

Report No. : FR953007AD

FCC RADIO TEST REPORT

FCC ID		NKR-LVSK-M1
Equipment	:	Wi-Fi Extender
Brand Name		verizon
Model Name	:	LVM1
Applicant		Wistron NeWeb Corporation
		20 Park Ave. II, Hsinchu Science Park, Hsinchu 308, Taiwan
Manufacturer		Wistron NeWeb Corporation
		20 Park Ave. II, Hsinchu Science Park, Hsinchu 308, Taiwan
Standard		47 CFR FCC Part 15.247

The product was received on Jun. 01, 2019, and testing was started from Jun. 01, 2019 and completed on Jun. 29, 2019. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

m

Approved by: Sam Chen

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No .: CB Ver1.0 Page Number : 1 of 29 : Jul. 03, 2019 Issued Date Report Version : 01

Table of Contents

Histor	y of this test report	3
Summ	ary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	8
1.3	Testing Location Information	8
1.4	Measurement Uncertainty	8
2	Test Configuration of EUT	9
2.1	Test Channel Mode	9
2.2	The Worst Case Measurement Configuration	10
2.3	EUT Operation during Test	
2.4	Accessories	
2.5	Support Equipment	
2.6	Test Setup Diagram	12
3	Transmitter Test Result	15
3.1	AC Power-line Conducted Emissions	15
3.2	DTS Bandwidth	17
3.3	Maximum Conducted Output Power	
3.4	Power Spectral Density	
3.5	Emissions in Non-restricted Frequency Bands	
3.6	Emissions in Restricted Frequency Bands	24
4	Test Equipment and Calibration Data	28
Appen	ndix A. Test Results of AC Power-line Conducted Emissions	
Appen	ndix B. Test Results of DTS Bandwidth	
Appen	ndix C. Test Results of Maximum Conducted Output Power	
Appen	ndix D. Test Results of Power Spectral Density	
Appen	ndix E. Test Results of Emissions in Non-restricted Frequency Bands	
Appen	ndix F. Test Results of Emissions in Restricted Frequency Bands	
Appen	ndix G. Test Photos	
Photog	graphs of EUT v01	

History of this test report

Report No.	Version	Description	Issued Date
FR953007AD	01	Initial issue of report	Jul. 03, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

1. The test configuration, test mode and test software were written in this test report are declared by the manufacturer.

2. The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen Report Producer: Viola Huang

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number
2400-2483.5	LE	2402-2480	0-39 [40]

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	BT-LE (1Mbps)	1	1

Note:

- Bluetooth LE uses a GFSK modulation.
- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs. e.g., 2(2, 3) means have 2 outputs for port 2 and port 3. 2 means have 2 outputs for port 1 and port 2.

1.1.2 Antenna Information

Ant.	Port	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	1	WNC	95XKAC15.GCOVZ	Dipole	I-PEX MHF	
2	2	WNC	95XKAC15.GCEVZ	Dipole	I-PEX MHF	
3	1	WNC	95XKAC15.GCKVZ	Dipole	I-PEX MHF	
4	2	WNC	95XKAC15.GCJVZ	Dipole	I-PEX MHF	Noto1
5	3	WNC	95XKAC15.GCIVZ	Dipole	I-PEX MHF	Note1
6	4	WNC	95XKAC15.GCLVZ	Dipole	I-PEX MHF	
7	1	WNC	95XKAC15.GCNVZ	Patch	I-PEX MHF	
8		WNC	95XKAC15.GCMVZ	Patch	I-PEX MHF	

Note1:

	Directional Gain (dBi)					
Ant.	Port	2.4GHz	5G Bnad 1	5G Bnad 4		
1	1	4.17	-	2.96		
2	2	4.17	-	2.96		
3	1	-	5.76	-		
4	2	-	5.76	-		
5	3	-	5.76	-		
6	4	-	5.76	-		

	Antenna Gain (dBi)				
Ant.	Port	Bluetooth			
7	1	2.66			
8	I	2.66			

Note2:The above information was declared by manufacturer.

For 2.4GHz and 5GHz band 4 function (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 can could transmit/receive simultaneously.

For 5GHz band 1 function (4TX/4RX):

Port 1, Port 2, Port 3 and Port 4 can be used as transmitting/receiving antenna.

Port 1, Port 2, Port 3 and Port 4 can could transmit/receive simultaneously.

For bluetooth function (1TX/1RX):

Only Port 1 can be used as receiving/receiving antenna.

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
BT-LE	0.629	2.01	407.5u	3k
				L.

Note:

DC is Duty Cycle.

DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	Fro	From Power Adapter				
Function	\boxtimes	Point-to-multipoint				
Test Software Version	ttermpro.exe					
	\boxtimes	LE 1M PHY: 1 Mb/s				
Support Mode		LE Coded PHY (S=2): 500 Kb/s				
		LE Coded PHY (S=8): 125 Kb/s				
		LE 2M PHY: 2 Mb/s				

Note: The above information was declared by manufacturer.

1.1.5 EUT supports function

Function
Mesh
Bridge

Note:The EUT supports Mesh and Bridge mode, only Mesh mode was tested and recorded in this test report for manufacturer's request.

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 558074 D01 v05r02

1.3 Testing Location Information

	Testing Location						
	HWA YA ADD : No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)						
		TEL	:	886-3-327-3456 FAX : 886-3-327-0973			
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.			
		TEL	:	886-3-656-9065 FAX : 886-3-656-9085			

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH01-CB	Benson Su	22~24°C / 50~60%	Jun. 05, 2019 ~ Jun. 29, 2019
Radiated	03CH03-CB for below 1GHz	RJ Huang	22~24°C / 55~60%	Jun. 28, 2019
Radiated	03CH01-CB for above 1GHz	Stim Sung	22~24°C / 50~60%	Jun. 01, 2019 ~ Jun. 29, 2019
AC Conduction	CO01-CB	Peter Wu	24.6~24.8°C / 60~61%	Jun. 28, 2019

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086B with Industry Canada.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	2.0 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.3 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	5.1 dB	Confidence levels of 95%
Conducted Emission	2.4 dB	Confidence levels of 95%
Output Power Measurement	1.5 dB	Confidence levels of 95%
Power Density Measurement	1.4 dB	Confidence levels of 95%
Bandwidth Measurement	2%	Confidence levels of 95%

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	PowerSetting	
BT-LE(1Mbps)	-	
2402MHz	Default	
2440MHz	Default	
2480MHz	Default	

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item AC power-line conducted emissions			
Condition	AC power-line conducted measurement for line and neutral		
Operating Mode Normal Link			

Th	The Worst Case Mode for Following Conformance Tests			
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands			
Test Condition Conducted measurement at transmit chains				

Th	The Worst Case Mode for Following Conformance Tests				
Tests Item Emissions in Restricted Frequency Bands					
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.				
Operating Mode < 1GHz	Normal Link				
Operating Mode > 1GHz	СТХ				

The Worst Case Mode for Following Conformance Tests				
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation				
Operating Mode				
1 WLAN 2.4GHz + WLAN 5GHz Band 1 + WLAN 5GHz Band 4 + Bluetooth				
Refer to Sporton Test Report No.: FA953007 for Co-location RF Exposure Evaluation.				

Note: The EUT only use in Z axis.

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link:

During the test, the EUT operation to normal function.

2.4 Accessories

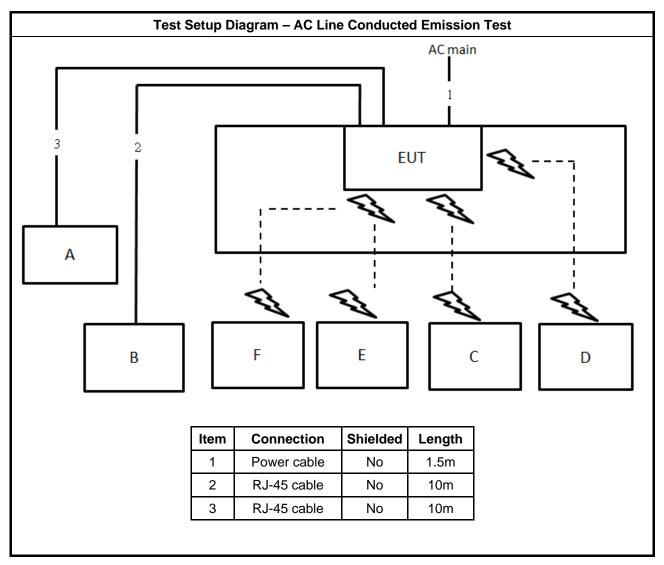
Accessories					
Equipment Name Brand Name		Model Name	Rating		
Adapter	LUCENT TRANS	1A95-US1223	INPUT: 100-240V, 1A, 50-60Hz OUTPUT: 19V, 2.37A		

2.5 Support Equipment

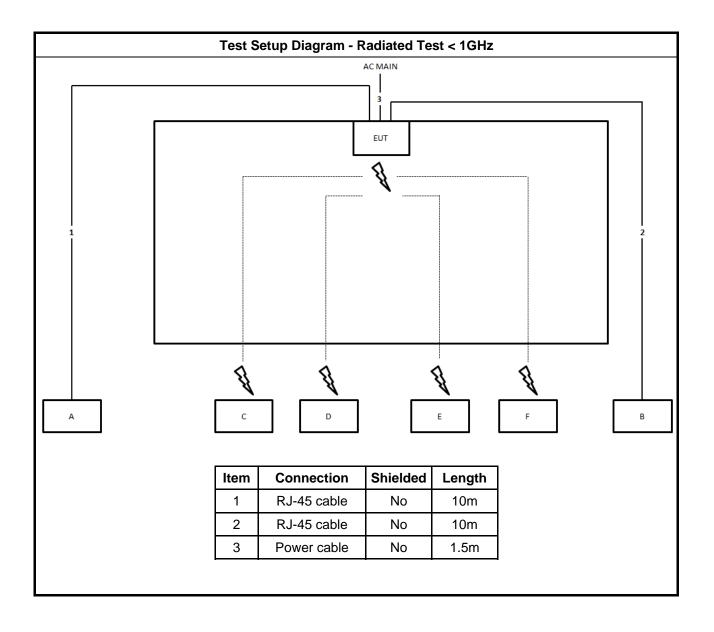
For AC Conduction:

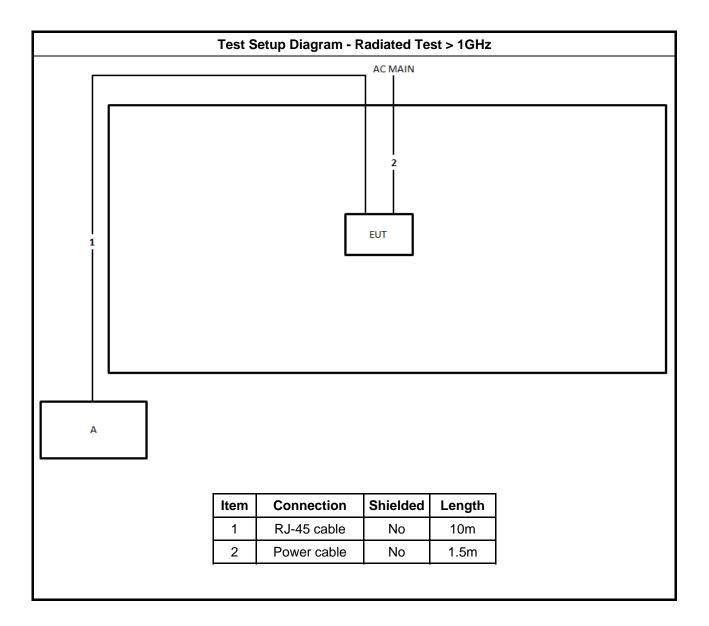
	Support Equipment						
No.	Equipment	Brand Name	Model Name	FCC ID			
А	LAN1 NB	DELL	E6430	N/A			
В	LAN2 NB	DELL	E6430	N/A			
С	Device	verizon	LVM1	NKR-LVSK-M1			
D	Smart phone	Samsung	Galaxy J2	N/A			
Е	2.4G NB	DELL	E6430	N/A			
F	5G NB	DELL	E6430	N/A			

For Radiated (below 1GHz):


	Support Equipment						
No.	Equipment	Brand Name	Model Name	FCC ID			
А	NB	DELL	E4300	N/A			
В	NB	DELL	E4300	N/A			
С	Device	verizon	LVM1	NKR-LVSK-M1			
D	Phone	Samsung	SM-J200Y	N/A			
Е	NB	Apple	Mac Book	N/A			
F	NB	Apple	Mac Book	N/A			

For Radiated (above 1GHz) & RF Conducted:


	Support Equipment					
No.	No. Equipment Brand Name Model Name FCC ID					
А	NB	DELL	E4300	N/A		


2.6 Test Setup Diagram

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

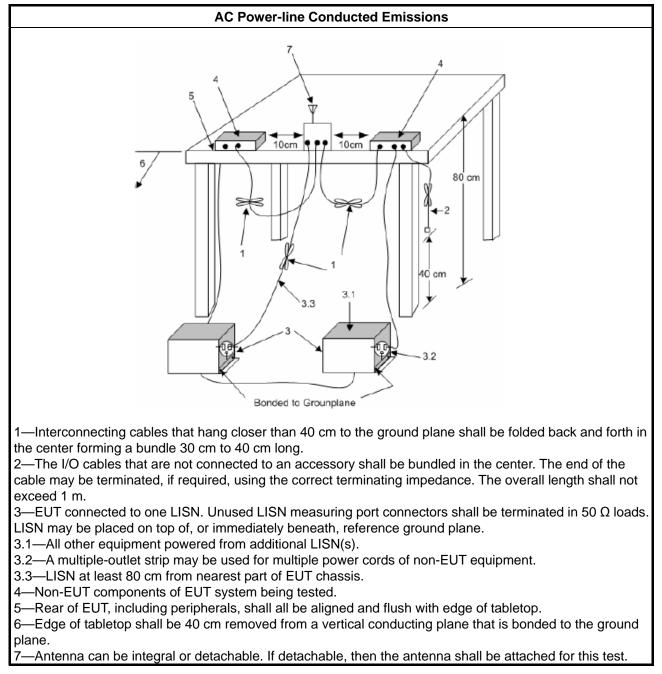
3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

5

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.1.3 Test Procedures

Test Method

• Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

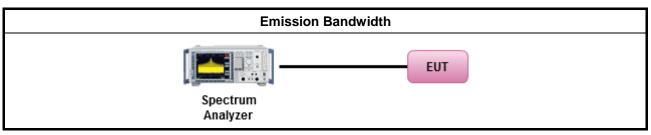
3.1.5 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit				
Systems using digital modulation techniques:				
■ 6 dB bandwidth ≥ 500 kHz.				


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method							
• F	For t	the emission bandwidth shall be measured using one of the options below:						
	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwic measurement.							
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.						
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.						

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

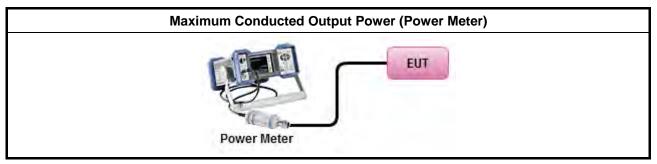
3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maxim	Maximum Conducted Output Power Limit						
•	If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)						
•	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm						
	Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm						
	 Smart antenna system (SAS): 						
	- Single beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$						
	- Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm						
	- Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$						
	P_{out} = maximum peak conducted output power or maximum conducted output power in dBm, G_{TX} = the maximum transmitting antenna directional gain in dBi.						

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.3.3 Test Procedures

		Test Method						
•	Max	imum Peak Conducted Output Power						
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).						
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).						
•	Maximum Conducted Output Power							
	[dut	/ cycle ≥ 98% or external video / power trigger]						
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.						
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)						
	duty	cycle < 98% and average over on/off periods with duty factor						
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.						
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)						
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3						
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)						
	Mea	surement using a power meter (PM)						
	\boxtimes	Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.1 Method AVGPM (using an RF average power meter).						
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.2 Method AVGPM-G (using an gate RF average power meter).						
•	For	conducted measurement.						
	•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.						
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG						

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

3.4 **Power Spectral Density**

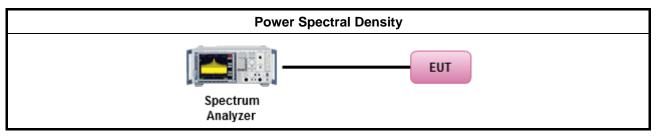
3.4.1 Power Spectral Density Limit

Power Spectral Density Limit	
------------------------------	--

■ Power Spectral Density (PSD)≤8 dBm/3kHz

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.4.3 Test Procedures

	Test Method						
	outp the c conc of th	k power spectral density procedures that the same method as used to determine the conducted ut power. If maximum peak conducted output power was measured to demonstrate compliance to putput power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum ducted output power was measured to demonstrate compliance to the output power limit, then one e average PSD procedures shall be used, as applicable based on the following criteria (the peak procedure is also an acceptable option).					
	\boxtimes	Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.2 Method PKPSD.					
	[duty	/ cycle ≥ 98% or external video / power trigger]					
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.3 Method AVGPSD-1.					
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.5 Method AVGPSD-2.					
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.7 Method AVGPSD-3.					
	duty	cycle < 98% and average over on/off periods with duty factor					
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.4 Method AVGPSD-1A. (alternative).					
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.6 Method AVGPSD-2A. (alternative)					
		Refer as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10.8 Method AVGPSD-3A. (alternative)					
-	For	conducted measurement.					
	•	If The EUT supports multiple transmit chains using options given below:					
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.					
		Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,					
TEL	: 886-3	3-656-9065 Page Number : 21 of 29					

Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

3.5 Emissions in Non-restricted Frequency Bands

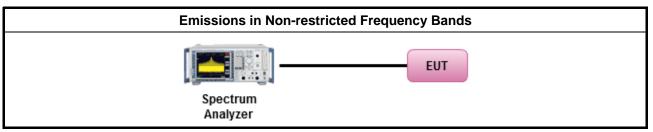
3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit					
RF output power procedure Limit (dBc)					
Peak output power procedure 20					
Average output power procedure 30					

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method

Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands.

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit						
Frequency Range (MHz) Field Strength (uV/m) Field Strength (dBuV/m) Measure						
0.009~0.490 2400/F(kHz)		48.5 - 13.8	300			
0.490~1.705 24000/F(kHz)		33.8 - 23	30			
1.705~30.0 30		29	30			
30~88 100		40	3			
88~216 150		43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

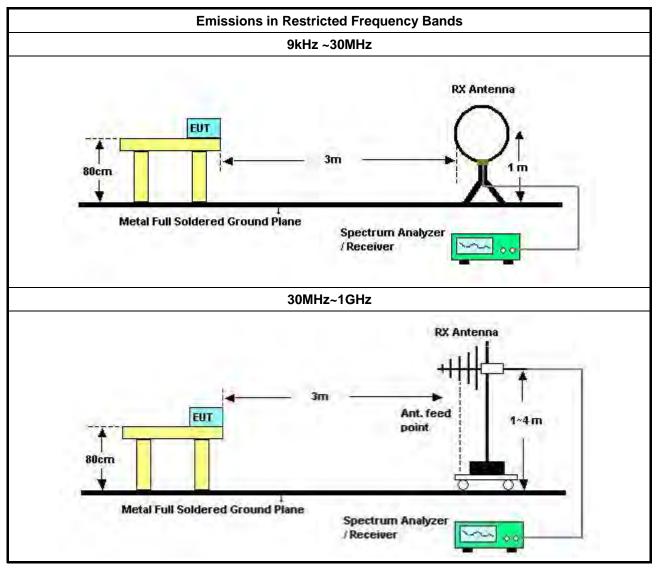
Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

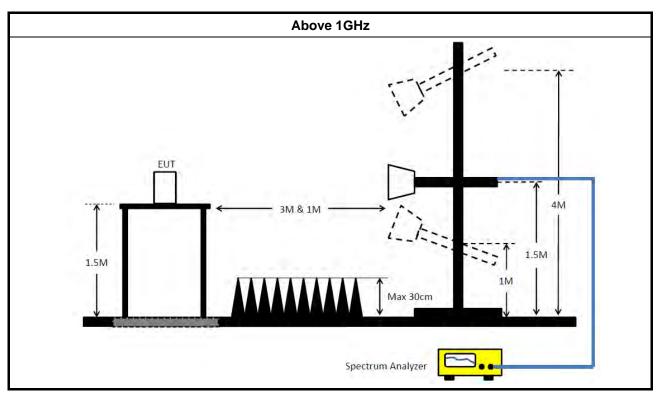
Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.6.3 Test Procedures


	Test Method							
•	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].							
•	Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.							
•	 For the transmitter unwanted emissions shall be measured using following options below: 							
	 Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands. 							
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).							
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).							
	⊠ Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).							
	□ Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time.							
	Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.							
	Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.							
•	For the transmitter band-edge emissions shall be measured using following options below:							
	 Refer as FCC KDB 558074 clause 8.7 & c63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below. 							
	 Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method for band-edge measurements. 							
	 Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz). 							
	 For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB 							
	 For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred. 							

3.6.4 Test Setup

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

Test Equipment and Calibration Data 4

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 28, 2019	Jan. 29, 2020	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-1 6-2	04083	150kHz~100MHz	Dec. 24, 2018	Dec. 23, 2019	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Jan. 11, 2019	Jan. 10, 2020	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	May 21, 2019	May 20, 2020	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
Bilog Antenna with 6 dB attenuator	Schaffner	CBL6112B & N-6-06	2928 & AT-N0607	20MHz ~ 2GHz	Jan. 02, 2019	Jan. 01, 2020	Radiation (03CH03-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 29, 2019	Mar. 28, 2020	Radiation (03CH03-CB)
Pre-Amplifier	Agilent	8447D	2944A10259	9kHz ~ 1.3GHz	Jan. 16, 2019	Jan. 15, 2020	Radiation (03CH03-CB)
Spectrum Analyzer	R&S	FSP-40	100019	9kHz ~ 40GHz	Jun. 19, 2019	Jun. 18, 2020	Radiation (03CH03-CB)
EMI Test Receiver	R&S	ESCS	100359	9kHz ~ 2.75GHz	Jun. 26, 2019	Jun. 25, 2020	Radiation (03CH03-CB)
RF Cable-low	Woken	RG402	Low Cable-02+27	25MHz ~ 1GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH03-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Nov. 13, 2018	Nov. 12, 2019	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jun. 28, 2018	Jun. 27, 2019	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jun. 27, 2019	Jun. 26, 2020	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 08, 2019	Jan. 07, 2020	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35-HG	1864479	18GHz ~ 40GHz	Jul. 04, 2018	Jul. 03, 2019	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Jan. 31, 2019	Jan. 30, 2020	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-16	1 GHz ~ 18 GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-16+17	1 GHz ~ 18 GHz	Oct. 08, 2018	Oct. 07, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-40G#1	18GHz ~ 40 GHz	Jul. 27, 2018	Jul. 26, 2019	Radiation (03CH01-CB)
RF Cable-high	Woken	RG402	High Cable-40G#2	18GHz ~ 40 GHz	Jul. 27, 2018	Jul. 26, 2019	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Feb. 25, 2019	Feb. 24, 2020	Conducted (TH01-CB)

: Jul. 03, 2019

Issued Date Report Version : 01

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
RF Cable-high	Woken	RG402	High Cable-06	1 GHz – 26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-07	1 GHz –26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz –26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz –26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz –26.5 GHz	Oct. 08, 2018	Oct. 07, 2019	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-28	1 GHz –26.5 GHz	Nov. 19, 2018	Nov. 18, 2019	Conducted (TH01-CB)
Power Sensor	Agilent	E9327A	US40442088	50MHz~18GHz	Jan. 15, 2019	Jan. 14, 2020	Conducted (TH01-CB)
Power Meter	Agilent	E4416A	GB41291199	50MHz~18GHz	Jan. 15, 2019	Jan. 14, 2020	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

perating I	erating Mode erating Function					1			Po	wer Pha	se	Line	
					Normal Link								
Mode	1											-	28/06/2019
80-					_								Lim.QP
70-													QP 📈
60-										_			Lim.AV 📈
-													AV 📈
50-	1 .		-		-				-				-
40-	mm	Mhry	no de no	I N.						_			
30-		1 m	A MARCHINE	extend whether	und highly water	hillingersamle	Martin Martin	A A A A A A A A A A A A A A A A A A A	Anna lake	Martin and Mart	Barry has a ball of Heathers	أكتد عر المتوحقيتين بدوي	
50-			1		• •		and the second study	ALL WILL MA	the staff water	reputter that the	The state of a particular of	Narry State and South at	
20-		-	_										
10-					_								
0-1 150k				1	м					10M		зом	
1344												2011	P1
Туре	Freq	Level	Limit	Margin	Factor	Condition	Comment		AF	CL	AT		
	(Hz)	(dBuV)	(dBuV)	(dB)	(dB)			(dBuV)	(dB)	(dB)	(dB)		
QP	(Hz) 150k	(dBuV) 51.35	(dBuV) 66.00	(dB) -14.65	(dB) 9.90	Line	"Worst"	(dBuV) 41.45	(dB) 0.05	(dB) 0.06	(dB) 9.79		
QP AV	(Hz) 150k 150k	(dBuV) 51.35 37.02	(dBuV) 66.00 56.00	(dB) -14.65 -18.98	(dB) 9.90 9.90	Line Line	"Worst" -	(dBuV) 41.45 27.12	(dB) 0.05 0.05	(dB) 0.06 0.06	(dB) 9.79 9.79		
QP	(Hz) 150k	(dBuV) 51.35	(dBuV) 66.00	(dB) -14.65	(dB) 9.90	Line	"Worst"	(dBuV) 41.45	(dB) 0.05	(dB) 0.06	(dB) 9.79		
QP AV QP	(Hz) 150k 150k 186k	(dBuV) 51.35 37.02 45.64	(dBuV) 66.00 56.00 64.20	(dB) -14.65 -18.98 -18.56	(dB) 9.90 9.90 9.91	Line Line Line	"Worst" - -	(dBuV) 41.45 27.12 35.73	(dB) 0.05 0.05 0.06	(dB) 0.06 0.06 0.06	(dB) 9.79 9.79 9.79 9.79		
QP AV QP AV QP AV	(Hz) 150k 150k 186k 186k 330k 330k	(dBuV) 51.35 37.02 45.64 32.47	(dBuV) 66.00 56.00 64.20 54.20	(dB) -14.65 -18.98 -18.56 -21.73 -21.29 -19.01	(dB) 9.90 9.90 9.91 9.91 9.92 9.92	Line Line Line Line	"Worst" - -	(dBuV) 41.45 27.12 35.73 22.56 28.23 20.51	(dB) 0.05 0.05 0.06 0.06	(dB) 0.06 0.06 0.06 0.06 0.06 0.06	(dB) 9.79 9.79 9.79 9.79 9.79		
QP AV QP AV QP AV QP	(Hz) 150k 150k 186k 186k 330k 330k 537k	(dBuV) 51.35 37.02 45.64 32.47 38.15 30.43 36.57	(dBuV) 66.00 56.00 64.20 54.20 59.44 49.44 56.00	(dB) -14.65 -18.98 -18.56 -21.73 -21.29 -19.01 -19.43	(dB) 9.90 9.90 9.91 9.91 9.92 9.92 9.94	Line Line Line Line Line Line Line	"Worst" - - - -	(dBuV) 41.45 27.12 35.73 22.56 28.23 20.51 26.63	(dB) 0.05 0.05 0.06 0.06 0.06 0.06 0.06	(dB) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	(dB) 9.79 9.79 9.79 9.79 9.80 9.80 9.80 9.81		
QP AV QP AV QP AV QP AV QP AV	(Hz) 150k 150k 186k 186k 330k 330k 537k 537k	(dBuV) 51.35 37.02 45.64 32.47 38.15 30.43 36.57 29.39	(dBuV) 66.00 56.00 64.20 54.20 59.44 49.44 56.00 46.00	(dB) -14.65 -18.98 -18.56 -21.73 -21.29 -19.01 -19.43 -16.61	(dB) 9,90 9,90 9,91 9,91 9,92 9,92 9,92 9,94 9,94	Line Line Line Line Line Line Line Line	"Worst" - - - - -	(dBuV) 41.45 27.12 35.73 22.56 28.23 20.51 26.63 19.45	(dB) 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06	(dB) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	(dB) 9.79 9.79 9.79 9.79 9.80 9.80 9.80 9.81 9.81		
QP AV QP AV QP AV QP AV QP AV QP	(Hz) 150k 150k 186k 186k 330k 330k 537k 537k 1.185M	(dBuV) 51.35 37.02 45.64 32.47 38.15 30.43 36.57 29.39 34.05	(dBuV) 66.00 56.00 64.20 54.20 59.44 49.44 56.00 46.00 56.00	(dB) -14.65 -18.98 -18.56 -21.73 -21.29 -19.01 -19.43 -16.61 -21.95	(dB) 9.90 9.90 9.91 9.91 9.92 9.92 9.94 9.94 9.94 9.99	Line Line Line Line Line Line Line Line	"Worst" - - - - - - - - -	(dBuV) 41.45 27.12 35.73 22.56 28.23 20.51 26.63 19.45 24.06	(dB) 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06	(dB) 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07	(dB) 9.79 9.79 9.79 9.79 9.80 9.80 9.80 9.81 9.81 9.81 9.82		
QP AV QP AV QP AV QP AV QP AV	(Hz) 150k 150k 186k 186k 330k 330k 537k 537k	(dBuV) 51.35 37.02 45.64 32.47 38.15 30.43 36.57 29.39	(dBuV) 66.00 56.00 64.20 54.20 59.44 49.44 56.00 46.00	(dB) -14.65 -18.98 -18.56 -21.73 -21.29 -19.01 -19.43 -16.61	(dB) 9,90 9,90 9,91 9,91 9,92 9,92 9,92 9,94 9,94	Line Line Line Line Line Line Line Line	"Worst" - - - - -	(dBuV) 41.45 27.12 35.73 22.56 28.23 20.51 26.63 19.45	(dB) 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06	(dB) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	(dB) 9.79 9.79 9.79 9.79 9.80 9.80 9.80 9.81 9.81		

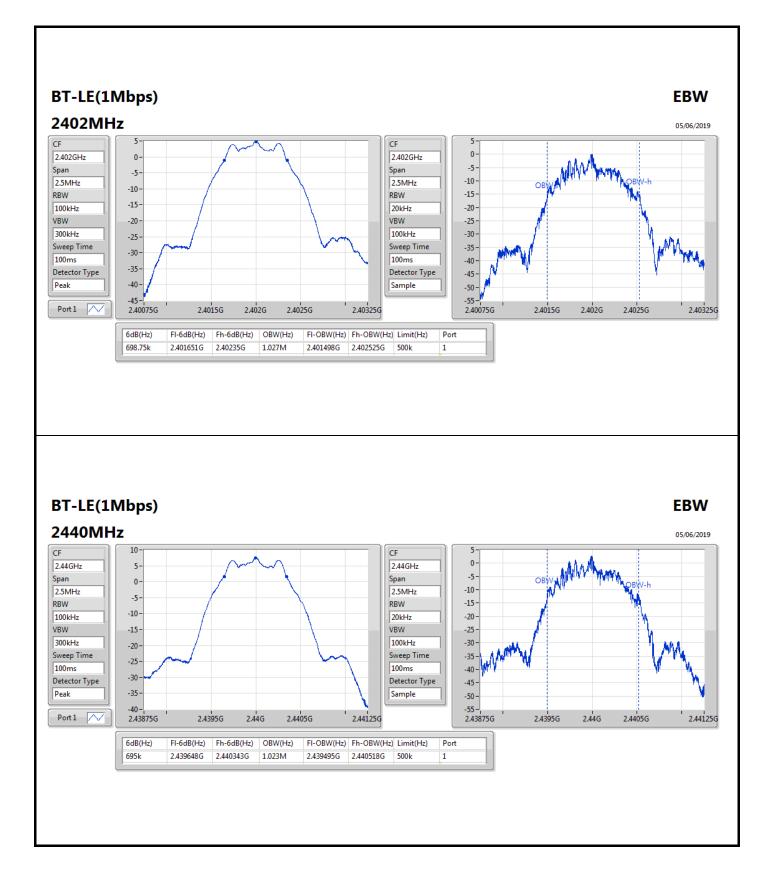
perating Mode					1	Power Phase		se	Neutral				
					Normal Link								
Node	1											-	28/06/2019
80-													Lim.QP
70-													QP 📈
60-								-		_	_		Lim.AV 📈
50-1 P	1								_				AV 📈
M	Arth	As			-	(enpril-levelada							
40-		m	million.	makes bear	A hearing of	and the second				1.1.1			
30-	1 +		u p.w	w www.	w//////////	(manipulation)	Lew Million	the bar Dittad	A billion blows	Marklatha and	Hanshmitten	and the state of t	
		_		+			an ola constant	designation of an	al dorf	and the base of the	the provide opportunal	Martin Martin and Markey.	
20-													
10-		-	-	_								_	
0-													
		1		1	м					10M		30M	P2
150k				1	M					том		30M	P2
				1	M					юм		30M	P2
	Freq	Level	Limit	Margin	Factor	Condition	Comment		AF	CL	AT	30M	P2
150k Type	(Hz)	(dBuV)	(dBuV)	Margin (dB)	Factor (dB)			(dBuV)	(dB)	CL (dB)	AT (dB)	30M	P2
150k Type QP	(Hz) 150k	(dBuV) 52.90	(dBuV) 66.00	Margin (dB) -13.10	Factor (dB) 9.89	Neutral	"Worst"	(dBuV) 43.01	(dB) 0.04	CL (dB) 0.06	AT (dB) 9.79	30M	P2
150k Type QP AV	(Hz) 150k 150k	(dBuV) 52.90 38.57	(dBuV) 66.00 56.00	Margin (dB) -13.10 -17.43	Factor (dB) 9.89 9.89	Neutral Neutral	"Worst" -	(dBuV) 43.01 28.68	(dB) 0.04 0.04	CL (dB) 0.06 0.06	AT (d8) 9.79 9.79	30M	P2
150k Type QP AV QP	(Hz) 150k 150k 181.5k	(dBuV) 52.90 38.57 46.74	(dBuV) 66.00 56.00 64.41	Margin (dB) -13.10 -17.43 -17.67	Factor (dB) 9.89 9.89 9.89	Neutral Neutral Neutral	"Worst" - -	(dBuV) 43.01 28.68 36.85	(dB) 0.04 0.04 0.04	CL (dB) 0.06 0.06	AT (dB) 9.79 9.79 9.79	3014	P2
150k Type QP AV QP AV	(Hz) 150k 150k 181.5k 181.5k	(dBuV) 52.90 38.57 46.74 34.73	(dBuV) 66.00 56.00 64.41 54.41	Margin (dB) -13.10 -17.43 -17.67 -19.68	Factor (dB) 9.89 9.89 9.89 9.89	Neutral Neutral Neutral Neutral	"Worst" - -	(dBuV) 43.01 28.68 36.85 24.84	(dB) 0.04 0.04 0.04 0.04	CL (dB) 0.06 0.06 0.06	AT (d8) 9.79 9.79 9.79 9.79	3014	P2
150k Type QP AV QP	(Hz) 150k 150k 181.5k	(dBuV) 52.90 38.57 46.74	(dBuV) 66.00 56.00 64.41	Margin (dB) -13.10 -17.43 -17.67	Factor (dB) 9.89 9.89 9.89	Neutral Neutral Neutral	"Worst" - -	(dBuV) 43.01 28.68 36.85	(dB) 0.04 0.04 0.04	CL (dB) 0.06 0.06	AT (dB) 9.79 9.79 9.79	3014	P2
Type QP AV QP AV QP	(Hz) 150k 150k 181.5k 181.5k 249k	(dBuV) 52.90 38.57 46.74 34.73 41.97	(dBuV) 66.00 56.00 64.41 54.41 61.79	Margin (dB) -13.10 -17.43 -17.67 -19.68 -19.82	Factor (dB) 9.89 9.89 9.89 9.89 9.89 9.89	Neutral Neutral Neutral Neutral Neutral	"Worst" - - -	(dBuV) 43.01 28.68 36.85 24.84 32.07	(dB) 0.04 0.04 0.04 0.04 0.04 0.04	CL (dB) 0.06 0.06 0.06 0.06 0.06	AT (dB) 9.79 9.79 9.79 9.79 9.80	3014	P2
Type QP AV QP AV QP AV	(Hz) 150k 150k 181.5k 181.5k 249k 249k	(dBuV) 52.90 38.57 46.74 34.73 41.97 31.76	(dBuV) 66.00 56.00 64.41 54.41 61.79 51.79	Margin (dB) -13.10 -17.43 -17.67 -19.68 -19.82 -20.03	Factor (dB) 9.89 9.89 9.89 9.89 9.89 9.90 9.90	Neutral Neutral Neutral Neutral Neutral Neutral	"Worst" - - - -	(dBuV) 43.01 28.68 36.85 24.84 32.07 21.86	(dB) 0.04 0.04 0.04 0.04 0.04 0.04 0.04	CL (dB) 0.06 0.06 0.06 0.06 0.06	AT (dB) 9.79 9.79 9.79 9.79 9.80 9.80 9.80	3014	P2
Type QP AV QP AV QP AV QP AV QP AV QP	(Hz) 150k 150k 181.5k 181.5k 249k 249k 303k 303k 303k 500k	(dBuV) 52.90 38.57 46.74 34.73 41.97 31.76 39.86 32.35 41.01	(dBuV) 66.00 56.00 64.41 54.41 61.79 51.79 60.17 50.17 56.00	Margin (dB) -13.10 -17.43 -17.67 -19.68 -19.82 -20.31 -17.82 -20.31 -17.82 -14.99	Factor (dB) 9.89 9.89 9.89 9.89 9.89 9.89 9.90 9.90	Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	"Worst" - - - -	(dBuV) 43.01 28.68 36.85 24.84 32.07 21.86 29.96 22.45 31.09	(dB) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	CL (dB) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	AT (dB) 9.79 9.79 9.79 9.79 9.80 9.80 9.80 9.80 9.80 9.80 9.80	30M	P2
Type QP AV QP AV QP AV QP AV QP AV QP AV	(Hz) 150k 150k 181.5k 181.5k 249k 249k 303k 303k 500k 500k	(dBuV) 52.90 38.57 46.74 34.73 41.97 31.76 39.86 32.35 41.01 30.46	(dBuV) 66.00 56.00 64.41 54.41 61.79 51.79 60.17 50.17 50.17 56.00 46.00	Margin (dB) -13.10 -17.43 -17.67 -19.68 -19.82 -20.03 -20.31 -17.82 -14.99 -15.54	Factor (dB) 9.89 9.89 9.89 9.89 9.90 9.90 9.90 9.90	Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	"Worst" - - - - - - - - -	(dBuV) 43.01 28.68 36.85 24.84 32.07 21.86 29.96 22.45 31.09 20.54	(dB) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	CL (dB) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	AT (dB) 9.79 9.79 9.79 9.80 9.80 9.80 9.80 9.80 9.80 9.81 9.81	3014	P2
Type QP AV QP AV QP AV QP AV QP AV QP	(Hz) 150k 150k 181.5k 181.5k 249k 249k 303k 303k 303k 500k	(dBuV) 52.90 38.57 46.74 34.73 41.97 31.76 39.86 32.35 41.01	(dBuV) 66.00 56.00 64.41 54.41 61.79 51.79 60.17 50.17 56.00	Margin (dB) -13.10 -17.43 -17.67 -19.68 -19.82 -20.31 -17.82 -20.31 -17.82 -14.99	Factor (dB) 9.89 9.89 9.89 9.89 9.89 9.89 9.90 9.90	Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	"Worst" - - - - - - - - -	(dBuV) 43.01 28.68 36.85 24.84 32.07 21.86 29.96 22.45 31.09	(dB) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	CL (dB) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.0	AT (dB) 9.79 9.79 9.79 9.79 9.80 9.80 9.80 9.80 9.80 9.80 9.80	30M	P2

EBW Result

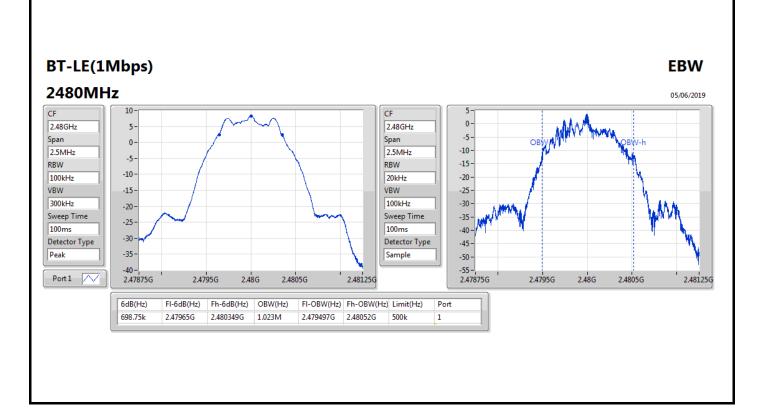
Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-LE(1Mbps)	698.75k	1.027M	1M03F1D	695k	1.023M

Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;



Result


Nooun				
Mode	Result	Limit	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)	(Hz)
BT-LE(1Mbps)	-	-	-	-
2402MHz	Pass	500k	698.75k	1.027M
2440MHz	Pass	500k	695k	1.023M
2480MHz	Pass	500k	698.75k	1.023M

Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

Summary

Mode	Total Power (dBm)	Total Power (W)
2.4-2.4835GHz		
BT-LE(1Mbps)	8.66	0.00735

Result

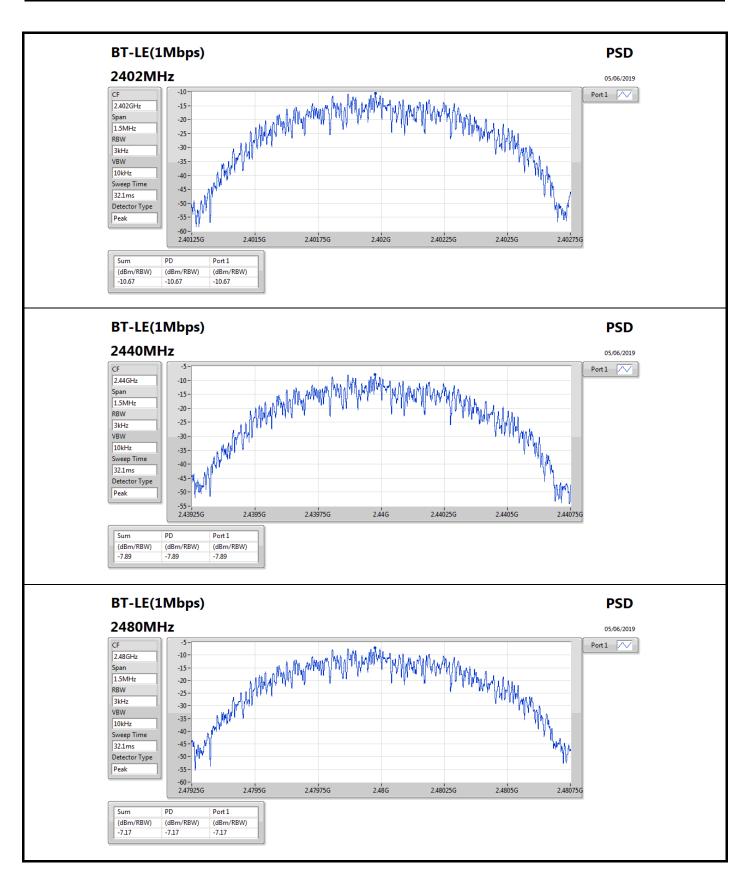
Mode	Result	DG	Port 1	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)	(dBm)
BT-LE(1Mbps)	-	-	-	-	-
2402MHz	Pass	2.66	5.18	5.18	30.00
2440MHz	Pass	2.66	7.81	7.81	30.00
2480MHz	Pass	2.66	8.66	8.66	30.00

DG = Directional Gain; **Port X** = Port X output power

Summary

Mode	PD
	(dBm/RBW)
2.4-2.4835GHz	
BT-LE(1Mbps)	-7.17

RBW=3 kHz.



Result

Mode	Result	DG	Port 1	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
BT-LE(1Mbps)	-	-	-	-	-
2402MHz	Pass	2.66	-10.67	-10.67	8.00
2440MHz	Pass	2.66	-7.89	-7.89	8.00
2480MHz	Pass	2.66	-7.17	-7.17	8.00

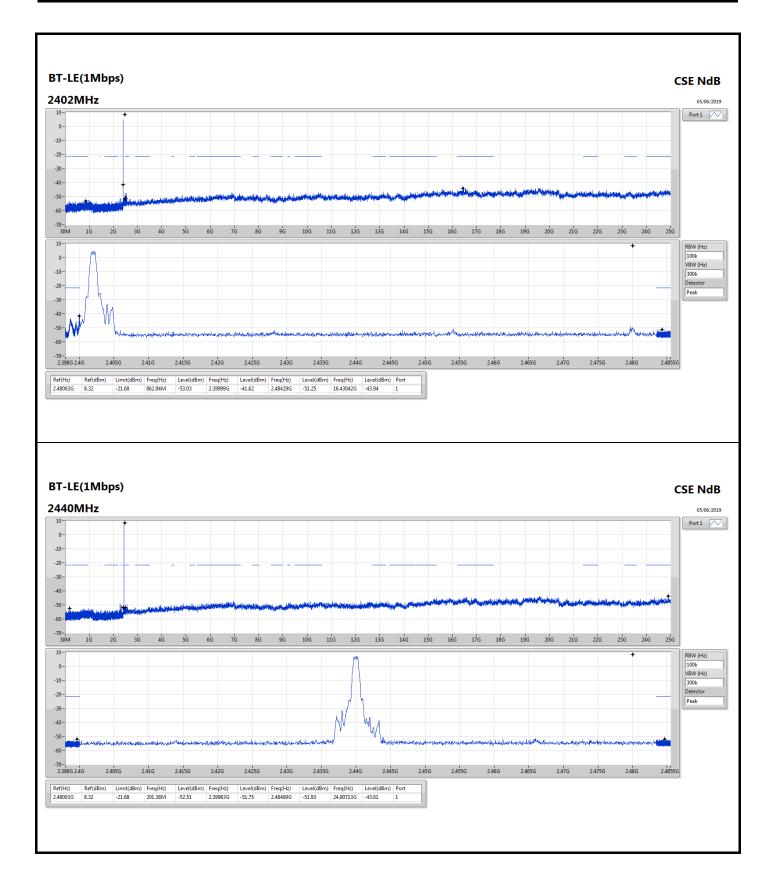
DG = Directional Gain; RBW=3 kHz; **PD** = trace bin-by-bin of each transmits port summing can be performed maximum power density; **Port X** = Port X power density;

CSE(Non-restricted Band) Result

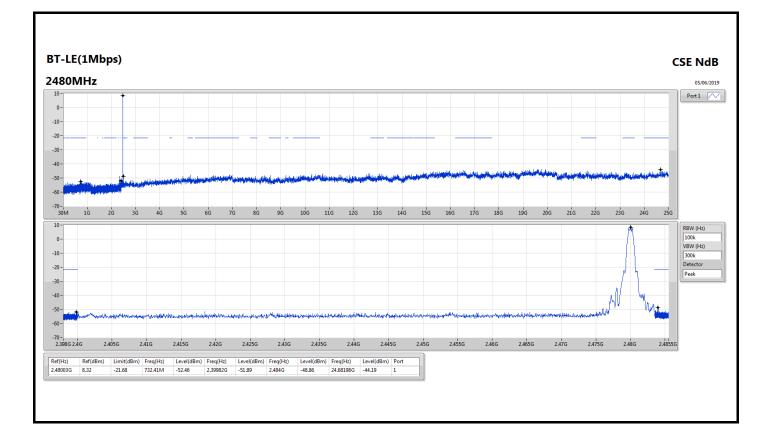
Appendix E

Summary

÷	<u> </u>													
	Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
			(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
	2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-
	BT-LE(1Mbps)	Pass	2.48003G	8.32	-21.68	862.94M	-53.03	2.39999G	-41.62	2.48429G	-51.25	16.43042G	-43.94	1


CSE(Non-restricted Band) Result

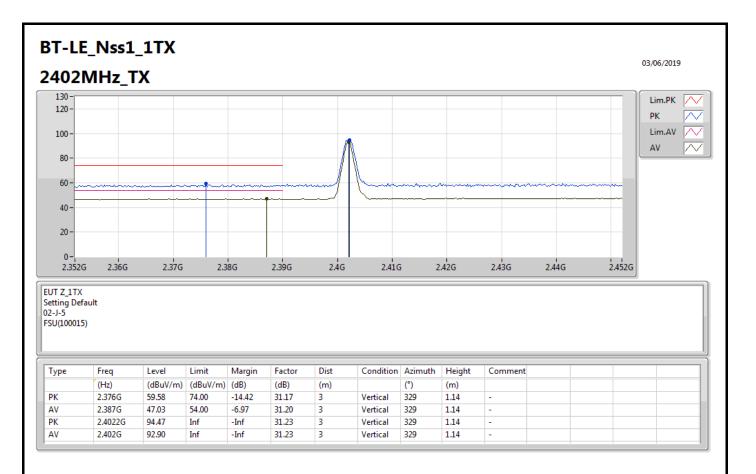
Appendix E


Result

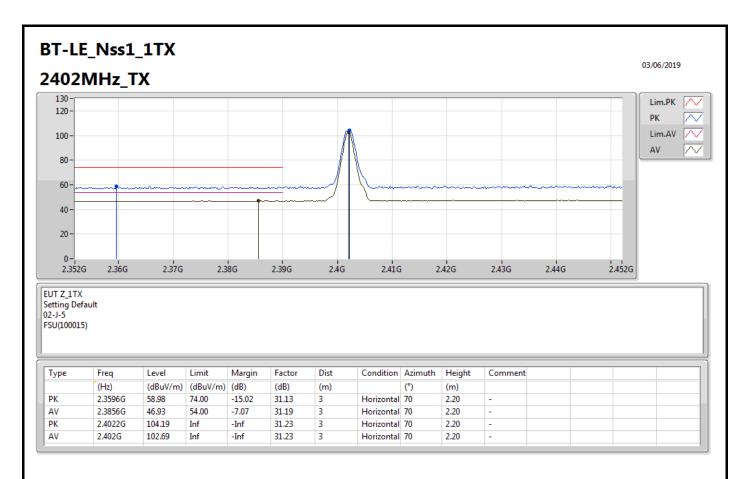
Roodit													
Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
BT-LE(1Mbps)	-	-	-	-	-	-	-	-	-		-	-	-
2402MHz	Pass	2.48003G	8.32	-21.68	862.94M	-53.03	2.39999G	-41.62	2.48429G	-51.25	16.43042G	-43.94	1
2440MHz	Pass	2.48003G	8.32	-21.68	201.38M	-52.51	2.39963G	-51.75	2.48469G	-51.93	24.90713G	-43.61	1
2480MHz	Pass	2.48003G	8.32	-21.68	732.41M	-52.46	2.39982G	-51.89	2.484G	-48.86	24.68198G	-44.19	1

rating Mode			1				Polarizat	ion		Vertical		
erating Function			No	rmal Lin	k							
97 Level (dBu	V/m)								Date	e: 2019-06-;	28 Time: 23:46	:27
90												
30												
80												_
70						_						_
60											FCC CLASS	-В
50												IB
												_
40 234								6				_
£415				di i							enversion despirate	Aur
30	n a Mi				w.	hope marches	marken	harrow	and the other of	Anternal Constraints	Contraction of the second second	_
/ '	man h	Mar	MAN Maran	in and the state								
20		element.										
10												
0 <mark>30 100.</mark>	20	00.	300.	400.		500					000	1000
⁰ 30 100.	. 20	<i>.</i>	300.	400.		500. uency (N	600. IHz)	70	υ.	800.	900. 1	1000
		Limit	0ver	Read	Cable/	Antenna	Preamp	A/Pos	T/Pos			
Fre	q Level	Line	Limit	Level	Loss	Factor	Factor			Remark	Pol/Phase	1
MH	z dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg			-
1 30.0	0 34.70	40.00	-5.30	38.23	0.64	24.40	28.57	270	355	QP	VERTICAL	
	2 35.40								0	Peak	VERTICAL	
	3 36.83 9 36.95						28.56 28.54	300		Peak	VERTICAL	
	3 33.84						28.54	300 300		Peak Peak	VERTICAL VERTICAL	
	8 40.01						29.48	300		Peak	VERTICAL	

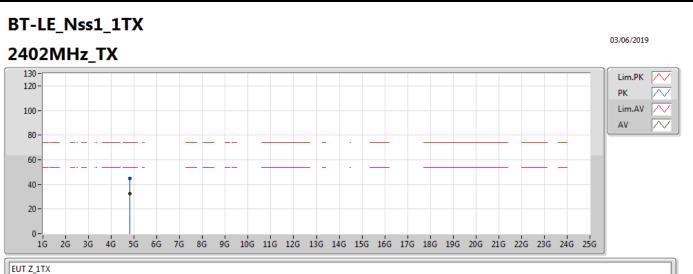
rating Mode	•			1			1	Polarizat	ion		Horizonta	al	
rating Func	tion			No	rmal Lin	k							
97	l (dBuV/	/m)								Date	e: 2019-06-2	28 Time: 2	3:57:45
90													
80													
70													
60													
												FCC CL	
50													-6dB
40									6				
30					4 5	k.l.a	a la companya	uncern terrology	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	manna	howwww.	ward and a startly	up the second
	1 m	how	and the second	olowellenter		ik kan ni manan	AND ADDRESS OF						
20	****	any and	Str. and										
10													
0 <mark>30</mark>	100.	20	0	300.	400.		500.	600.	70	0.	800.	900.	1000
50	100.	20		500.	400.		uency (N		~		000.	500.	1000
			Limit	0ver	Read	Cable/	Antenna	Preamp	A/Pos	T/Pos			
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor			Remark	Pol/P	nase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg			
1 2	30.00	36.90	40.00 40.00	-3.10	40.43	0.64	24.40		179 300		QP	HORIZ	
	45.52				45.09	0.68	16.27	28.57 28.56	300		Peak Peak	HORIZ	
			40.00 46.00			2.22	20.56		300		Peak	HORIZ	
	405.39		46.00			2.35	22.09		300		Peak	HORIZ	
			46.00					29.48	300		Peak	HORIZ	

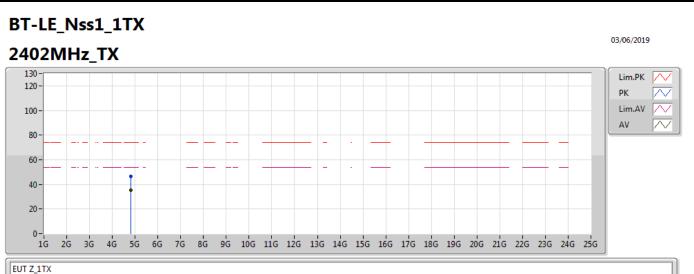


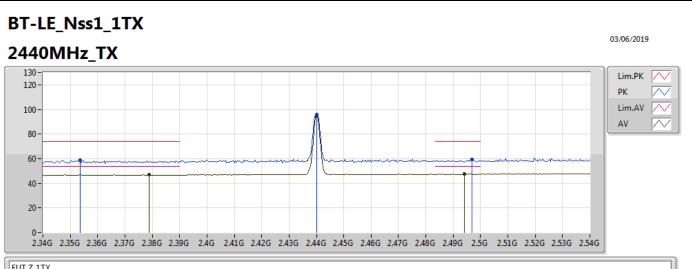
Appendix F.2


Summary

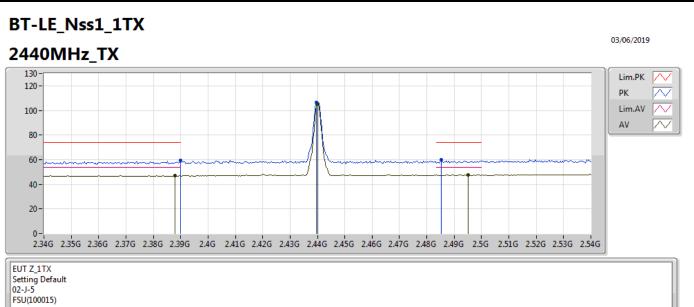
Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-
BT-LE_Nss1_1TX	Pass	AV	2.4835G	50.31	54.00	-3.69	31.39	3	Horizontal	70	1.64	-



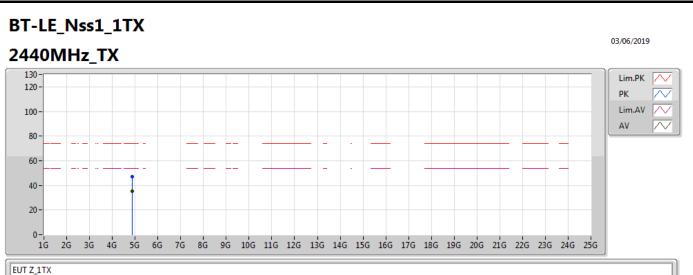


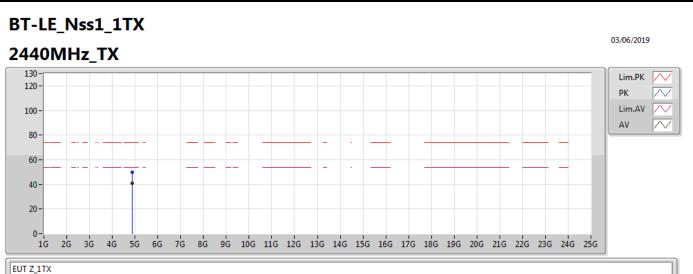

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.8089G	45.00	74.00	-29.00	7.13	3	Vertical	315	1.50	-		
AV	4.80406G	32.59	54.00	-21.41	7.12	3	Vertical	315	1.50	-		

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.80472G	46.29	74.00	-27.71	7.12	3	Horizontal	323	1.22	-		
AV	4.80364G	35.13	54.00	-18.87	7.12	3	Horizontal	323	1.22	-		



EUT Z_1TX Setting Default 02-J-5 FSU(100015)


Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.3536G	59.09	74.00	-14.91	31.12	3	Vertical	319	1.27	-		
AV	2.3788G	46.98	54.00	-7.02	31.18	3	Vertical	319	1.27	-		
PK	2.44G	96.06	Inf	-Inf	31.31	3	Vertical	319	1.27	-		
AV	2.44G	94.64	Inf	-Inf	31.31	3	Vertical	319	1.27	-		
PK	2.4968G	59.64	74.00	-14.36	31.42	3	Vertical	319	1.27	-		
AV	2.494G	47.71	54.00	-6.29	31.42	3	Vertical	319	1.27	-		


Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.39G	59.24	74.00	-14.76	31.20	3	Horizontal	78	2.61	-		
AV	2.388G	47.30	54.00	-6.70	31.20	3	Horizontal	78	2.61	-		
PK	2.4396G	106.74	Inf	-Inf	31.31	3	Horizontal	78	2.61	-		
AV	2.44G	105.23	Inf	-Inf	31.31	3	Horizontal	78	2.61	-		
PK	2.4852G	59.72	74.00	-14.28	31.40	3	Horizontal	78	2.61	-		
AV	2.4952G	47.58	54.00	-6.42	31.42	3	Horizontal	78	2.61	-		

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	4.87982G	46.81	74.00	-27.19	7.30	3	Vertical	321	1.48	-		
AV	4.87978G	35.21	54.00	-18.79	7.30	3	Vertical	321	1.48	-		

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.87942G	49.85	74.00	-24.15	7.30	3	Horizontal	301	1.13	-		
AV	4.87996G	41.14	54.00	-12.86	7.30	3	Horizontal	301	1.13	-		

2.4938G

2.4838G

59.17

47.72

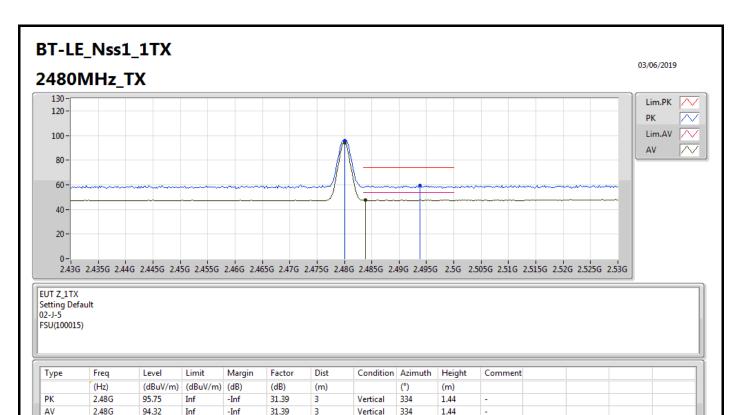
74.00

54.00

-14.83

-6.28

31.42


31.39

3

3

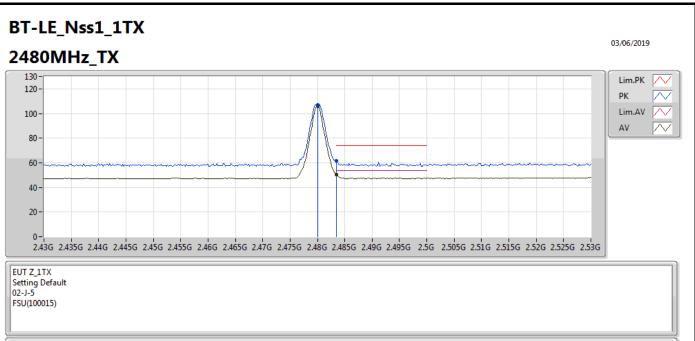
РК

AV

Vertical

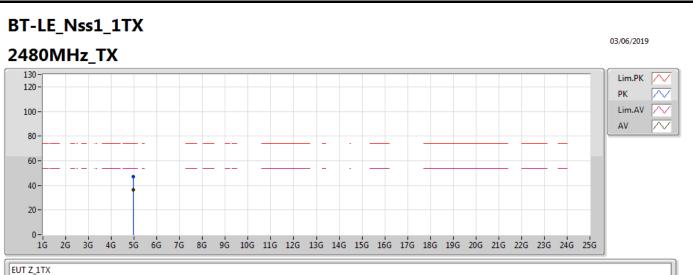
Vertical

334


334

1.44

1.44


-

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
PK	2.48G	107.12	Inf	-Inf	31.39	3	Horizontal	70	1.64	-		
AV	2.48G	105.68	Inf	-Inf	31.39	3	Horizontal	70	1.64	-		
РК	2.4835G	61.52	74.00	-12.48	31.39	3	Horizontal	70	1.64	-		
AV	2.4835G	50.31	54.00	-3.69	31.39	3	Horizontal	70	1.64	-		

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.95918G	47.34	74.00	-26.66	7.48	3	Vertical	340	2.99	-		
AV	4.95962G	36.70	54.00	-17.30	7.48	3	Vertical	340	2.99	-		

Туре	Freq	Level	Limit	Margin	Factor	Dist	Condition	Azimuth	Height	Comment		
	(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)		(°)	(m)			
РК	4.96046G	48.71	74.00	-25.29	7.48	3	Horizontal	68	1.41	-		
AV	4.95974G	38.73	54.00	-15.27	7.48	3	Horizontal	68	1.41	-		