

FCC Test Report

Equipment	:	11abgn 2x2 USB WiFi module
Brand Name	:	Panasonic
Model No.	:	DNUR-P1
FCC ID	:	NKR-P1
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	2400 MHz – 2483.5 MHz
Equipment Class	:	DTS
Applicant Manufacturer	:	Wistron NeWeb Corporation 20 Park Avenue II, Hsinchu Science Park, Hsinchu 308,Taiwan,R.O.C.

The product sample received on Nov. 27, 2012 and completely tested on Dec. 03, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	Test Channel Frequencies Configuration	9
2.3	The Worst Case Power Setting Parameter	9
2.4	The Worst Case Measurement Configuration	10
2.5	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	12
3.1	AC Power-line Conducted Emissions	12
3.2	6dB Bandwidth	15
3.3	RF Output Power	18
3.4	Power Spectral Density	24
3.5	Transmitter Radiated Bandedge Emissions	27
3.6	Transmitter Radiated Unwanted Emissions	33
4	TEST EQUIPMENT AND CALIBRATION DATA	62
5	CERTIFICATION OF TAF ACCREDITATION	64
APPI	ENDIX A. TEST PHOTOS	A7
APPI	ENDIX B. PHOTOGRAPHS OF EUT	B3

Summary of Test Result

	Conformance Test Specifications							
ReportRef. Std.DescriptionMeasuredClauseClauseClauseClauseClauseClause		Measured	Limit	Result				
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied			
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 17.470MHz 33.26 (Margin 16.74dB) - AV 39.15 (Margin 20.85dB) - QP	FCC 15.207	Complied			
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 20M: 17.28 / 40M: 35.83	≥500kHz	Complied			
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]: 29.81	Power [dBm]:30	Complied			
3.4	15.247(d)	Power Spectral Density	PSD [dBm/3kHz]: -3.79	PSD [dBm/3kHz]:8	Complied			
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2397.14MHz: 26.36dB Restricted Bands [dBuV/m at 3m]: 2483.5MHz 60.64 (Margin 13.36dB) - PK 52.97 (Margin 1.03dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied			
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 480.08MHz 44.85 (Margin 1.15dB) - QP	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied			

Revision History

Report No.	Version	Description	Issued Date
FR2N2717AC	Rev. 01	Initial issue of report	Dec. 13, 2012

1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊤x})	RF Output Power (dBm)	Co-location		
2400-2483.5	b	2412-2462	1-11 [11]	1	26.52	N/A		
2400-2483.5	g	2412-2462	1-11 [11]	1	28.43	N/A		
2400-2483.5	n (HT-20)	2412-2462	1-11 [11]	2	29.81	N/A		
2400-2483.5	n (HT-40)	2422-2452	3-9 [7]	2	26.34	N/A		

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

1.1.2 Antenna Information

Г

		Antenna Category							
\square	Inte	ntegral antenna (antenna permanently attached)							
	\boxtimes	Temporary RF connector provided							
		No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.							
	Exte	External antenna (dedicated antennas)							
		Single power level with corresponding antenna(s).							
		Multiple power level and corresponding antenna(s).							
	RF connector provided								
		Unique antenna connector. (e.g., MMCX, U.FL, IPX, and RP-SMA, RP-N type)							
		Standard antenna connector. (e.g., SMA, N, BNC, and TNC type)							

	Antenna General Information						
No.	No. Ant. Cat. Ant. Type Gain (dBi)						
1	Integral	Printed	-0.30				
2	Integral	Printed	0.67				

1.1.3 Type of EUT

	Identify EUT					
EUT	Serial Number	N/A				
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype				
		Type of EUT				
\square	Stand-alone					
	Combined (EUT where the radio part is fully integrated within another device)					
	Combined Equipment - Brand Name / Model No.:					
	Plug-in radio (EUT intended for a variety of host systems)					
	Host System - Brand Name / Model No.:					
	Other:					

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle						
Operat	ed normally mode for worst duty cycle						
Operat	ed test mode for worst duty cycle						
Test Signal Duty Cycle (x)Power Duty Factor [dB] - (10 log 1/x)							
98.56%	6 - IEEE 802.11b	0.06					
89.09%	6 - IEEE 802.11g	0.50					
78.88%	6 - IEEE 802.11n (HT-20)	1.03					
65.64%	6 - IEEE 802.11n (HT-40)	1.83					

Note 1: RF Output Power Plots w/o Duty Factor

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	External DC adapter	Battery

1.2 Support Equipment

	Support Equipment							
No.	No. Equipment Brand Name Model Name Serial No.							
1	1 Notebook DELL E5410 DoC							

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074
- FCC KDB 662911
- FCC KDB 412172

1.4 Testing Location Information

	Testing Location							
\square	HWA YA	ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.						
		TEL	:	886-3-327-345	6 FAX : 886	6-3-327-0973		
Т	Test Condition Test Site No. Test Engineer Test Environment Test Date					Test Date		
F	RF Conducte	d		TH01-HY	Song	23.5°C / 62%	30-Nov-12 ~ 03-Dec-12	
A	AC Conduction CO01-HY Sky Huang 23°C / 56% 03-Dec-12				03-Dec-12			
Ra	Radiated Emission 03CH05-HY Yang 24.5°C / 64% 27-Nov-12 ~ 30-Nov-12					27-Nov-12 ~ 30-Nov-12		
Test	site register	ed nu	ımbe	r [643075] with F	CC.			

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

	Measurement Uncertainty	1	
Test Item		Uncertainty	Limit
AC power-line conducted emissions		±2.26 dB	N/A
Emission bandwidth, 6dB bandwidth		±1.42 %	N/A
RF output power, conducted		±0.63 dB	N/A
Power density, conducted		±0.81 dB	N/A
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A
	1 – 18 GHz	±0.67 dB	N/A
	18 – 40 GHz	±0.83 dB	N/A
	40 – 200 GHz	N/A	N/A
All emissions, radiated	30 – 1000 MHz	±2.56 dB	N/A
	1 – 18 GHz	±3.59 dB	N/A
	18 – 40 GHz	±3.82 dB	N/A
	40 – 200 GHz	N/A	N/A
Temperature		±0.8 °C	N/A
Humidity		±3 %	N/A
DC and low frequency voltages		±3 %	N/A
Time		±1.42 %	N/A
Duty Cycle		±1.42 %	N/A

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

	Worst Modulation Used for Conformance Testing							
Modulation Mode	Transmit Chains (Ν _{TX})	Data Rate / MCS	Worst Data Rate / MCS	RF Output Power (dBm)				
11b,1-11Mbps	1	1-11 Mbps	1 Mbps	26.52				
11g,6-54Mbps	1	6-54 Mbps	6 Mbps	28.43				
HT-20,M0-15	2	MCS 0-15	MCS 8	29.81				
HT-40,M0-15 2		MCS 0-15 MCS 8		26.34				
Note 1: IEEE Std. 802.11n modulation consists of HT-20 and HT-40 (HT: High Throughput). Then EUT support HT-20 and HT-40. Worst modulation mode of Guard Interval (GI) is 400ns. Note 2: Modulation modes consist below configuration: 11b: IEEE 802.11b, 11g: IEEE 802.11g, HT-20/HT-40: IEEE 802.11n Note 3: RF output power specifies that Maximum Peak Conducted Output Power.								

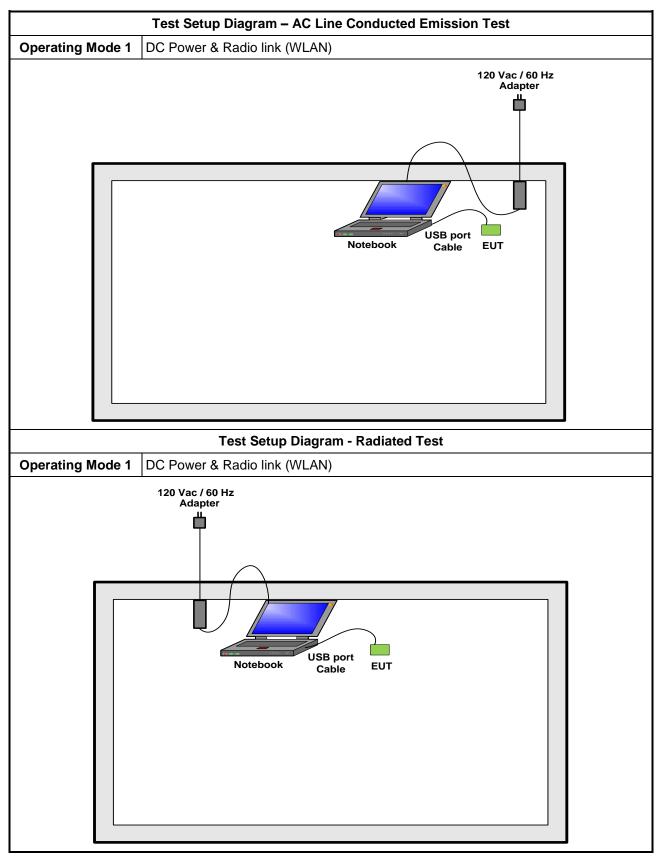
2.2 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration					
IEEE Std. 802.11 Test Channel Frequencies (MHz)					
b, g, n (HT-20)	2412-(F1), 2437-(F2), 2462-(F3)				
n (HT-40)	2422-(F4), 2437-(F5), 2452-(F6)				

2.3 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (2400-2483.5MHz band)							
Test Software Version	RT5	RT5x7x QA _1.0.3.8					
				Test Frequ	ency (MHz)		
Modulation Mode	Ντχ	NCB: 20MHz			NCB: 40MHz		
		2412	2437	2462	2422	2437	2452
11b	1	15	15	15	-	-	-
11g	1	15	15	15	-	-	-
HT-20	2	15	15	15	-	-	-
HT-40	2	-	-	-	15.5	15.5	15.5

2.4 The Worst Case Measurement Configuration


Th	The Worst Case Mode for Following Conformance Tests					
Tests Item AC power-line conducted emissions						
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz					
Operating Mode	Operating Mode Description					
1	DC Power & Radio link (WLAN)					

The Worst Case Mode for Following Conformance Tests					
Tests Item	Tests Item RF Output Power, Power Spectral Density, 6 dB Bandwidth				
Test Condition Conducted measurement at transmit chains					
Modulation Mode	Modulation Mode 11b, 11g, HT-20, HT-40				

Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts				
Tests Item		Fransmitter Radiated Unwanted Emissions Fransmitter Radiated Bandedge Emissions					
Test Condition	regardless of spatial multi	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.					
	EUT will be placed in	fixed position.					
User Position	EUT will be placed in mobile position and operating multiple positions. EUT shall be performed two orthogonal planes. The worst planes is X.						
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed two or three orthogonal planes.						
Operating Mode < 1GHz	1. DC Power & Radio link (WLAN)						
Modulation Mode	11b, 11g, HT-20, HT-40						
	X Plane	Y Plane	Z Plane				
Orthogonal Planes of EUT	of Carlos						

2.5 Test Setup Diagram

Transmitter Test Result 3

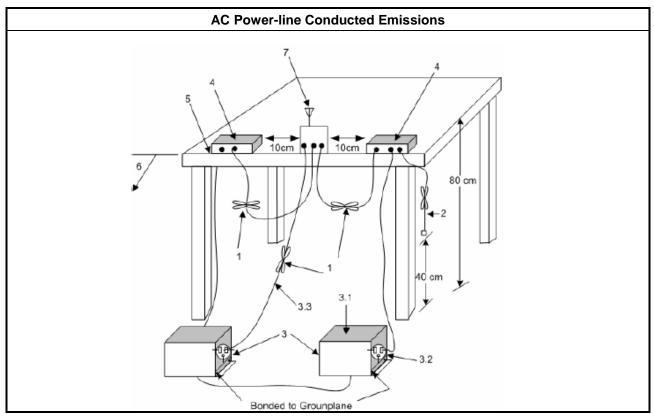
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

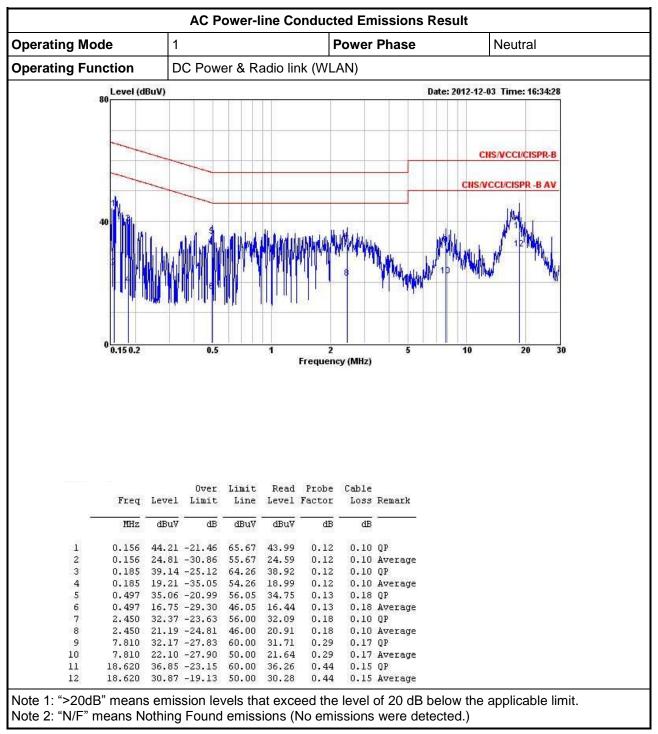
AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz)	Quasi-Peak	Average			
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30 60 50					
Note 1: * Decreases with the logarithm of the frequency.					

ecreases with the logarithm of the frequency

3.1.2 Measuring Instruments

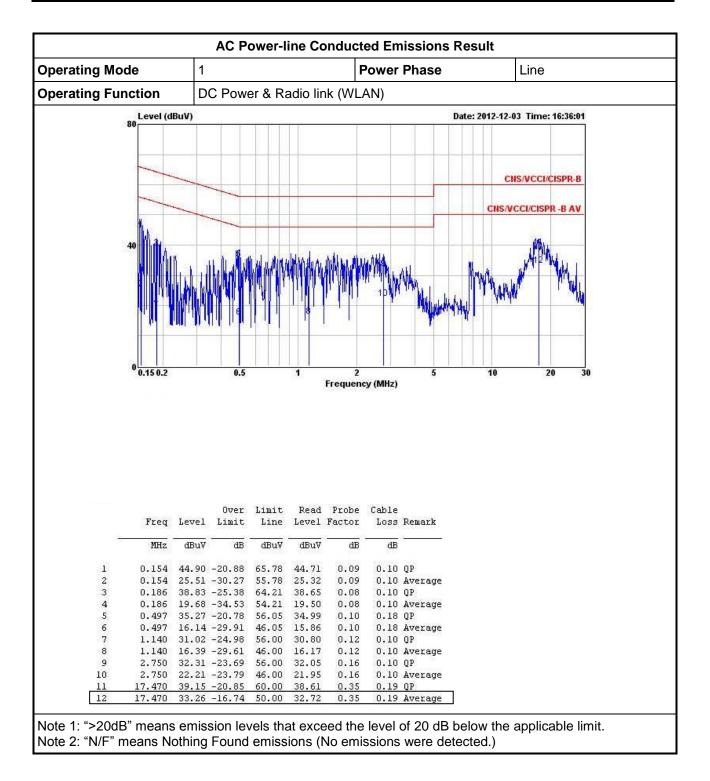

Refer a test equipment and calibration data table in this test report.

3.1.3 **Test Procedures**


Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



3.1.5 Test Result of AC Power-line Conducted Emissions

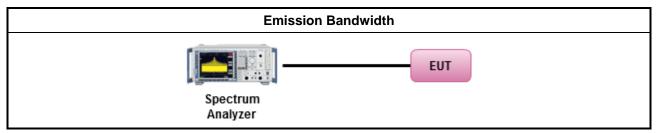
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

 \boxtimes 6 dB bandwidth ≥ 500 kHz.

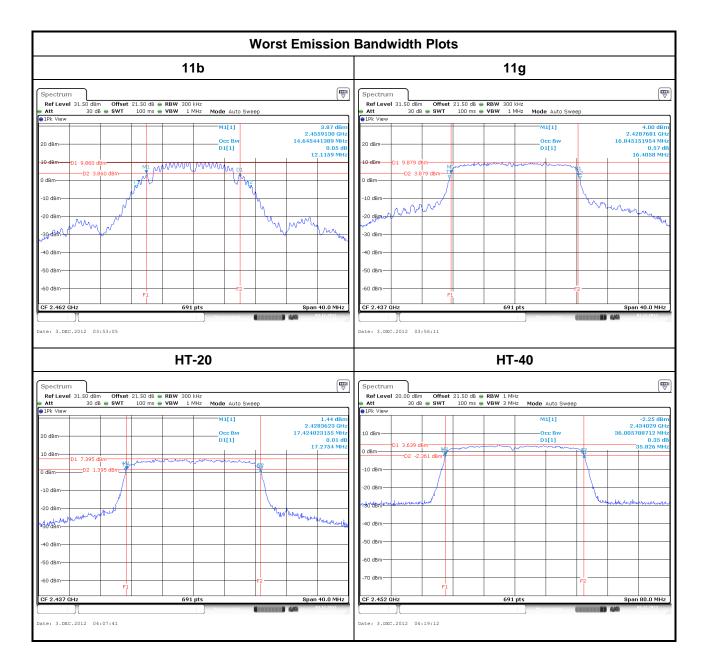

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method									
\square	For	he emission bandwidth shall be measured using one of the options below:								
	\square	Refer as FCC KDB 558074, clause 7.1 Option 1 for 6 dB bandwidth measurement.								
		Refer as FCC KDB 558074, clause 7.2 Option 2 for 6 dB bandwidth measurement.								
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.								
\boxtimes	For	conducted measurement.								
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.								
	\square	The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.								
	\square	The EUT supports multiple transmit chains using options given below:								
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.								
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.								

3.2.4 Test Setup



3.2.5 Test Result of Emission Bandwidth

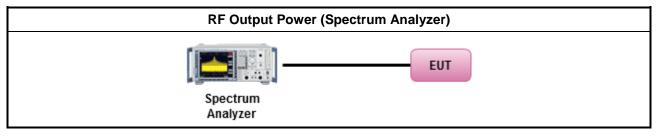
			Em	ission Ba	andwidth	Result				
Condi	Emission Bandwidth (MHz)									
Modulation		From	99% Bandwidth			6dB Bandwidth				
Modulation	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 4
11b	1	2412	-	14.70	-	-	-	12.06	-	-
11b	1	2437	-	14.41	-	-	-	11.42	-	-
11b	1	2462	-	14.65	-	-	-	12.12	-	-
11g	1	2412	-	16.61	-	-	-	16.35	-	-
11g	1	2437	-	16.85	-	-	-	16.41	-	-
11g	1	2462	-	16.56	-	-	-	16.29	-	-
HT-20	2	2412	17.37	17.42	-	-	17.22	17.04	-	-
HT-20	2	2437	17.42	17.42	-	-	17.28	16.81	-	-
HT-20	2	2462	17.42	17.42	-	-	17.16	16.75	-	-
HT-40	2	2422	35.89	36.01	-	-	35.83	35.59	-	-
HT-40	2	2437	36.12	36.01	-	-	35.71	35.59	-	-
HT-40	2	2452	36.01	36.01	-	-	35.83	35.59	-	-
Lim	Limit			N/A ≥500 kHz						
Res	Result			Complied						
Note 1: N _{TX} = Nu	mber c	of Transm	it Chains							

3.3 RF Output Power

3.3.1 RF Output Power Limit

		RF Output Power Limit						
Max	cimu	m Peak Conducted Output Power or Maximum Conducted Output Power Limit						
\boxtimes	240	0-2483.5 MHz Band:						
	\square	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$						
	\square	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm						
		Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm						
		Smart antenna system (SAS):						
		Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm						
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm						
		Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$						
e.i.r	.p. P	ower Limit:						
\boxtimes	240	0-2483.5 MHz Band						
	\square	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)						
		Point-to-point systems (P2P): $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX}]) dBm$						
		Smart antenna system (SAS)						
		Single beam: $P_{eirp} \leq MAX(36, P_{Out} + G_{TX}) dBm$						
	□ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$							
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$						
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.						

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

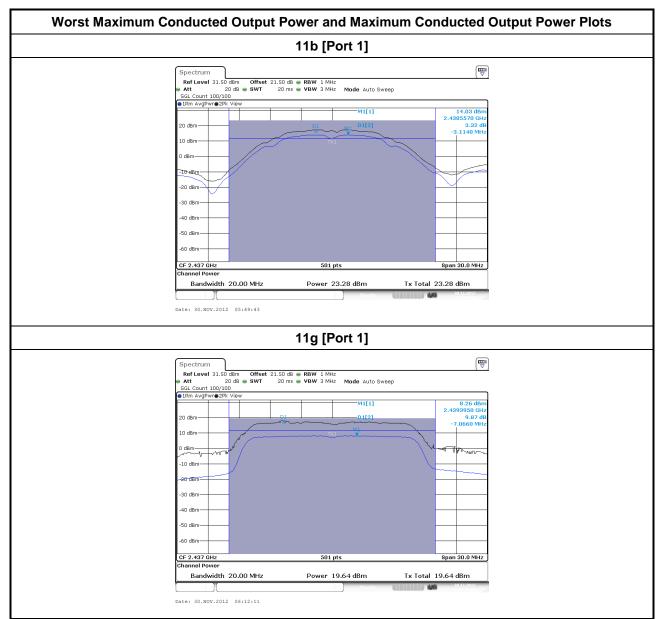
		Test Method
\boxtimes	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 8.1.1 Option 1 (RBW ≥ EBW method).
	\boxtimes	Refer as FCC KDB 558074, clause 8.1.2 Option 2 (integrated band power method).
		Refer as FCC KDB 558074, clause 8.1.3 Option 2 (peak power meter for VBW ≥ DTS BW)
\square	Max	imum Conducted (Average) Output Power
		Refer as FCC KDB 558074, clause 8.2.1 Option 1 (spectral trace averaging).
	\square	Refer as FCC KDB 558074, clause 8.2.2 Option 2 (slow sweep speed).
		Refer as FCC KDB 558074, clause 8.2.3 Option 3 (average power meter).
\square	For	conducted measurement.
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.
	\square	The EUT supports diversity transmitting and the results on transmit chain port 2 is the worst case.
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup

	Dire	ectional Gain (D	G) Result		
Transmit Chains No.		1	2		-
Maximum G _{ANT} (dBi)		0.67	-0.30		-
Modulation Mode	DG (dBi)	Ν _{τχ}	N _{ss}	STBC	Array Gain (dB)
11b,1-11Mbps	0.67	1	1	-	-
11g,6-54Mbps	0.67	1	1	-	-
HT-20,M0-15	0.21*	2	1/2	-	-
HT-40,M0-15	0.21*	2	1/2	-	-
Note 1: For all transmitter outputs of Any transmit signals are con All transmit signals are con Note 2: For all transmitter outputs of Any transmit signals are con All transmit signals are con All transmit signals are con Note 3: For Spatial Multiplexing, Di where Nss = the number of Note 4: For CDD transmissions, din Directional Gain (DG) = GA Array Gain = 0 dB (i.e., no Array Gain = 0 dB (i.e., no Note 5: * Direction gain = 10 log[(1)]	orrelated npletely with une orrelated npletely rectional f indepe rectional _{NT} + Arra array ga	, Directional Gai uncorrelated, Dii qual antenna gai , Directional Gai uncorrelated, Dii I Gain (DG) = G, ndent spatial stre gain is calculate ay Gain, where A in) for $N_{Tx} \leq 4$;	n = G_{ANT} + 10 log rectional Gain = ins, directional g n =10 log[(10 ^{G1/2} rectional Gain = aNT + 10 log(N _{TX} / eams data. ed as power mea array Gain is as f	$\begin{array}{l} g(N_{TX}) \\ G_{ANT} \\ ain is to be comp \\ {}^{0} + \ldots + 10^{GN/20} \\ 10 \log[(10^{G1/10} + . \\ N_{SS}), \\ asurements: \\ ollows: \end{array}$	outed as follows:

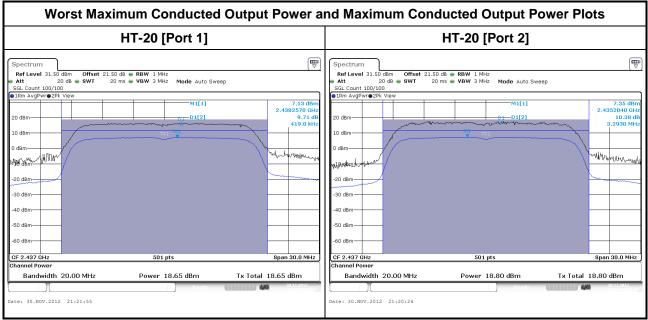
3.3.5 Directional Gain for Power Measurement

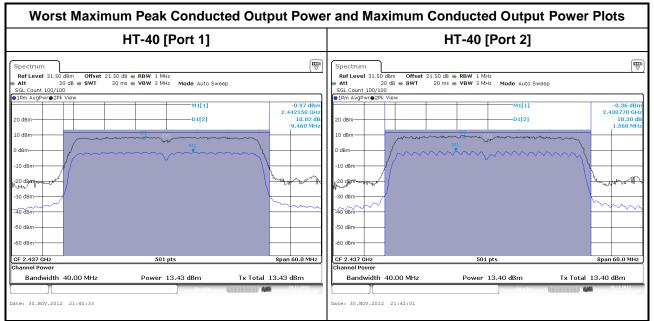
		Maxin	num Pea	um Peak Conducted Output Power Result								
Cond	ition		RF Output Power (dBm)									
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit	
11b	1	2412	-	24.14	-	-	24.14	30	0.67	24.81	36	
11b	1	2437	-	26.52	-	-	26.52	30	0.67	27.19	36	
11b	1	2462	-	22.27	-	-	22.27	30	0.67	22.94	36	
11g	1	2412	-	24.74	-	-	24.74	30	0.67	25.41	36	
11g	1	2437	-	28.43	-	-	28.43	30	0.67	29.10	36	
11g	1	2462	-	23.08	-	-	23.08	30	0.67	23.75	36	
HT-20	2	2412	23.71	24.01	-	-	26.87	30	0.21	27.08	36	
HT-20	2	2437	26.70	26.89	-	-	29.81	30	0.21	30.02	36	
HT-20	2	2462	21.64	22.20	-	-	24.94	30	0.21	25.15	36	
HT-40	2	2422	21.47	22.48	-	-	25.01	30	0.21	25.23	36	
HT-40	2	2437	23.23	23.42	-	-	26.34	30	0.21	26.55	36	
HT-40	2	2452	19.99	20.66	-	-	23.35	30	0.21	23.56	36	
Res	ult					C	Complie	d				


3.3.6 Test Result of Maximum Peak Conducted Output Power

3.3.7 Test Result of Maximum Conducted Output Power

			Maximum Conducted Output Power									
Condi	tion		RF Output Power (dBm)									
Modulation Mode	Ν _{τχ}	Freq. (MHz)	Chain Port 1	Chain Port 2	Chain Port 3	Chain Port 4	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit	
11b	1	2412	-	20.88	-	-	20.94	30	0.67	21.61	36	
11b	1	2437	-	23.28	-	-	23.34	30	0.67	24.01	36	
11b	1	2462	-	19.04	-	-	19.10	30	0.67	19.77	36	
11g	1	2412	-	16.01	-	-	16.51	30	0.67	17.18	36	
11g	1	2437	-	19.64	-	-	20.14	30	0.67	20.81	36	
11g	1	2462	-	15.15	-	-	15.65	30	0.67	16.32	36	
HT-20	2	2412	14.64	14.51	-	-	18.62	30	0.21	18.83	36	
HT-20	2	2437	18.65	18.80	-	-	22.77	30	0.21	22.98	36	
HT-20	2	2462	12.53	12.68	-	-	16.65	30	0.21	16.86	36	
HT-40	2	2422	11.64	12.22	-	-	16.78	30	0.21	16.99	36	
HT-40	2	2437	13.43	13.40	-	-	18.25	30	0.21	18.47	36	
HT-40	2	2452	9.97	10.69	-	-	15.18	30	0.21	15.40	36	
Res	ult					C	Complie	d				


Note 1: RF Output Power Plots w/o Duty Factor



Note 1: RF Output Power Plots w/o Duty Factor

Note 1: RF Output Power Plots w/o Duty Factor

Power Spectral Density 3.4

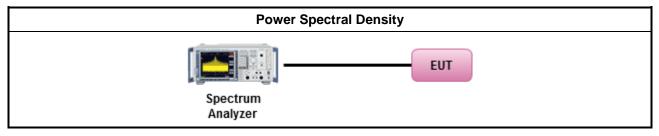
3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

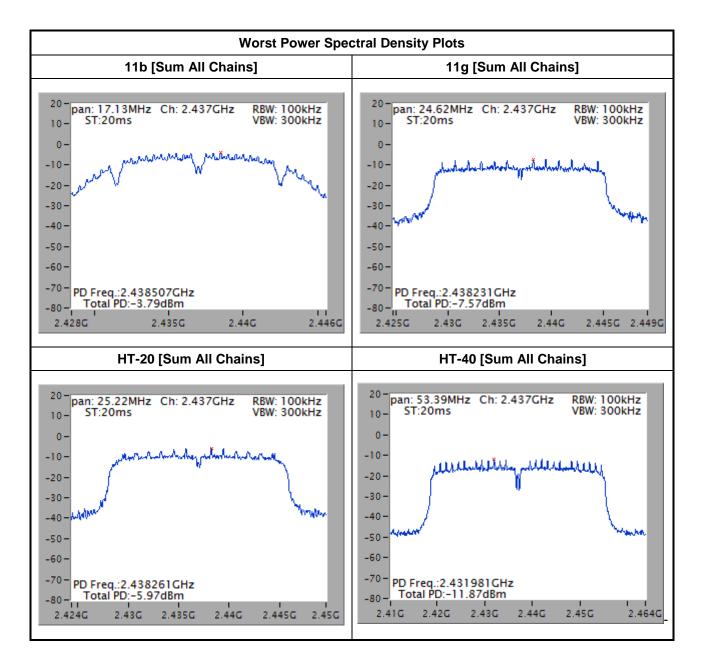
3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 **Test Procedures**

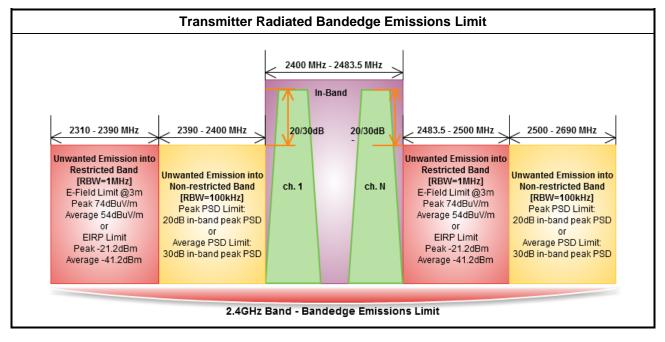
Г

		Test Method
\boxtimes	pow proc whe dem	ver spectral density procedures that the same method as used to determine the conducted output er shall be used to determine the power spectral density. In addition, the use of a peak PSD edure will always result in a "worst-case" measured level for comparison to the limit. Therefore, never the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to constrate compliance to the PSD limit, regardless of how the fundamental output power was issured. For the power spectral density shall be measured using below options:
	\square	Refer as FCC KDB 558074, clause 9.1 Option 1 - (RBW≥3kHz; sweep=auto, detector=peak).
		Refer as FCC KDB 558074, clause 9.2 Option 2 - (RBW≥3kHz; sweep=auto, average=100).
		Refer as FCC KDB 558074, clause 9.3 Option 3 - (RBW≥3kHz; slow sweep speed).
		Refer as FCC KDB 558074, clause 9.4 Alternative 1 (average PSD; Add 10log (1/duty cycle).
	\square	RBW>3kHz, add the bandwidth correction factor (BWCF) adjusting in PSD per 3kHz.
\boxtimes	For	conducted measurement.
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain.
	\square	The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
	\square	The EUT supports multiple transmit chains using options given below:
		\boxtimes Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.


3.4.4 Test Setup

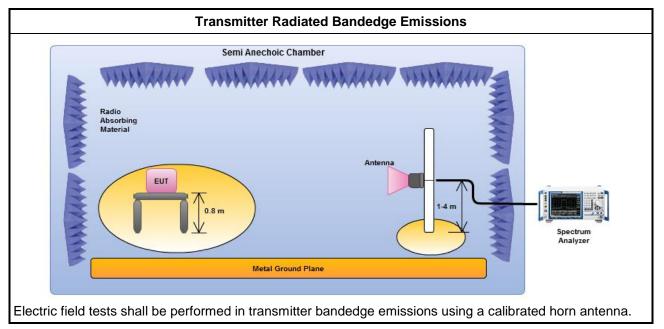
3.4.5 Test Result of Power Spectral Density

			Power S	pectral Der	sity Result			
Cond	lition			Powe	r Spectral D	ensity (dB	m/3kHz)	
Modulation Mode	Ντχ	Freq. (MHz)	-	-	-	-	Sum Chain	Power Limit
11b	1	2412	-	-	-	-	-6.17	8
11b	1	2437	-	-	-	-	-3.79	8
11b	1	2462	-	-	-	-	-6.29	8
11g	1	2412	-	-	-	-	-11.16	8
11g	1	2437	-	-	-	-	-7.57	8
11g	1	2462	-	-	-	-	-12.51	8
HT-20	2	2412	-	-	-	-	-9.97	8
HT-20	2	2437	-	-	-	-	-5.97	8
HT-20	2	2462	-	-	-	-	-11.56	8
HT-40	2	2422	-	-	-	-	-13.71	8
HT-40	2	2437	-	-	-	-	-11.87	8
HT-40	2	2452	-	-	-	-	-14.91	8
Res	sult				Com	plied		
Note 1: PSD [dBr	n/3kHz]	= sum ea	ich transmit	chains by bi	n-to-bin PSD	[dBm/100	(Hz] + BWFC	[-15.2 dB]



3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\boxtimes		er as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency nonel and highest frequency channel within the allowed operating band.
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 10.1 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 10.2 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 1 (spectral trace averaging)
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 2 (slow sweep speed).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW).
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 10.2.3.2 and 8.1.1 measurement procedure peak limit.
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:
		Refer as FCC KDB 558074, clause 10.2.5.2 for narrower resolution bandwidth using the band power and summing the spectral levels (i.e., 100 kHz or 1 MHz).
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 10.2.1.
\square	For	conducted measurement, refer as FCC KDB 558074, clause 10.2.2.

3.5.4 Test Setup

	Tra	ansmitter Ra	diated Ba	ndedge Emis	sions Result	t		
Modulation		11b		Ν _{τχ}	1			
Non-restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol. note 1
2390-2400	2412	106.39	2397.14	80.03	26.36	20	PK	Н
2500-2690	2462	104.77	2517.50	47.96	56.81	20	PK	Н
	Low Band	edge			Up Ba	ndedge		
105.3 93.6 81.9 70.2 58.5 46.8 70.4 58.5 46.8 70.4 58.5 46.8 70.4 58.5 70.2 70.2	2360. Frequency (M	2380. 24	FCC CLASS-B (AVG)	105.3 93.6 81.9 70.2 58.5 46.8 35.1 23.4 11.7 02452 2460. 2470	0. 2480. 2490. 2	2500. 2510. 2520. puency (MHz)	FCC CL	CC CLASS B ASS B (AVG) 40-71-0-1-1 40. 255

3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

	Tra	ansmitter Ra	diated Bar	ndedge Emis	sions Result						
Modulation 11b N _{TX} 1											
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol. note 1			
2310-2390	2412	111.24	2386.05	3	59.98	74	PK	Н			
2310-2390	2412	106.22	2385.82	3	52.36	54	AV	Н			
2483.5-2500	2462	109.55	2483.70	3	60.64	74	PK	Н			
2483.5-2500	2462	104.81	2483.50	3	52.97	54	AV	Н			
Note 1: Measurem	ent worst e	missions of r	eceive ante	nna polarizat	ion: H (Horizo	ntal) or V (Ve	ertical).				

Modula	ation		11g		N _{TX}	1			
Non-res Band (Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol note
2390-2	2400	2412	101.17	2399.82	70.97	30.27	20	PK	Н
2500-2	2690	2462	101.01	2502.30	47.83	53.18	20	PK	Н
		Low Band	edge			Up Ba	andedge	·	
3.6 1.9 0.2 8.5 6.8		و من المراجع الم	Warm.	FCC CLASS-B (AVG)	93.6 · · · · · · · · · · · · · · · · · · ·	Man Marine	3 mm	FCC CL/	C CLASS
23.4	2340.	2360.	2380. 240	0. 2422	35.1 23.4 11.7 02452 2460. 24		2500. 2510. 2520.	2530. 254	0. 25
02310 2320.	2340.	Frequency (M		0. 2422	°2452 2460. 24		2500. 2510. 2520. equency (MHz)	2530. 254	0. 25

	Tra	ansmitter Ra	diated Bar	ndedge Emis	sions Result							
Modulation 11g N _{Tx} 1												
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol. note 1				
2310-2390	2412	110.30	2389.86	3	70.06	74	PK	Н				
2310-2390	2412	99.94	2389.97	3	52.89	54	AV	Н				
2483.5-2500	2462	108.63	2483.50	3	69.18	74	PK	Н				
2483.5-2500	2462	98.33	2483.50	3	52.96	54	AV	Н				
Note 1: Measurem	ent worst e	missions of r	eceive ante	nna polarizat	ion: H (Horizo	ntal) or V (Ve	ertical).					

woa	ulation		HT-20		N _{TX}	2			
	estricted d (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
239	0-2400	2412	101.53	2398.70	67.82	33.71	20	PK	Н
250	0-2690	2462	102.30	2513.90	49.89	52.41	20	PK	Н
		Low Band	edge			Up Ba	ndedge		
105.3 93.6 81.9 70.2 58.5 46.8 35.1 23.4			Neuropander -	FCC CLASS & (AVG)	105.3 93.6 105.3 93.6 105.3 105.	Mayomus	Martine Martine		CC CLASS-
11.7	20. 2340.	2360. Frequency (M	2380. 240	0. 2422	02452 2460. 247		2500. 2510. 2520.	2530. 25	40. 2

	Tra	ansmitter Ra	diated Bar	ndedge Emis	sions Result			
Modulation		HT-20		Ν _{τχ}	2			
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)	Limit (dBuV/m)	Level Type	Pol.
2310-2390	2412	108.52	2389.86	3	67.80	74	PK	Н
2310-2390	2412	98.92	2389.97	3	52.22	54	AV	Н
2483.5-2500	2462	108.96	2484.30	3	69.30	74	PK	Н
2483.5-2500	2462	98.20	2484.50	3	52.77	54	AV	Н
Note 1: Measurem	ent worst e	missions of r	eceive ante	nna polarizat	ion: H (Horizo	ntal) or V (Ve	ertical).	

Modulation		HT-40		Ντχ	2			
Non-restricted Band (MHz)	Freq. PSD [i]		NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.
2390-2400	2422	96.73	2400.00	60.98	35.75	20	PK	Н
2500-2690	2452	97.95	2504.60	49.10	48.85	20	PK	Н
	Low Band	edge			Up Ba	ndedge		
3				405.2				
3 6 9 2 2 5		preter below	FCC CLASS-B FCC CLASS-B (AVG)	105.3 93.6 81.9 70.2 58.5	Jewa Harry	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
6 9 2	2360. 2380.		FCC CLASS-B	93.6 000000000000000000000000000000000000			FCC CL	ASS-B (AVG

	Tra	ansmitter Ra	diated Bar	ndedge Emis	sions Result				
Modulation		HT-40		Ν _{τχ}	2				
Restricted Band (MHz)	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz)	Measure Distance (m)	Out-Band Level (dBuV/m)		Level Type	Pol. note 1	
2310-2390	2422	103.33	2386.96	3	71.24	74	PK	Н	
2310-2390	2422	94.27	2389.86	3	52.83	54	AV	Н	
2483.5-2500	2452	103.70	2484.92	3	72.90	74	PK	Н	
2483.5-2500	2452	93.09	2484.92	3	52.92	54	AV	Н	
Note 1: Measurem	ent worst e	missions of r	eceive ante	nna polarizat	ion: H (Horizo	ntal) or V (Ve	ertical).		

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Iransmitter Radiated Unwanted Emissions Limit	3.6.1	Transmitter Radiated Unwanted Emissions Limit
---	-------	---

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

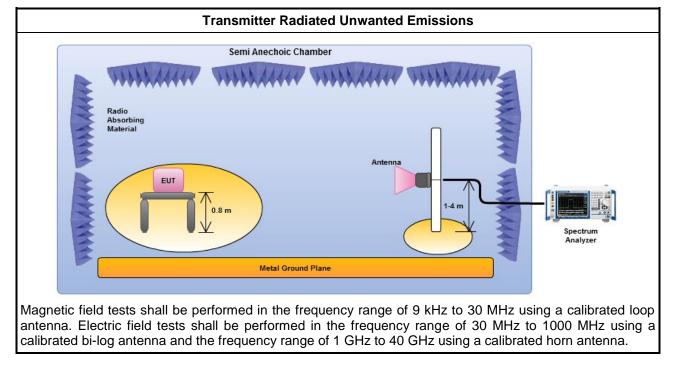
Un-restricted Ban	d Emissions Limit
RF output power procedure	Limit (dB)
Peak output power procedure	20
Average output power procedure	30
Note 1: If the peak output power procedure is used to	•

demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

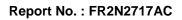
Refer a test equipment and calibration data table in this test report.



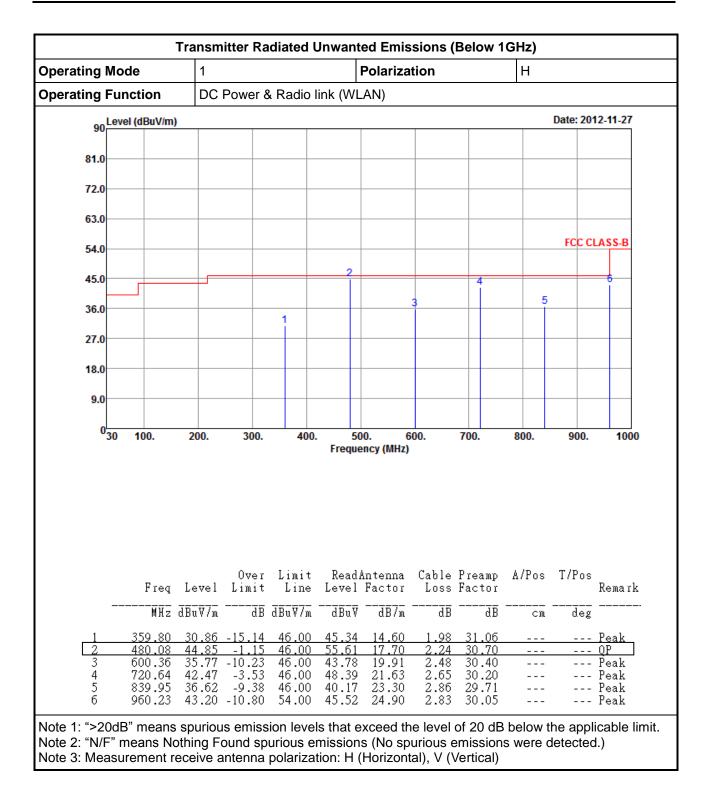
3.6.3 Test Procedures

		Test Method
\boxtimes	perf equi extra dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. When performing measurements at a distance other than that specified, the results shall be apolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density surements).
		Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.
		Measurements in the frequency range above 18 GHz - 25GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.
\bowtie	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\boxtimes	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 558074, clause 10.1 for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 558074, clause 10.2 for unwanted emissions into restricted bands.
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 1 (spectral trace averaging)
		Refer as FCC KDB 558074, clause 10.2.3.3 and 8.2.1 Option 2 (slow sweep speed).
		☐ Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty cycle ≥ 98%.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 558074, clause 10.2.3.2 and 8.1.1 measurement procedure peak limit.
		Refer as FCC KDB 558074, clause 10.2.3.1 measurement procedure Quasi-Peak limit.
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 10.2.1.
	\square	Refer as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions from above 1 GHz.
\boxtimes	For	conducted and cabinet radiation measurement, refer as FCC KDB 558074, clause 10.2.2.
	\boxtimes	For conducted unwanted emissions into non-restricted bands (relative emission limits). Devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.
		For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB

3.6.4 Test Setup

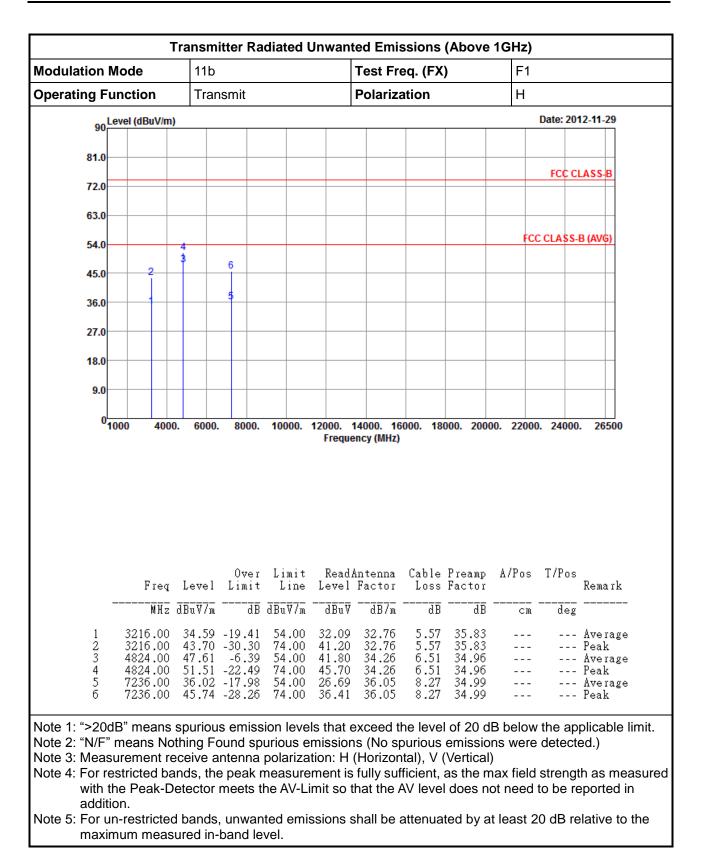

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.



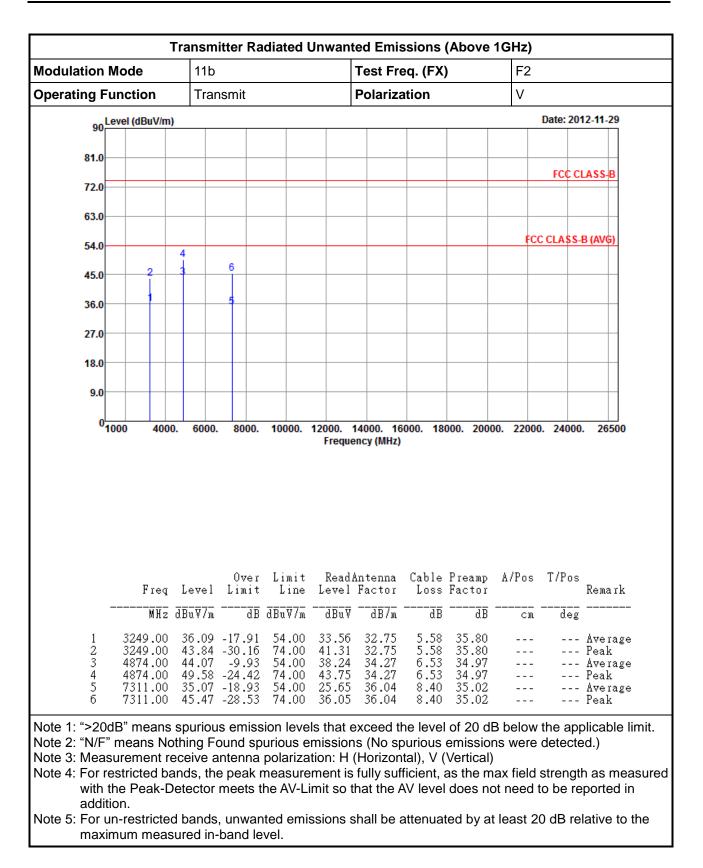
erating Mode	;	1				Polarizat	tion		V		
erating Funct	tion	DC F	Power &	Radio I	ink (WL	_AN)			•		
90 Level	(dBuV/m)									Date: 201	2-11-27
81.0											
72.0											
63.0											
54.0										FCC CI	ASS-B
45.0											
36.0	J				3			4			6
1	2								Ĭ		
27.0											
18.0											
9.0											
030	100.	200.	300.	400			500.	700.	800.	900.	1000
0 <mark></mark>	100.	200.	300.	400		00. 6 ency (MHz)		700.	800.	900.	1000
0 <mark>11</mark> 030	100.	200.	300.	400				700.	800.	900.	1000
030	100.	200.	300.	400				700.	800.	900.	1000
030	100.	200.	300.	400				700.	800.	900.	1000
030	100.	200.	300. 0ver		Frequ	ency (MHz)					1000
030	100. Freq			400 Limit Line	Frequ Read	ency (MHz) Antenna		Preamp		900. T/Pos	1000 Remark
030	Freq		Over Limit	Limit	Frequ Read Level	ency (MHz) Antenna	Cable	Preamp			
	Freq MHz d 39.70	Level 18u∀/m 29.36	Over Limit dB -10.64	Limit Line dBu∀7m 40.00	Frequ Read Level dBuV 46.82	Antenna Factor dB/m 13.49	Cable Loss dB 0.64	Preamp Factor dB 31.59	A/Pos	T/Pos ————————————————————————————————————	
	Freq 	Level Bu∀7m 29.36 28.90 37.98	Over Limit dB -10.64 -14.60 -8.02	Limit Line dBuV7m	Frequ Read Level dBu¥ 46.82 47.60 48.74	Antenna Factor 	Cable Loss 	Preamp Factor <u>dB</u> 31.29 31.28 30.70	A/Pos	T/Pos deg 	Remark Peak Peak Peak
1 2 3 4 5	Freq MHz d 39.70 138.64 480.08 720.64	Level Bu∀7m 29.36 28.90 37.98 35.89 33.75	Over Limit dB -10.64 -14.60	Limit Line dBu∀7m 40.00 43.50 46.00	Frequ Read Level 	Antenna Factor dB/m 13.49 11.33 17.70 21.63 23.30	Cable Loss dB 0.64 1.25	Preamp Factor dB 31.59 31.28	A/Pos	T/Pos deg 	Remark Peak Peak

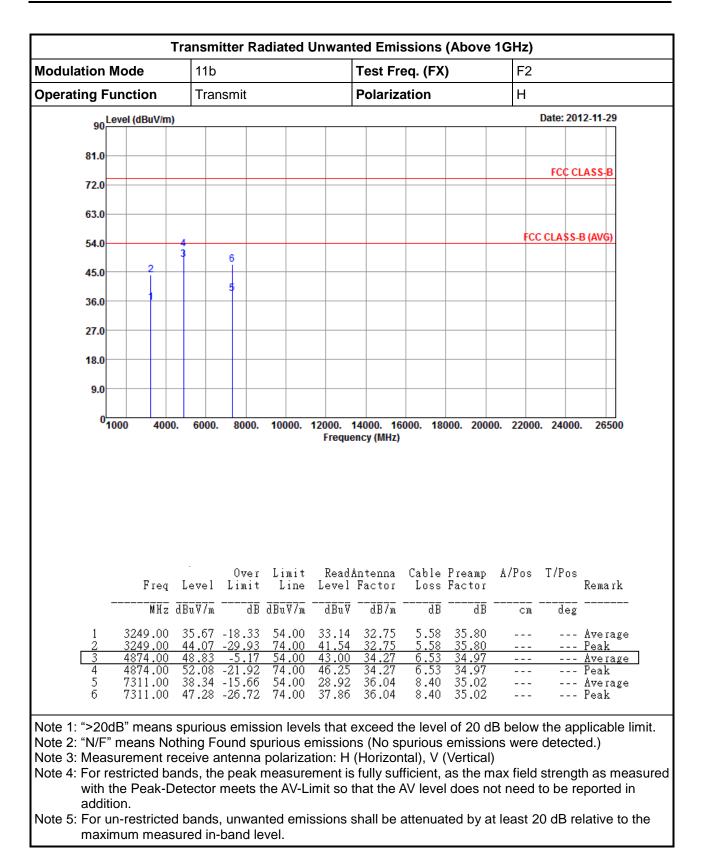
3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

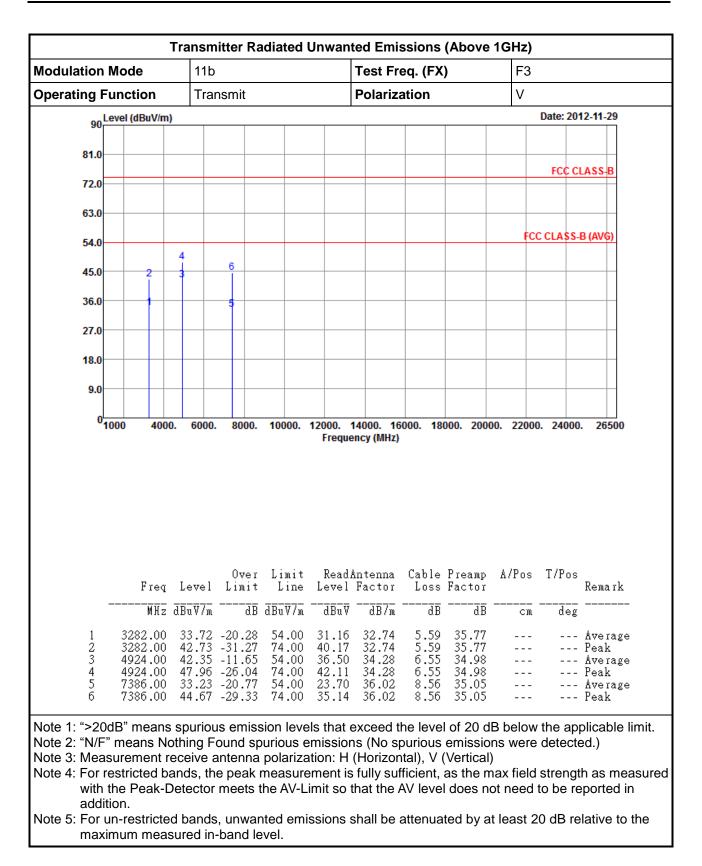


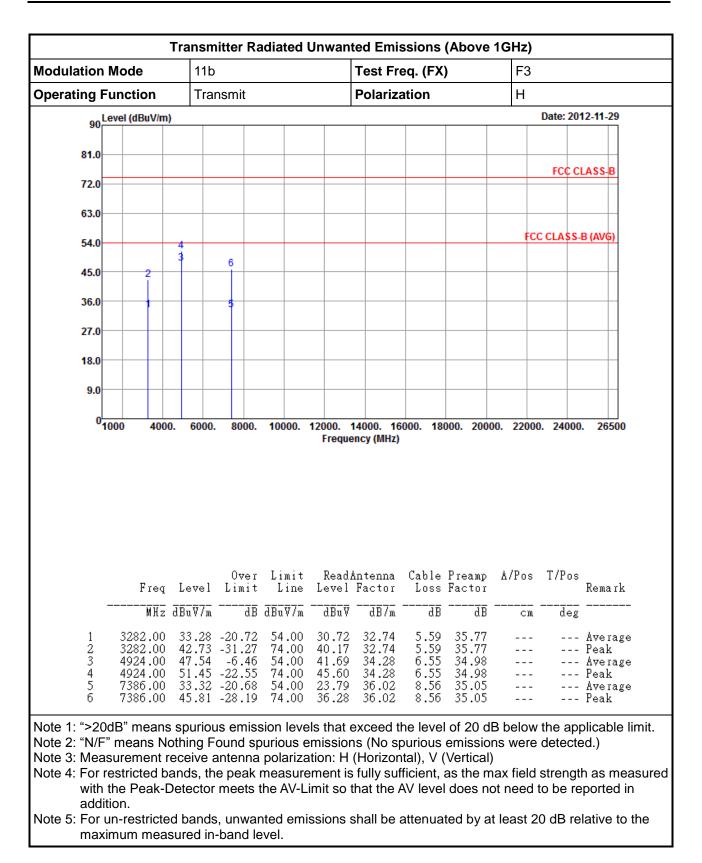
		ransmi	tter Ra	diated L	Inwant	ed Emis	ssions	(Above 1	GHz)		
Modulation M	lode	11b			-	Test Fre	eq. (FX))	F1		
Operating Fu	nction	Trans	smit		I	Polariza	ation		V		
	evel (dBuV/m)								Date: 20	12-11-29
90											
81.0											
72.0										FCC C	LASS-B
62.0											
63.0											
54.0		4							FCC	CLASS-	B (AVG)
45.0	2	-	6								
20.0											
36.0											
27.0											
18.0											
9.0											
		-		.			<i>a</i> 11		. / 5		
	Freq	Level	Over Limit			Intenna Factor		Preamp Factor	A/Pos	1/Pos	Remark
	MHz	$\overline{\mathrm{d}}\overline{\mathrm{Bu}}\overline{\mathrm{V}}\overline{\mathrm{/m}}$	dB	$\overline{\mathrm{d}}\overline{\mathrm{B}}\overline{\mathrm{u}}\overline{\mathrm{V}}\overline{\mathrm{/}}\overline{\mathrm{m}}$	dBu∀	<u>d</u> B/m	₫₿	dB	 cm	deg	
1 2 3 4 5 6	3216.00 3216.00 4824.00 4824.00 7236.00 7236.00	45.44 43.34 49.11 34.39	-17.43 -28.56 -10.66 -24.89 -19.61 -28.50	54.00 74.00 54.00 74.00 54.00 74.00	34.07 42.94 37.53 43.30 25.06 36.17	32.76 32.76 34.26 34.26 36.05 36.05	5.57 5.57 6.51 6.51 8.27 8.27	35.83 35.83 34.96 34.96 34.99 34.99	 		Average Peak Average Peak Average Peak
lote 1: ">20d lote 2: "N/F" lote 3: Measu lote 4: For re with th additio lote 5: For ur	means No urement re stricted ba ne Peak-D on. n-restricted	thing Fo eceive ar nds, the etector r	und spu ntenna peak n neets th unwan	urious er polarizat neasurer ne AV-Lir ted emis	nission ion: H (ment is mit so tł	s (No sp Horizon fully suf nat the <i>F</i>	ourious tal), V (ficient, a V level	emissions Vertical) as the ma does not	s were x field need 1	detecte strengt o be re	ed.) h as measur eported in

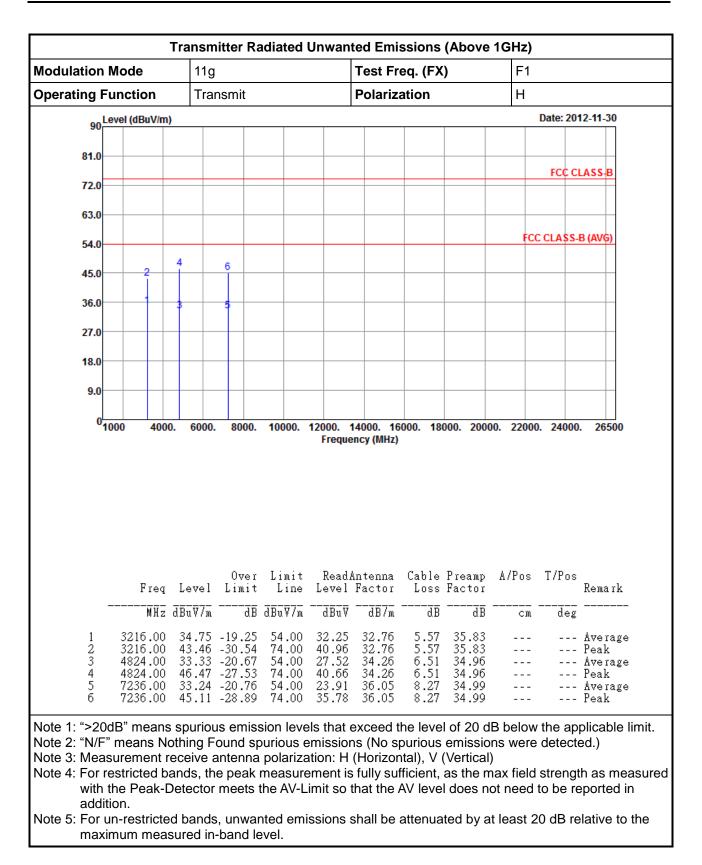
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11b





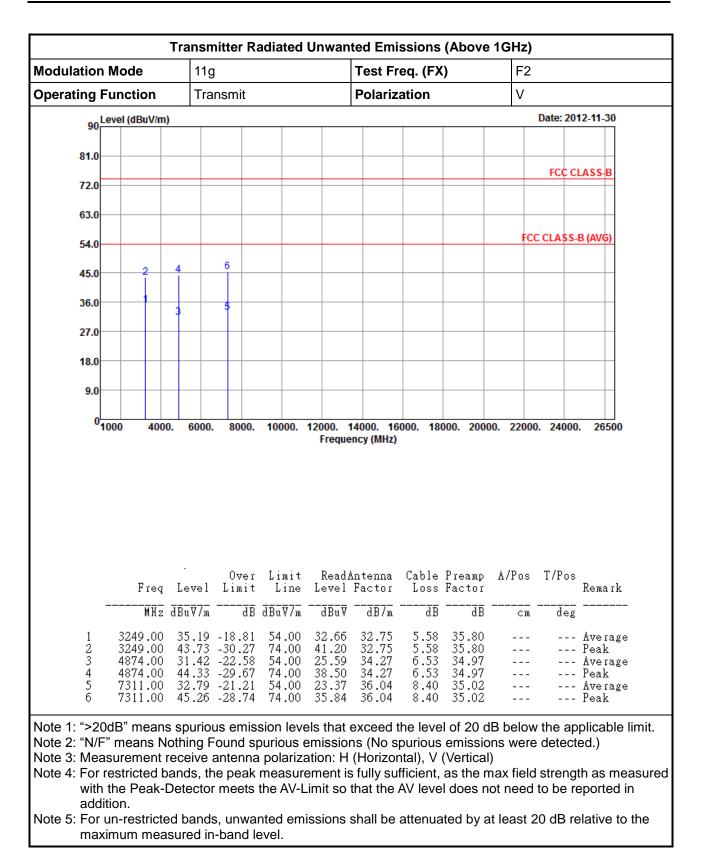


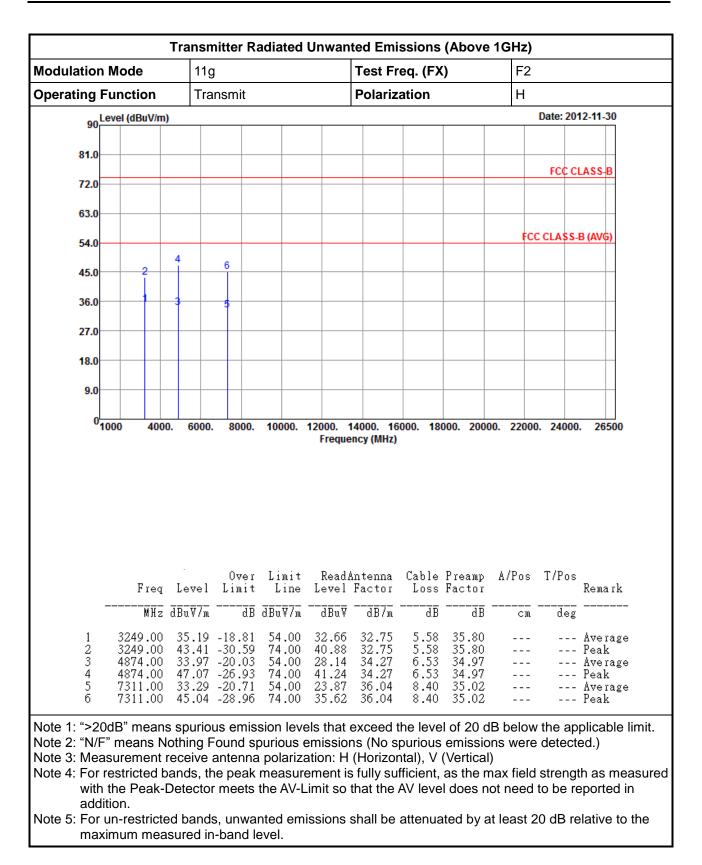


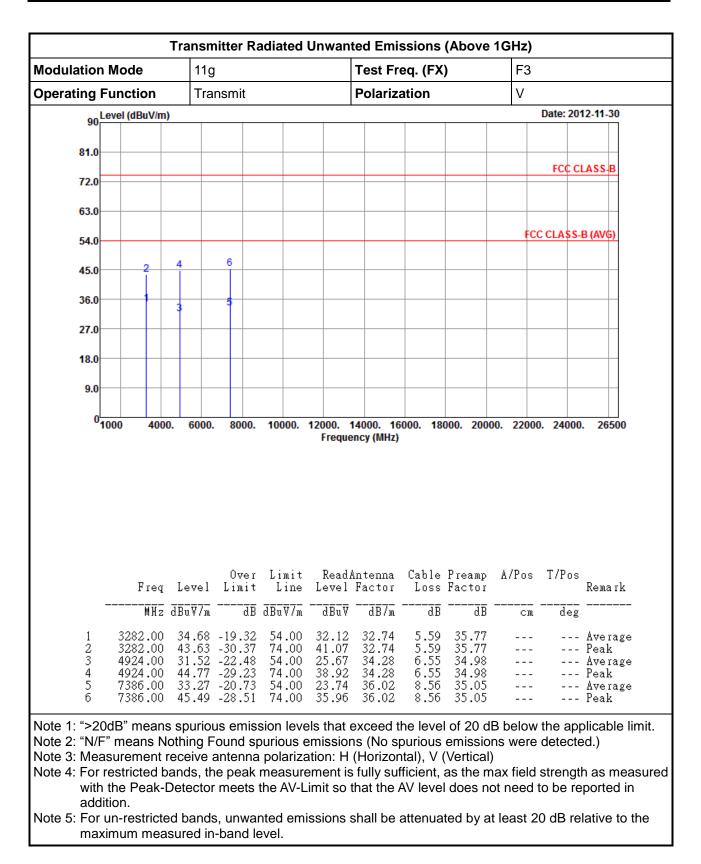


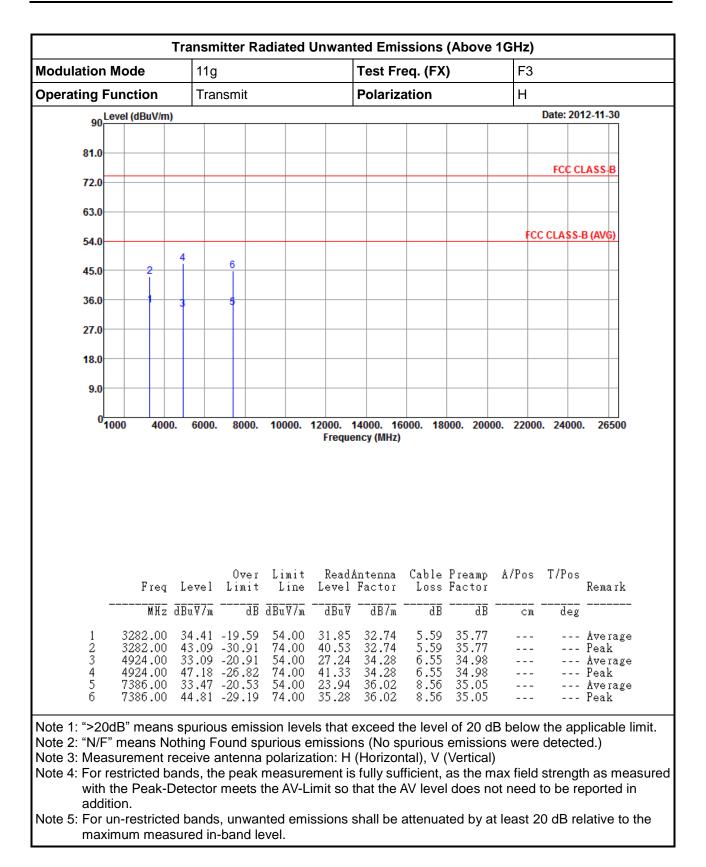
Madulation				luiutou	• · · · · u			(Above '	,		
Modulation	on Mode 11g g Function Transmit				Test Freq. (FX) Polarization				F1		
			nsmit			Polariz	ation		V	Data: 20	42 44 20
90 L	evel (dBuV/m)									Date: 20	12-11-30
81.0											
72.0										FCC C	LASS-B
63.0											
									FCC	CLASS	B (AVG)
54.0			_							, ocnos	
45.0	2	4	6								
36.0		3	5								
27.0											
18.0											
9.0											
5.0											
	Freq	Level		Limit Line	Read <i>A</i> Level			Preamp Factor	A/Pos	T/Pos	Remark
	-	<u>dBuV7m</u>		dBuV/m			<u>dB</u>	<u>dB</u> _	 cm	deg	
1 2 3 4 5 6	3216.00 3216.00 4824.00 4824.00 7236.00 7236.00	43.87 31.14 44.08 32.77	-19.35 -30.13 -22.86 -29.92 -21.23 -29.04	54.00 74.00 54.00 74.00 54.00 74.00	32.15 41.37 25.33 38.27 23.44 35.63	32.76 32.76 34.26 34.26 36.05 36.05	5.57 5.57 6.51 6.51 8.27 8.27	35.83 35.83 34.96 34.96 34.99 34.99 34.99	 		Average Peak Average Peak Average Peak
Note 1: ">20 Note 2: "N/F		othing F eceive a ands, th	ound sp antenna ie peak	ourious e polariza measure	emissior ation: H ement is	ns (No s (Horizoi fully su	purious ntal), V fficient,	emission (Vertical) as the ma	s were ax field	detec	ted.)

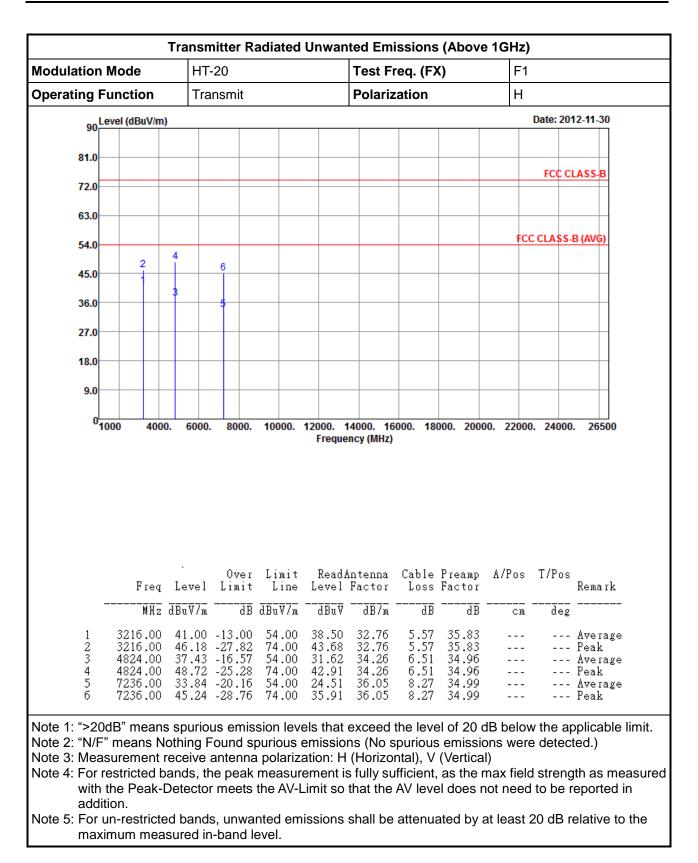
3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11g





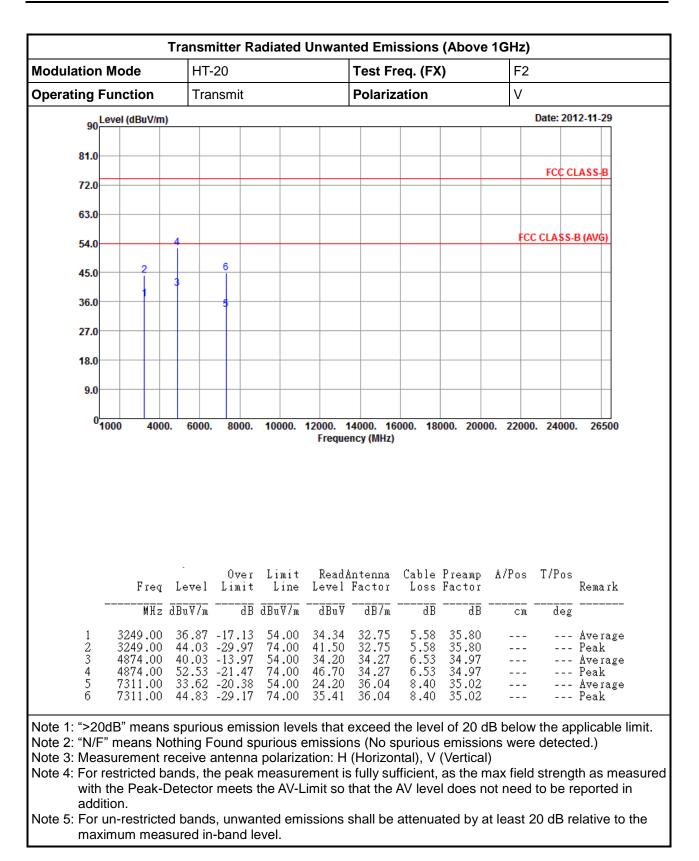


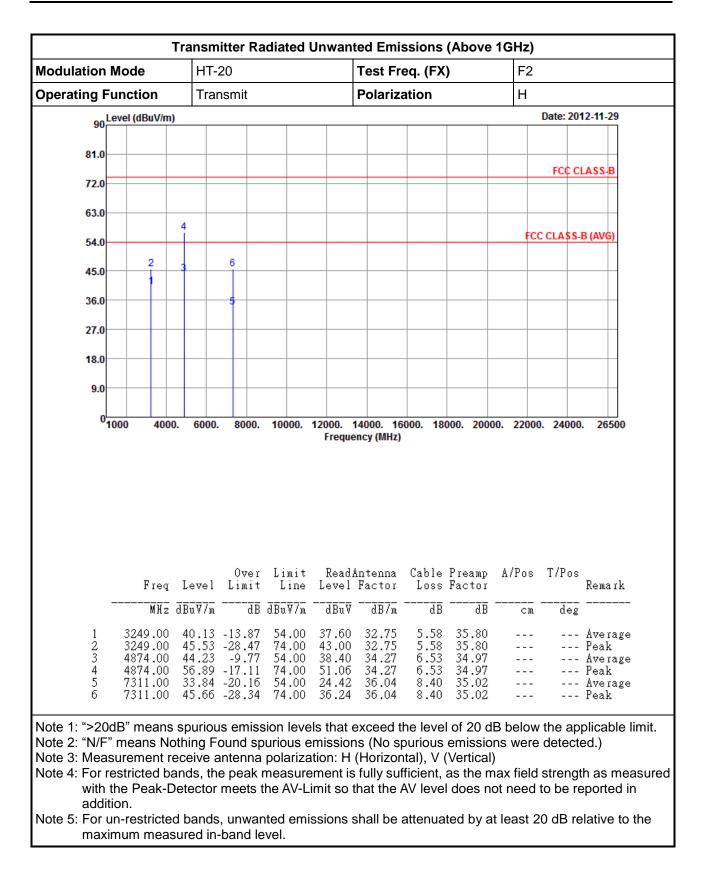


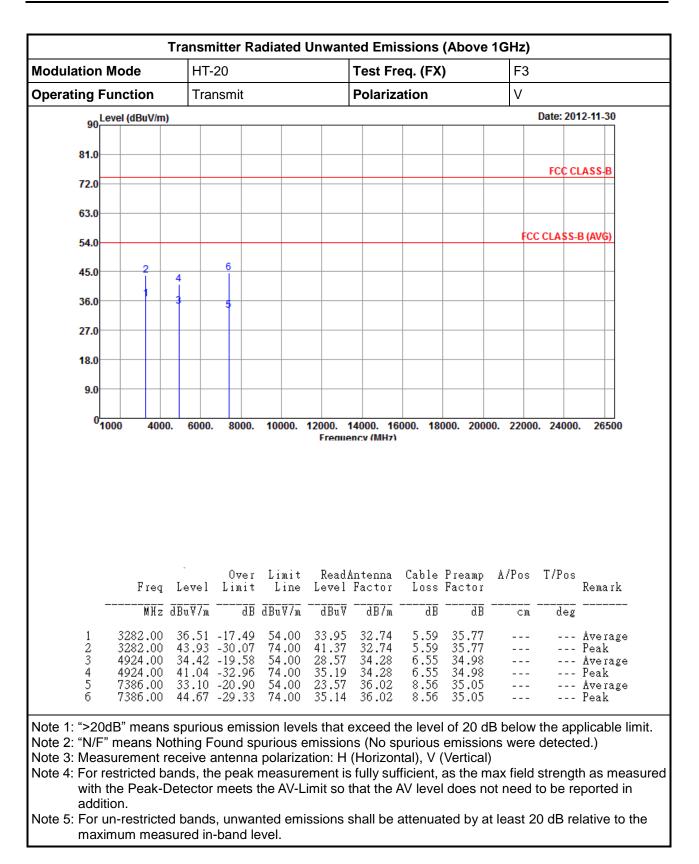


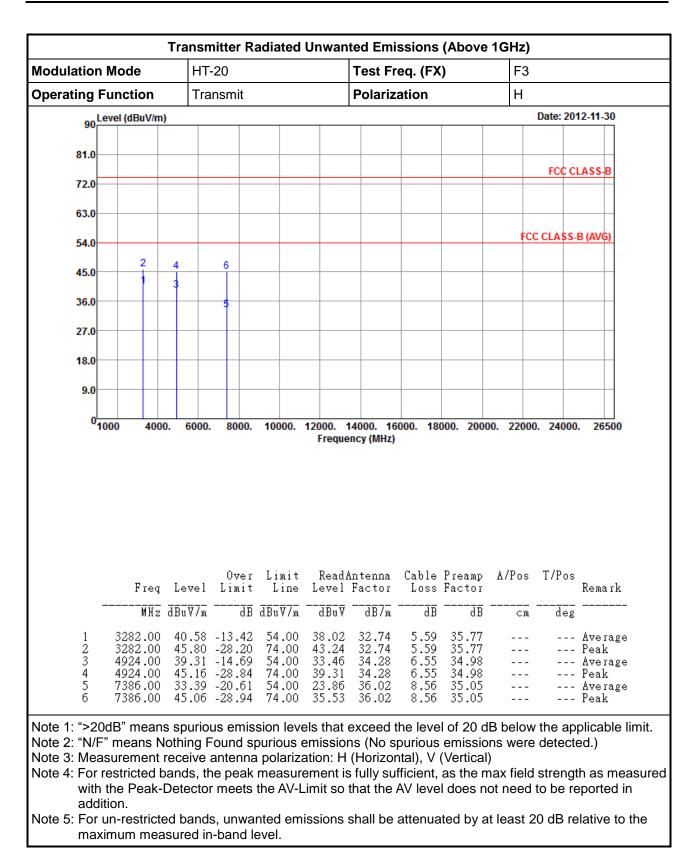
Modulation	Mode	НТ	-20			Test Fr	eq. (FX	.)	F1		
Operating F	ating FunctionTransmitPolarizationV										
90-	evel (dBuV/m)								Date: 20	12-11-30
81.0										FCC C	LASS-B
72.0											
63.0											
54.0									FCC	CLASS-	B (AVG)
15.0	2	4	6								
45.0	Ĵ	3									
36.0			5								
27.0											
18.0											
9.0											
		-	Over		Read <i>l</i>	intenna	Cable	Preamp <i>I</i>	1/Pos	T/Pos	
			Limit		Level		Loss	Factor			Remark
		dBuV7r		dBuV/m			dB	dB	cm	deg	
1 2 3 4 5 6	3216.00 3216.00 4824.00 4824.00 7236.00 7236.00	43.55 37.77 49.38 32.90	5 -18.44 5 -30.45 7 -16.23 8 -24.62 9 -21.10 4 -29.06	74.00 54.00 74.00 54.00	23.57	32.76 32.76 34.26 34.26 36.05 36.05	5.57 5.57 6.51 6.51 8.27 8.27	35.83 35.83 34.96 34.96 34.99 34.99 34.99	 		Average Peak Average Peak Average Peak
	' means No surement r	othing I eceive ands, t	⁻ ound s antenna he peak	purious e a polariza measure	emissior ation: H ement is	ns (No s (Horizor fully su	purious ntal), V fficient,	emissions (Vertical) as the ma	s were x field	detect streng	th as mea

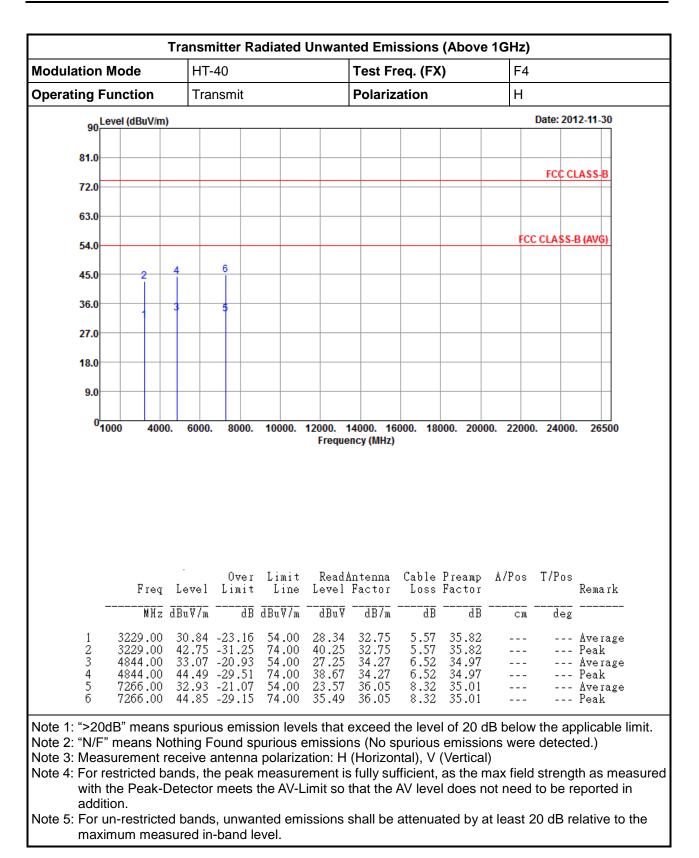
3.6.9 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT-20





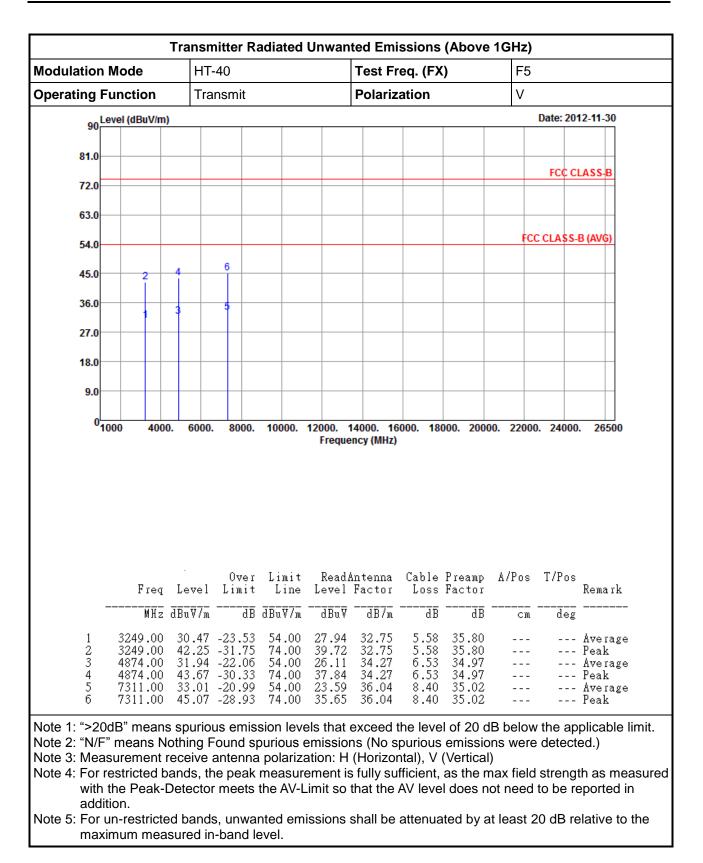


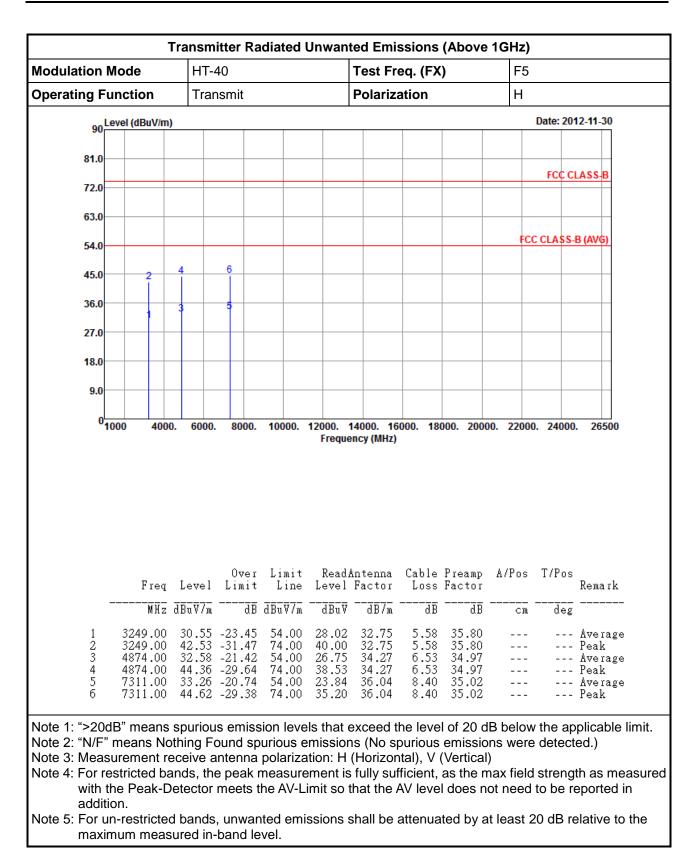


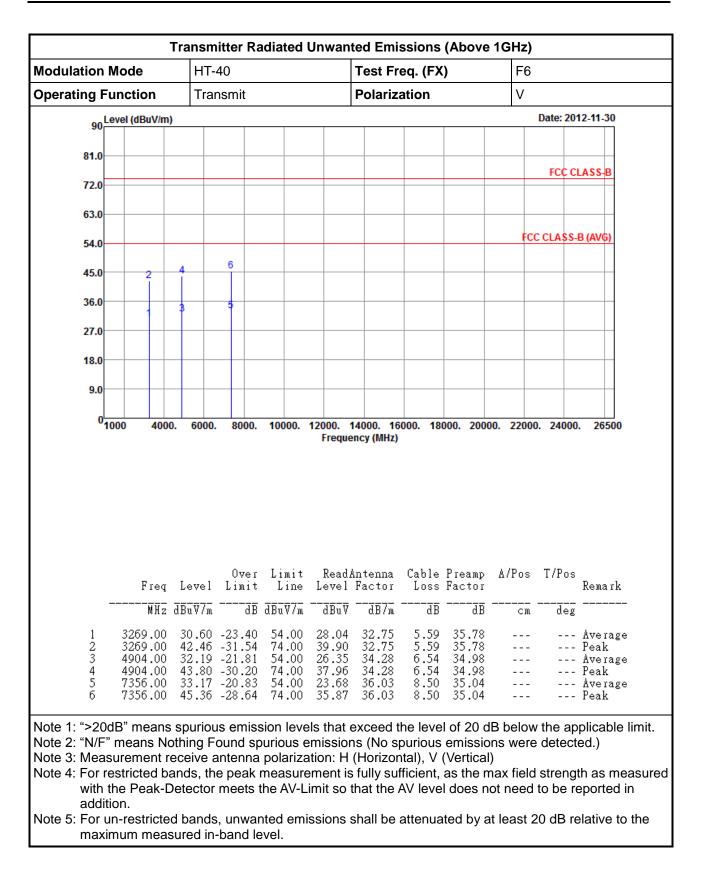


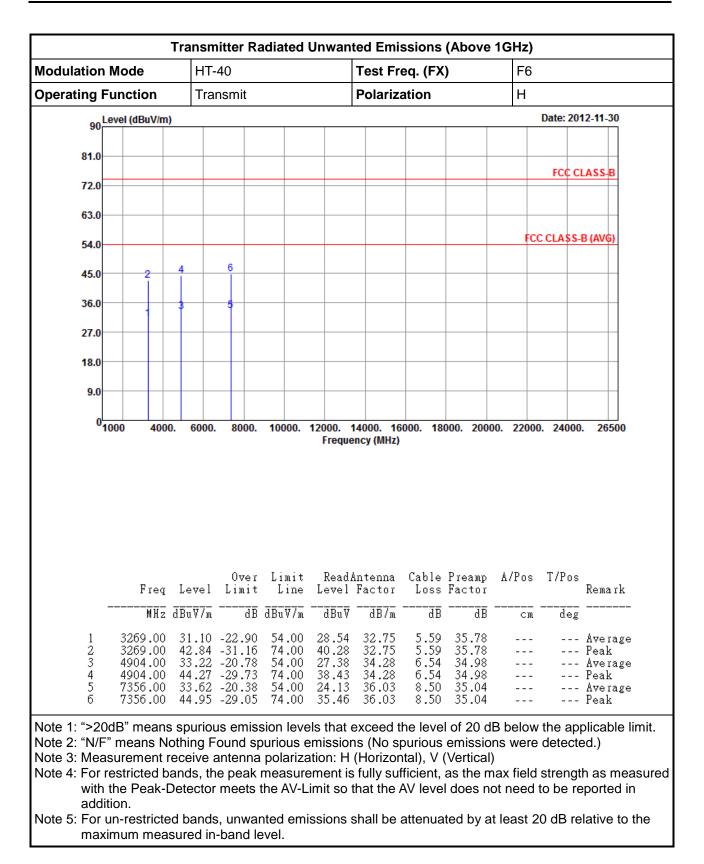
Modulation	Mode	HT	-40			Test Fr	eq. (FX)	F4			
Operating F	unction	Tra	Insmit			Polariz	ation		V	V		
90	evel (dBuV/m)									Date: 20	12-11-30	
04.0												
81.0										FCC C	LASS-B	
72.0												
63.0												
54.0									FCC	CLASS	-B (AVG)	
45.0	2	4	6									
36.0			5									
27.0	1											
18.0-												
9.0												
			Over	Limit	ReadA	intenna	Cable	Preamp	A/Pos	T/Pos		
	-	Level			Level						Remark 	
		dBuV7m			<u>dBu</u> ⊽			<u>dB</u>	cm	deg		
1 2 3 4 5 6	3229.00 3229.00 4844.00 4844.00 7266.00 7266.00	42.37 32.16 44.07 33.17	-23.37 -31.63 -21.84 -29.93 -20.83 -28.92	54.00 74.00 54.00 74.00 54.00 74.00	28.13 39.87 26.34 38.25 23.81 35.72	32.75 32.75 34.27 34.27 36.05 36.05	5.57 5.57 6.52 6.52 8.32 8.32	35.82 35.82 34.97 34.97 35.01 35.01	 		Average Peak Average Peak Average Peak	
Note 1: ">20 Note 2: "N/F Note 3: Mea Note 4: For i	" means National Na National National N	othing F receive ands, th	⁻ ound sp antenna ne peak	ourious e polariza measure	emissior ation: H ement is	ns (No s (Horizor s fully su	purious ntal), V fficient,	emission (Vertical) as the ma	s were ax field	detect streng	ed.) th as meas	

3.6.10 Transmitter Radiated Unwanted Emissions (Above 1GHz) for HT-40









4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100132	9kHz ~ 2.75GHz	Nov. 14, 2012	Conduction (CO01-HY)
LISN	TESEQ	NNB-52	27380	9kHz ~ 30MHz	Apr. 09, 2012	Conduction (CO01-HY)
LISN (Support Unit)	MessTec	NNB-2/16Z	2001/009	9kHz ~ 30MHz	Feb. 20, 2012	Conduction (CO01-HY)
EMI Filter	LINDGREN	LRE-2060	1004	< 450Hz	N/A	Conduction (CO01-HY)
EMI Filter	LINDGREN	N6006	201052	0 ~ 60Hz	N/A	Conduction (CO01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 40	100305	9KHz ~ 40GHz	Feb. 21, 2012	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 19, 2012	Conducted (TH01-HY)
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 02, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	-20 ~ 100℃	Nov. 21, 2012	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 26, 2012	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
RF Cable-2m	HUBER+SUHNER	SUCOFLEX_104	SN 345675/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)
RF Cable-3m	HUBER+SUHNER	SUCOFLEX_104	SN 345669/4	1GHz ~ 26.5GHz	NA	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Report No. : FR2N2717AC

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP	100055	9Kz – 40GHz	Jun. 06, 2012	Radiation (03CH05-HY)
Receiver	R&S	ESIB26	100337	20Hz – 26.5GHz	Jun. 21, 2012	Radiation (03CH05-HY)
3m Semi Anechoic Chamber	TDK	SAC-3M	03CH05-HY	30 MHz - 1 GHz 3m	N/A	Radiation (03CH05-HY)
Amplifier	COM-POWER	PA-103	161075	1KHz - 1GHz	Feb. 27, 2012	Radiation (03CH05-HY)
Amplifier	Agilent	8449B	3008A02665	1GHz – 26.5 GHz	Aug. 28, 2012	Radiation (03CH05-HY)
Horn Antenna	ETS-LINDGREN	3117	66584	1GHz~18GHz	Aug. 09, 2012	Radiation (03CH05-HY)
RF Cable-R03m	Jye Bao	RG142	03CH05-HY	30 MHz - 1 GHz	Oct. 14, 2012	Radiation (03CH05-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX104	03CH05-HY	1GHz~40GHz	Oct. 14, 2012	Radiation (03CH05-HY)
Bilog Antenna	SCHAFFNER	CBL6111C	2725	30 MHz - 1 GHz	Oct. 06, 2012	Radiation (03CH05-HY)
Turn Table	HD	HD100	420/611	0 - 360 degree	N/A	Radiation (03CH05-HY)
Antenna Mast	HD	HD100	240/666	1 m - 4 m	N/A	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	R&S	HFH2-Z2	860004/0001	9 kHz - 30 MHz	Jul. 03, 2012	Radiation (03CH05-HY)

Note: Calibration Interval of instruments listed above is two year.

5 Certification of TAF Accreditation

