHz           Att         20 dB         SWT         250 ms         VBW 300 kHz         Mode Sweep           0.32 dBm         0 dBm         01 8.950 dBm         M1[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |  |  |  |
| M1         1         2.4511437 GHz         9.91 dBm           M2         1         2.4 GHz         -53.71 dBm           M3         1         2.4 GHz         -53.71 dBm           M3         1         2.4835 GHz         -58.28 dBm           Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1         1         2.401990 GHz         8.950 dBm           M2         1         2.4 GHz         -50.92 dBm           M3         1         2.4835 GHz         -61.61 dBm           M3         1         2.4835 GHz         -61.61 dBm           Spectrum         Ref Level 20.00 dBm         Offset 11.00 dB         RBW 100 kHz           Att         20 dB         SWT         250 ms         VBW 300 kHz         Node Sweep           019: View         10.dBm         01 e.950 dBm         M1[1]         0         0           0 dBm         -10 dBm         02 -11.050 dBm         0         -10 dBm         02 -11.050 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>() () () () () () () () () () () () () (</b>          |  |  |  |
| M1         1         2.4511437 GHz         9.91 dBm           M2         1         2.4 GHz         -53.71 dBm           M3         1         2.46925 GHz         -58.28 dBm           M3         1         2.4935 GHz         -58.28 dBm           Spectrum         Ref Leval 20.00 dBm         Offset 11.00 dB @ RBW 100 kHz           Att         20 dB         SWT         250 ms           JPK View         M1[1]         3.           00 dBm         01 9.910 dBm         9.910 dBm           20 dBm         02 -10.090 dBm         01 9.910 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1         1         2.4 GH2         8.95 dem           M2         1         2.4 GH2         -50.92 dem           M3         1         2.4835 GH2         -61.61 dem           M42         20.00 dbm         Offset 11.00 d8         8.89W 100 kH2           M41         20.04 B         SWT         250 ms         VBW 300 kH2         Mode Sweep           0.32 dbm         10.dbm         D1 9.950 dbm         M1[1]         10.dbm         D2 -11.050 dbm           -20 dbm         -30 dbm         M1         M1         M1         M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                          |  |  |  |
| M1         1         2.4511437 GHz         9.91 dbm           M2         1         2.4 GHz         -53.71 dbm           M3         1         2.4 GHz         -58.28 dbm           M3         1         2.4835 GHz         -58.28 dbm           Spectrum         Ref Level 20.00 dbm         Offset 11.00 db @ RBW 100 kHz           Att         20 db SWT         250 ms @ VBW 300 kHz         Mode Sweep           JDPk View         M1[1]         3.           00 dbm         01 9.910 dbm         M1[1]         3.           00 dbm         02 -10.090 dbm         M1[1]         3.           30 dbm         M1         M1         M1         M1           40 dbm         02 -10.090 dbm         M1         M1         M1         M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1         1         2.4 GH2         8.95 dem           M2         1         2.4 GH2         6.95 dem           M3         1         2.4 GH2         -61.61 dem           M42         2.0 db         Symptotic stress         Work         M00 kH2           M41         2.0 db         Symptotic stress         Work         M1[1]           I0.dbm         01         9.950 dbm         M1[1]         M1           -20 dbm         -2.11.050 dbm         -2.20 dbm         -2.20 dbm         -2.20 dbm           -30 dbm         -30 dbm         -3.0 dbm         -3.0 dbm         -3.0 dbm         -3.0 dbm         -3.0 dbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -39.86 dBn                                               |  |  |  |
| M1         1         2.4.511437 GHz         9.91 dBm           M2         1         2.4.6 GHz         -53.71 dBm           M3         1         2.4.6 GHz         -53.71 dBm           M3         1         2.4.6 GHz         -53.71 dBm           M3         1         2.4.6 GHz         -58.28 dBm           M3         1         2.4.835 GHz         -58.28 dBm           Spectrum         M1         M1         M1           20 dB         SWT         250 ms         VBW 300 kHz         Mode Sweep           SIPk View         M1[1]         3.         M1[1]         3.           00 dBm         D1 9.910 dBm         M1[1]         3.         M1[1]         3.           00 dBm         D2 -10.090 dBm         M1         M1         M1         M1           20 dBm         M1         M1         M1         M1         M1           30 dBm         M1         M1         M1         M1         M1         M1           70 dBm         M1         M1         M1         M1         M1         M1         M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1         1         2.4 GH2         8.95 dem           M2         1         2.4 GH2         6.95 dem           M3         1         2.4 GH2         -61.61 dem           M3         1         2.0 db         System           Ref Level 20.00 dbm         Offset 11.00 dB         RBW 100 kH2<br>M0 dbm         Mode Sweep           0.32 dbm         10.dbm         01 9.950 dbm         M1[1]         10.dbm           10 dbm         02 -11.050 dbm         10.3 dbm         10.3 dbm         10.4 dbm           -30 dbm         11.050 dbm         11.050 dbm         10.4 dbm         10.4 dbm         10.4 dbm           -50 dbm         10.4 dbm         10.4 dbm         10.4 dbm         10.4 dbm         10.4 dbm                                                                                                                                                                                                                                                                                                                                                                 | <b>() () () () () () () () () () () () () (</b>          |  |  |  |







## 3.4 Conducted Output Power

### 3.4.1 Limit of Conducted Output Power

1 Watt

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.

🛛 0.125 Watt

For all other frequency hopping systems in the 2400–2483.5 MHz band.

0.125 Watt

For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

## 3.4.2 Test Procedures

- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

## 3.4.3 Test Setup





| Modulation Mode   | Freq. (MHz) | Output Power<br>(mW) | Output Power<br>(dBm) | Limit (mW) |  |
|-------------------|-------------|----------------------|-----------------------|------------|--|
| GFSK              | 2402        | 11.51                | 10.61                 | 125        |  |
| GFSK              | 2441        | 11.59                | 10.64                 | 125        |  |
| GFSK              | 2480        | 11.12                | 10.46                 | 125        |  |
| л <b>/4 DQPSK</b> | 2402        | 13.90                | 11.43                 | 125        |  |
| л /4 DQPSK        | 2441        | 13.87                | 11.42                 | 125        |  |
| л /4 DQPSK        | 2480        | 13.30                | 11.24                 | 125        |  |
| 8DPSK             | 2402        | 15.28                | 11.84                 | 125        |  |
| 8DPSK             | 2441        | 15.21                | 11.82                 | 125        |  |
| 8DPSK             | 2480        | 14.39                | 11.58                 | 125        |  |

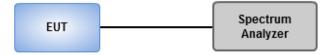
## 3.4.4 Test Result of Conducted Output Power

| Modulation Mode | Freq. (MHz) | AV Output Power (mW) | AV Output Power (dBm) |
|-----------------|-------------|----------------------|-----------------------|
| GFSK            | 2402        | 10.76                | 10.32                 |
| GFSK            | 2441        | 10.86                | 10.36                 |
| GFSK            | 2480        | 10.42                | 10.18                 |
| л /4 DQPSK      | 2402        | 7.78                 | 8.91                  |
| л /4 DQPSK      | 2441        | 7.85                 | 8.95                  |
| л /4 DQPSK      | 2480        | 7.57                 | 8.79                  |
| 8DPSK           | 2402        | 7.78                 | 8.91                  |
| 8DPSK           | 2441        | 7.85                 | 8.95                  |
| 8DPSK           | 2480        | 7.57                 | 8.79                  |

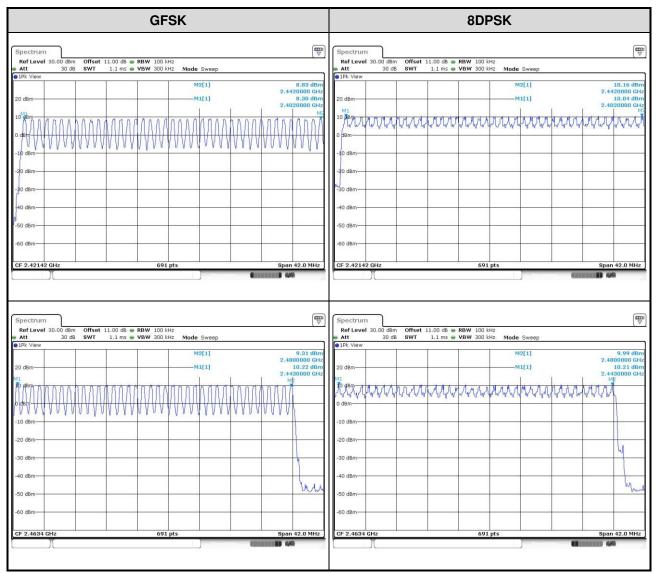
Note: Average power is for reference only.



## 3.5 Number of Hopping Frequency


## 3.5.1 Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


### 3.5.2 Test Procedures

- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

### 3.5.3 Test Setup





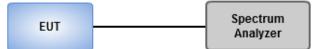


## 3.5.4 Test Result of Number of Hopping Frequency



## 3.6 20dB and Occupied Bandwidth

### 3.6.1 Test Procedures


#### 20dB Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak, Trace max hold
- 2 Allow trace to stabilize
- 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

#### **Occupied Bandwidth**

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Sample, Trace max hold
- 2 Allow trace to stabilize
- 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

### 3.6.2 Test Setup





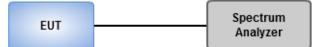
| Modulation Mode | Freq. (MHz) | 20dB Bandwidth (MHz) | Occupied Bandwidth<br>(MHz) |
|-----------------|-------------|----------------------|-----------------------------|
| GFSK            | 2402        | 0.943                | 0.877                       |
| GFSK            | 2441        | 0.939                | 0.875                       |
| GFSK            | 2480        | 0.939                | 0.880                       |
| 8DPSK           | 2402        | 1.257                | 1.155                       |
| 8DPSK           | 2441        | 1.257                | 1.157                       |
| 8DPSK           | 2480        | 1.252                | 1.157                       |

## 3.6.3 Test result of 20dB and Occupied Bandwidth

| Worst Plot of 20dB Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Worst Plot of Occupied Bandwidth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Spectrum         Image: Constraint of the second secon | Spectrum         Figure 1         Offset 11.00 dB         RBW         30 kHz         Figure 2         Figure 2 |  |  |
| M1[1]         -11.07 dBm           10.dBm         01 8.711 dBm           01 8.711 dBm         00cc Bw           0.13.54848064 MHz           0.01 8.711 dBm           1.154840046 MHz           -0.01 4B           1.25552 MHz           -10 dBm           02 -11 289 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 dBm         M1         8.93 dBr           10 dBm         0 cc Bw         2.441130500 cH           0 dBm         72         1.157000000 MH           -10 dBm         72         -10 dBm           -20 dBm         -33 dBm         -10 dBm           -50 dBm         -50 dBm         -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CF 2.441 GHz 3000 pts Span 3.0 MHz Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 70 d8mF2F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.4411385 GHz         8.93 dBm         100 dBm         100 dBm         110 dBm         111 dBm         1111 dBm         111 dBm         111 dBm </td                             |  |  |
| CF 2.402 GHz 691 pts Span 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T2         1         2.4415575 GHz         -7.32 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |



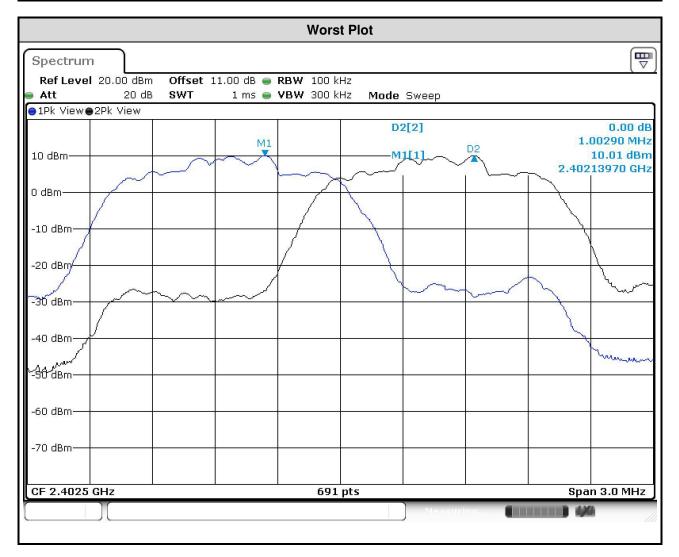
## 3.7 Channel Separation


### 3.7.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

### 3.7.2 Test Procedures

- 1. Set RBW=100kHz, VBW=300kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit


### 3.7.3 Test Setup





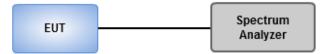
| Modulation Mode | Freq. (MHz) | Channel<br>Separation (MHz) | 20dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |  |
|-----------------|-------------|-----------------------------|-------------------------|------------------------|--|
| GFSK            | 2402        | 1.003                       | 0.943                   | 0.629                  |  |
| GFSK            | 2441        | 1.003                       | 0.939                   | 0.626                  |  |
| GFSK            | 2480        | 1.003                       | 0.939                   | 0.626                  |  |
| 8DPSK           | 2402        | 1.003                       | 1.257                   | 0.838                  |  |
| 8DPSK           | 2441        | 1.003                       | 1.257                   | 0.838                  |  |
| 8DPSK           | 2480        | 1.003                       | 1.252                   | 0.835                  |  |

### 3.7.4 Test result of Channel Separation





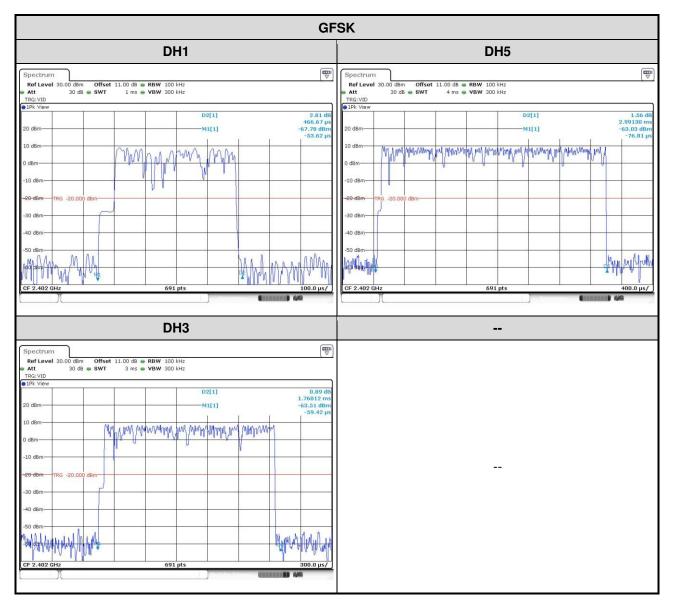
## 3.8 Number of Dwell Time


### 3.8.1 Limit of Dwell time

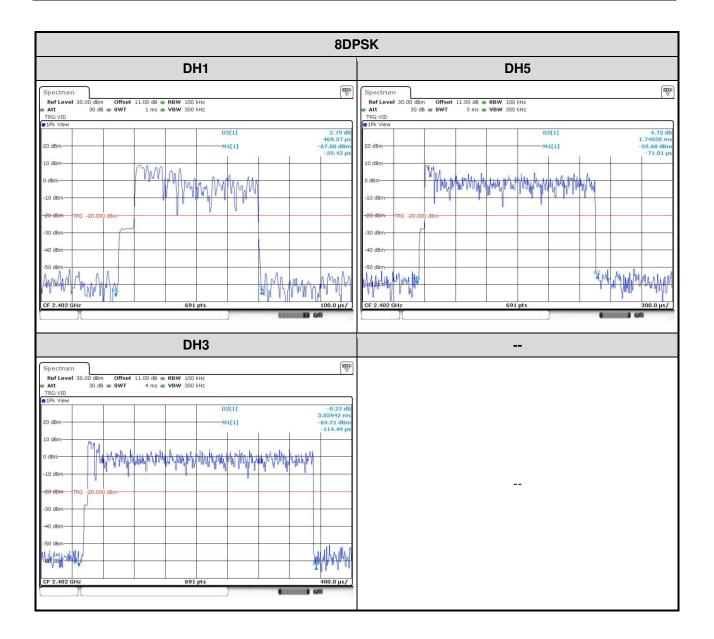
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

### 3.8.2 Test Procedures

- 1. Set RBW=100kHz,VBW=300kHz,Sweep time = 500us(DH1),2ms(DH3),4ms(DH5), Detector=Peak, Span=0Hz,Trace max hold
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.
- 3. The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- 4. The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 3/1600 seconds, or 1.875ms. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- 5 The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds


### 3.8.3 Test Setup






## 3.8.4 Test Result of Dwell Time

| Modulation<br>Mode | Freq. (MHz) | Length of<br>Transmission<br>Time (msec) | Number of<br>Transmission<br>in a 31.6 (79<br>Hopping*0.4) | Result<br>(s) | Limit (s) |
|--------------------|-------------|------------------------------------------|------------------------------------------------------------|---------------|-----------|
| GFSK-DH1           | 2402        | 0.46667                                  | 320                                                        | 0.149         | 0.4       |
| GFSK-DH3           | 2402        | 1.76812                                  | 160                                                        | 0.283         | 0.4       |
| GFSK-DH5           | 2402        | 2.99130                                  | 106.6                                                      | 0.319         | 0.4       |
| 8DPSK-DH1          | 2402        | 0.46957                                  | 320                                                        | 0.150         | 0.4       |
| 8DPSK-DH3          | 2402        | 1.74058                                  | 160                                                        | 0.278         | 0.4       |
| 8DPSK-DH5          | 2402        | 3.05942                                  | 106.6                                                      | 0.326         | 0.4       |









## 4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC\_Service@icertifi.com.tw

—END—