

SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Wistron NeWeb Corporation			
Applicant Address	20 Park Avenue II, Hsinchu Science Park, Hsinchu 308,Taiwan,R.O.C.			
FCC ID	NKR-DTVDCCK			
Manufacturer's company	Wistron NeWeb Corporation			
Manufacturer Address	20 Park Avenue II, Hsinchu Science Park, Hsinchu 308, Taiwan, R.O.C.			

Product Name	DirecTV Cinema Connection Kit
Brand Name	DirecTV
Model Name	DCAW1R0-01
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5350MHz / 5470 ~ 5725MHz
Received Date	Mar. 08, 2011
Final Test Date	Mar. 14, 2011
Submission Type	Class II Change
Class II Change	Please refer to section 3.7

Statement

Test result included is for the 802.11n and 802.11a ($5150 \sim 5350$ MHz / $5470 \sim 5725$ MHz) of the product. The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart E. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	CERT		1
2.	SUM	Mary of the test result	2
3.	GENI	ERAL INFORMATION	
	3.1.	Product Details	
	3.2.	Accessories	5
	3.3.	Table for Filed Antenna	6
	3.4.	Table for Carrier Frequencies	7
	3.5.	Table for Test Modes	8
	3.6.	Table for Testing Locations	10
	3.7.	Table for Class II Change	
	3.8.	Table for Supporting Units	
	3.9.	Table for Parameters of Test Software Setting	
	3.10.	Test Configurations	12
4.	TEST	RESULT	
	4.1.	AC Power Line Conducted Emissions Measurement	14
	4.2.	Radiated Emissions Measurement	
	4.3.	Antenna Requirements	24
5.	list c	OF MEASURING EQUIPMENTS	
6.	TEST	LOCATION	
7.	taf c	CERTIFICATE OF ACCREDITATION	
AP	PENC	Dix A. Photographs of Eut	A1 ~ A24
AP	PENC	DIX B. TEST PHOTOS	B1 ~ B4

History of This Test Report

Original Issue Date: Mar. 18, 2011

Report No.: FR0O2833-02AA

- No additional attachment.
- Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

Certificate No.: CB10003088

1. CERTIFICATE OF COMPLIANCE

Product Name	:	DirecTV Cinema Connection Kit
Brand Name	:	DirecTV
Model Name	:	DCAW1R0-01
Applicant	:	Wistron NeWeb Corporation
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 08, 2011 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Jordan Hsigo 2011.322

Jordan Hsiao SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E								
Part	Rule Section	Result	Under Limit						
4.1	15.207	AC Power Line Conducted Emissions	Complies	9.75 dB					
-	15.407(a)	26dB Spectrum Bandwidth	-	-					
-	15.407(a)	Maximum Conducted Output Power	-	-					
-	15.407(a)	Power Spectral Density	-	-					
-	15.407(a)	Peak Excursion	-	-					
4.2	15.407(b)	Radiated Emissions	Complies	3.02 dB					
-	15.407(b)	Band Edge Emissions	-	-					
-	15.407(g)	Frequency Stability	-	-					
4.3	15.203	Antenna Requirements	Complies	-					

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.3dB	Confidence levels of 95%
Maximum Conducted Output Power	±0.5dB	Confidence levels of 95%
Power Spectral Density	±0.5dB	Confidence levels of 95%
Peak Excursion	±0.5dB	Confidence levels of 95%
26dB Spectrum Bandwidth / Frequency Stability	±8.5×10 ⁻⁸	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.8dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.9dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.9dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.9dB	Confidence levels of 95%
Temperature	±0.7°C	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±1.4%	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description
Product Type	WLAN (3TX, 3RX)
Radio Type	Intentional Transceiver
Power Type	From Power Adapter
Modulation	see the below table for IEEE 802.11n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n
Frequency Range	5150 ~ 5350MHz / 5470 ~ 5725MHz
Channel Number	19 for 20MHz bandwidth ; 9 for 40MHz bandwidth
Channel Band Width (99%)	MCS0 (20MHz): 17.76 MHz ; MCS0 (40MHz): 38.20 MHz
Conducted Output Power	Band 1: MCS8 (20MHz): 14.19 dBm ; MCS0 (40MHz): 15.98 dBm
	Band 2: MCS0 (20MHz): 21.12 dBm ; MCS0 (40MHz): 20.89 dBm
	Band 3: MCS0 (20MHz): 21.77 dBm ; MCS0 (40MHz): 22.88 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

IEEE 802.11a

Items	Description				
Product Type WLAN (1TX, 3RX)					
Radio Type Intentional Transceiver					
Power Type	From Power Adapter				
Modulation OFDM for IEEE 802.11a					
Data Modulation OFDM (BPSK / QPSK / 16QAM / 64QAM)					
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)				
Frequency Range	5150 ~ 5350MHz / 5470 ~ 5725MHz				
Channel Number	11a: 19				
Channel Band Width (99%)	11a: 17.28 MHz				
Conducted Output Power	Band 1: 15.79 dBm ; Band 2: 18.26 dBm ; Band 3: 18.48 dBm				
Carrier Frequencies	Please refer to section 3.4				
Antenna	Please refer to section 3.3				

Antenna & Band width

Antenna	Singl	e (TX)	Three	э (ТХ)
Band width Mode	20 MHz	40 MHz	20 MHz	40 MHz
IEEE 802.11a	V	х	х	Х
IEEE 802.11n	х	Х	V	V

IEEE 802.11n spec

			R			NCBPS NDB				Datara	ite(Mbps)	
MCS Index	Nss	Modulation		NBPSC	SPSC NCDF5 N		NDBPS		800	InsGl	400	nsGl
					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz	20MHz	40MHz
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5	7.200	15
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0	14.400	30
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5	21.700	45
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0	28.900	60
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0	43.300	90
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0	57.800	120
6	1	64-QAM	3/4	6	312	648	234	486	58.5	121.5	65.000	135
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0	72.200	150
8	2	BPSK	1/2	1	104	216	52	108	13.0	27.0	14.444	30
9	2	QPSK	1/2	2	208	432	104	216	26.0	54.0	28.889	60
10	2	QPSK	3/4	2	208	432	156	324	39.0	81.0	43.333	90
11	2	16-QAM	1/2	4	416	864	208	432	52.0	108.0	57.778	120
12	2	16-QAM	3/4	4	416	864	312	648	78.0	162.0	86.667	180
13	2	64-QAM	2/3	6	624	1296	416	864	104.0	216.0	115.556	240
14	2	64-QAM	3/4	6	624	1296	468	972	117.0	243.0	130.000	270
15	2	64-QAM	5/6	6	624	1296	520	1080	130.0	270.0	144.444	300

Note:

The data rate of IEEE 802.11n 20MHz for 5GHz Band 1 is MCS8, the data rate of IEEE 802.11n 40MHz for 5GHz Band 1 is MCS0.

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	guard interval

3.2. Accessories

Power	Brand	Model	Rating						
Adapter	DIRECTV	MT18-E120150-A1	Input: 120VAC, 60Hz, 0.8A						
			Output: 12VDC, 1.5A						
	Others								
Coaxial Cable*2,	Shielded, 150cm								
Cradle									

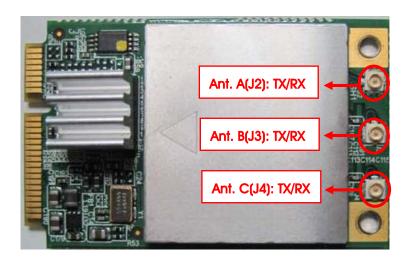
3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Remark
A(J2)	Airgain	M2450DLCM	Embedded Antenna	U.FL	2.30	TX/RX
B(J3)	Airgain	M2450DLCM	Embedded Antenna	U.FL	2.30	TX/RX
C(J4)	Airgain	M2450DLCM	Embedded Antenna	U.FL	2.30	TX/RX

Note: The EUT has three antennas {Ant. A (J2), Ant. B (J3), Ant. C (J4)}.

For IEEE 802.11n mode (3TX/3RX):

Ant. A & Ant. B & Ant. C could both transmit/receive simultaneously.


For IEEE 802.11a mode (1TX/3RX):

The EUT supports the antenna with TX diversity function for IEEE 802.11a mode.

Ant. A and Ant. B and Ant. C can be used as transmitting or receiving antenna.

Due to Ant. A & Ant. B & Ant. C are identical and the Ant. A generated the worst test result,

all the tests were base on this setting and recorded in this report.

3.4. Table for Carrier Frequencies

Frequency Allocation for 802.11a

There are two bandwidth systems for IEEE 802.11n.

For both 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140.

For both 40MHz bandwidth systems, use Channel 38, 46, 54, 62, 102, 110, 118, 126, 134.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150 5050 MUL	36	5180 MHz	44	5220 MHz
5150~5250 MHz Band 1	38	5190 MHz	46	5230 MHz
	40	5200 MHz	48	5240 MHz
5050 5250 MUL	52	5260 MHz	60	5300 MHz
5250~5350 MHz	54	5270 MHz	62	5310 MHz
Band 2	56	5280 MHz	64	5320 MHz
	100	5500 MHz	120	5600 MHz
	102	5510MHz	124	5620 MHz
	104	5520 MHz	126	5630 MHz
5470~5725 MHz	108	5540 MHz	128	5640 MHz
Band 3	110	5550 MHz	132	5660 MHz
	112	5560 MHz	134	5670 MHz
	116	5580 MHz	136	5680 MHz
	118	5590 MHz	140	5700 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

<For Band 1>:

Test Items	Mode		Data Rate	Channel	Antenna
AC Power Conducted Emission	Normal Link		Auto	-	A+B+C
Max. Conducted Output Power	MCS8/20MHz	Band 1	13Mbps	36/40/48	A, B, C/A+B+C
	MCS0/40MHz	Band 1	13.5Mbps	38/46	A, B, C/A+B+C
	11a/BPSK	Band 1	6Mbps	36/40/48	A
26dB Spectrum Bandwidth	MCS8/20MHz	Band 1	13Mbps	36/40/48	A+B+C
99% Occupied Bandwidth	MCS0/40MHz	Band 1	13.5Mbps	38/46	A+B+C
Measurement	11a/BPSK	Band 1	6Mbps	36/40/48	A
Power Spectral Density					
Peak Excursion					
Radiated Emission Below 1GHz	Normal Link		Auto	-	A+B+C
Radiated Emission Above 1GHz	MCS8/20MHz	Band 1	13Mbps	36/40/48	A+B+C
	MCS0/40MHz	Band 1	13.5Mbps	38/46	A+B+C
	11a/BPSK	Band 1	6Mbps	36/40/48	A
Band Edge Emission	MCS8/20MHz	Band 1	13Mbps	36/40	A+B+C
	MCS0/40MHz	Band 1	13.5Mbps	38/46	A+B+C
	11a/BPSK	Band 1	6Mbps	36/40	A
Frequency Stability	Un-modulation		-	40	A

<For Band 2~Band 3>:

Test Items	Mode)	Data Rate	Channel	Antenna
AC Power Conducted Emission	Normal Link		Auto	-	A+B+C
Max. Conducted Output Power	MCS0/20MHz	Band 2	6.5Mbps	52/60/64	A, B, C/A+B+C
		Band 3	6.5Mbps	100/116/140	A, B, C/A+B+C
	MCS0/40MHz	Band 2	13.5Mbps	54/62	A, B, C/A+B+C
		Band 3	13.5Mbps	102/110/134	A, B, C/A+B+C
	11a/BPSK	Band 2	6Mbps	52/60/64	A
		Band 3	6Mbps	100/116/140	A
26dB Spectrum Bandwidth	MCS0/20MHz	Band 2	6.5Mbps	52/60/64	A+B+C
99% Occupied Bandwidth		Band 3	6.5Mbps	100/116/140	A+B+C
Measurement	MCS0/40MHz	Band 2	13.5Mbps	54/62	A+B+C
Power Spectral Density		Band 3	13.5Mbps	102/110/134	A+B+C
Peak Excursion	11a/BPSK	Band 2	6Mbps	52/60/64	A
		Band 3	6Mbps	100/116/140	Α
Radiated Emission Below 1GHz	Normal Link	•	Auto	-	A+B+C
Radiated Emission Above 1GHz	MCS0/20MHz	Band 2	6.5Mbps	52/60/64	A+B+C
		Band 3	6.5Mbps	100/116/140	A+B+C
	MCS0/40MHz	Band 2	13.5Mbps	54/62	A+B+C
		Band 3	13.5Mbps	102/110/134	A+B+C
	11a/BPSK	Band 2	6Mbps	52/60/64	A
		Band 3	6Mbps	100/116/140	A
Band Edge Emission	MCS0/20MHz	Band 2	6.5Mbps	60/64	A+B+C
		Band 3	6.5Mbps	100/140	A+B+C
	MCS0/40MHz	Band 2	13.5Mbps	54/62	A+B+C
		Band 3	13.5Mbps	102/110/134	A+B+C
	11a/BPSK	Band 2	6Mbps	60/64	A
		Band 3	6Mbps	100/140	A
Frequency Stability	Un-modulation		-	60	N/A

NOTE: All the test modes were listed as below.

Test Mode 1: EUT put vertically on the table + Cradle

Test Mode 2: EUT put horizontally on the table

Due to Mode 1 generated the worst test result, so it was recorded in this report.

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-CB	SAC	Hsin Chu	187376	IC 4086D	-
CO01-CB	Conduction	Hsin Chu	187376	IC 4086D	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC). Please refer section 6 for Test Site Address.

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FD0O2833 Below is the table for the change of the product with respect to the original one.

Modifications	Description	Performance Checking
	This modification removed thermal PAD	AC Conducted Emissions
Remove component	and metal sheet of EUT.	Radiated Emissions below 1GHz

3.8. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	D400	E2K24GBRL
Notebook	DELL	D505	E2K24GBRL
Notebook	DELL	D505	E2K24GBRL
Mouse	FIRST PRICE	FP-M02	DoC
Modem	ACEEX	DM1414	IFAXDM1414
DIRECT TV	WNEWEB	J713	N/A
DIRECT TV	WNEWEB	J713	N/A
DIRECT TV AP	WNEWEB	J715	N/A

3.9. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. Power Parameters of IEEE 802.11n MCS8 20MHz Ant. A / Ant. B / Ant. C

Test Software Version		DUT GUI							
Frequency	5180	5200	5240	5260	5300	5320	5500	5580	5700
Frequency	MHz								
IEEE 802.11n 20MHz	21/22/21	23/24/23	23/24/23	11/13/11	13/13/11	15/16/14	12/12/11	12/12/11	11/11/11

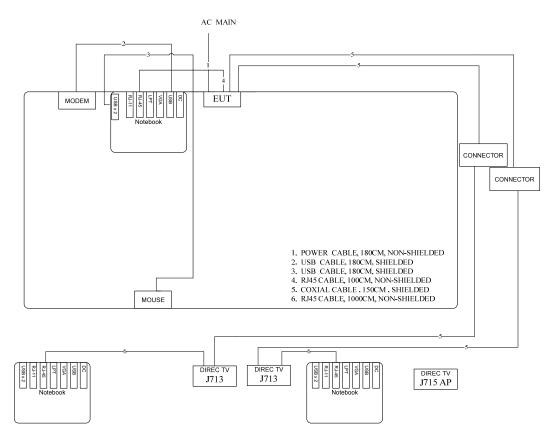
Power Parameters of IEEE 802.11n MCS0 40MHz Ant. A / Ant. B / Ant. C

Test Software Version	DUT GUI							
Frequency	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5510 MHz	5550 MHz	5670 MHz	
IEEE 802.11n 40MHz	19/21/20	20/21/20	9/11/10	17/19/17	14/15/13	10/10/9	6/5/5	

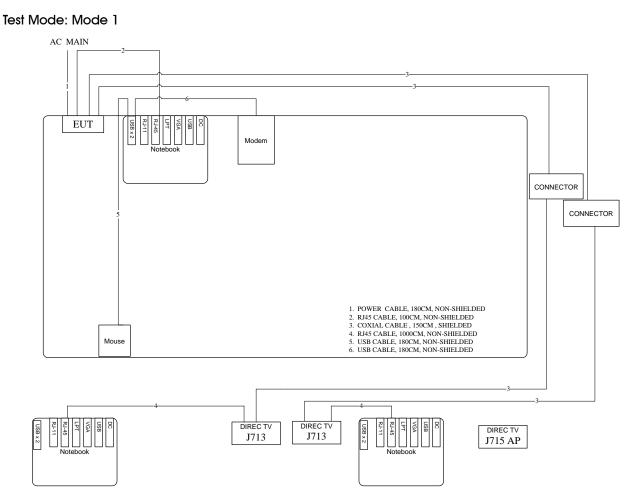
Power Parameters of IEEE 802.11a Ant. A

Test Software Version	DUT GUI								
Fraguanay	5180	5200	5240	5260	5300	5320	5500	5580	5700
Frequency	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
IEEE 802.11a	17	17	17	20.5	21	11	21	24	25

During the test, "DUT GUI" under WIN XP was executed the test program to control the EUT continuously transmit RF signal.



3.10. Test Configurations


3.10.1. Radiation Emissions Test Configuration

Test Configuration: 9kHz~1GHz

Test Mode: Mode 1

3.10.2. AC Power Line Conduction Emissions Test Configuration

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

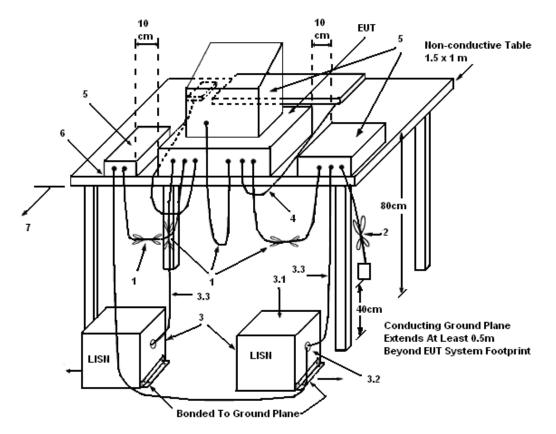
4.1.1. Limit

For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

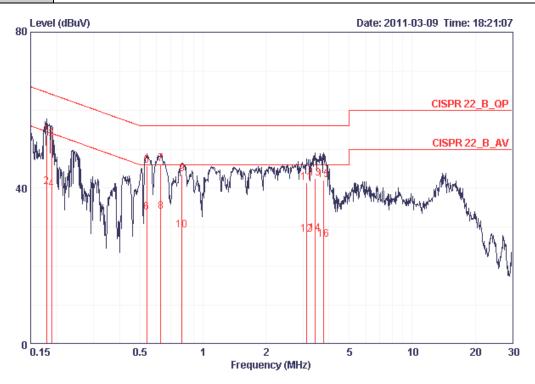
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

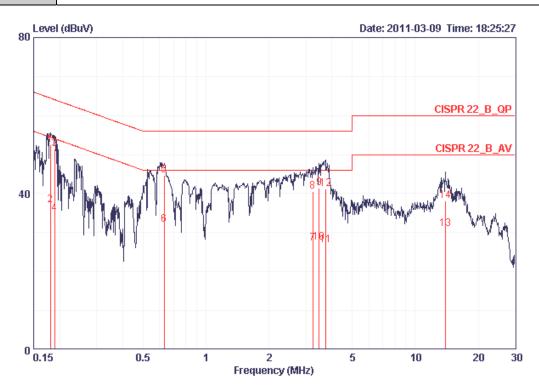
There is no deviation with the original standard.



4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	2 1℃	Humidity	61%
Test Engineer	Peter Wu	Phase	Line
Configuration	Normal Link / Mode 1		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
10	0.17866	53.54	-11.01	64.55	53.28	0.06	0.20	QP
2	0.17866	40.38	-14.17	54.55	40.12	0.06	0.20	AVERAGE
3	0.18938	52.51	-11.55	64.06	52.26	0.05	0.20	QP
4	0.18938	39.64	-14.42	54.06	39.39	0.05	0.20	AVERAGE
5 @	0.53782	45.73	-10.27	56.00	45.50	0.03	0.20	QP
6	0.53782	33.80	-12.20	46.00	33.57	0.03	0.20	AVERAGE
7 0	0.62715	46.25	-9.75	56.00	46.02	0.03	0.20	QP
8	0.62715	34.05	-11.95	46.00	33.82	0.03	0.20	AVERAGE
9	0.79180	43.56	-12.44	56.00	43.33	0.03	0.20	QP
10	0.79180	29.29	-16.71	46.00	29.06	0.03	0.20	AVERAGE
11	3.123	41.48	-14.52	56.00	41.17	0.08	0.23	QP
12	3.123	28.11	-17.89	46.00	27.80	0.08	0.23	AVERAGE
13	3.436	42.46	-13.54	56.00	42.08	0.09	0.29	QP
14	3.436	28.24	-17.76	46.00	27.86	0.09	0.29	AVERAGE
15	3.759	42.14	-13.86	56.00	41.74	0.10	0.30	QP
16	3.759	26.92	-19.08	46.00	26.52	0.10	0.30	AVERAGE

Temperature	21°C	Humidity	61%
Test Engineer	Peter Wu	Phase	Neutral
Configuration	Normal Link / Mode 1		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.18056	52.48	-11.98	64.46	52.19	0.09	0.20	QP
2	0.18056	37.15	-17.31	54.46	36.86	0.09	0.20	AVERAGE
3	0.18938	51.36	-12.70	64.06	51.08	0.08	0.20	QP
4	0.18938	34.77	-19.29	54.06	34.49	0.08	0.20	AVERAGE
5 @	0.63048	44.76	-11.24	56.00	44.49	0.07	0.20	QP
6	0.63048	32.15	-13.85	46.00	31.88	0.07	0.20	AVERAGE
7	3.241	27.20	-18.80	46.00	26.82	0.12	0.25	AVERAGE
8	3.241	40.61	-15.39	56.00	40.23	0.12	0.25	QP
9	3.472	41.48	-14.52	56.00	41.06	0.13	0.29	QP
10	3.472	27.55	-18.45	46.00	27.13	0.13	0.29	AVERAGE
11	3.720	26.72	-19.28	46.00	26.29	0.13	0.30	AVERAGE
12	3.720	41.29	-14.71	56.00	40.86	0.13	0.30	QP
13	13.915	31.03	-18.97	50.00	30.09	0.54	0.40	AVERAGE
14	13.915	38.10	-21.90	60.00	37.16	0.54	0.40	QP

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. Radiated Emissions Measurement

4.2.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.470-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17 dBm/MHz (78.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m); for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27 dBm/MHz (68.3dBuV/m at 3m). In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

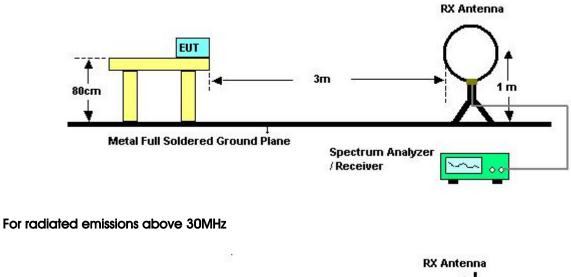
Frequencies	Field Strength	Measurement Distance		
(MHz)	(micorvolts/meter)	(meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

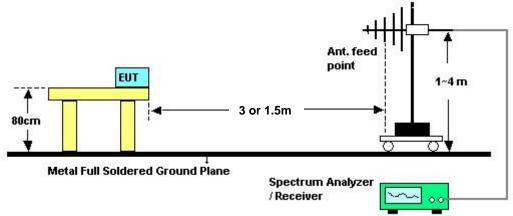
4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1000KHz / 1000KHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP


4.2.3. Test Procedures


- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

4.2.4. Test Setup Layout

For radiated emissions below 30MHz

Above 5GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1.5m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	25.6°C	Humidity	56%					
Test Engineer	Magic Lai							
Evaluating Date	Mar. 14, 2011							

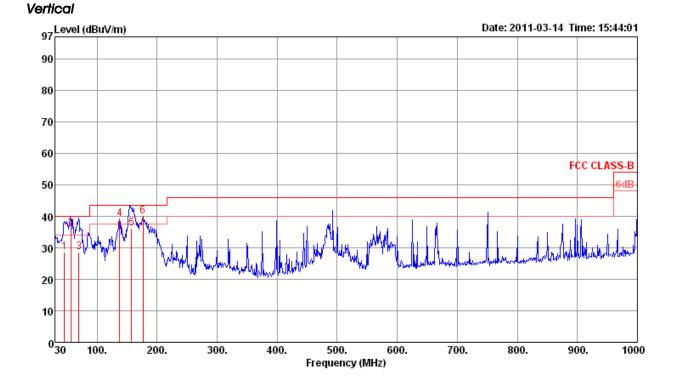
Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.2.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25.6°C	Humidity	/	56%	
Test Engineer	Magic Lai	Configu	rations	Normal Link / N	lode 1
Horizontal					
97 Level (dBuV/m)			1	Date: 2011-03-	14 Time: 15:48:24
90					
80					
70					
60					FCC CLASS-B
50					6dB
40 1 2					
20	malin Nor maline	UMMAY MANN	Walder	dellasertestation werterde	and the the the test of te
10					
0 <mark>30 100.</mark>	200. 300. 400). 500. 6 Frequency (MHz)	i00. 7	700. 800.	900. 1000

	Freq	Level	Limit Line	Over Limit	Read Level		Preamp <i>A</i> Factor	intenna Factor	T/Pos	A/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB	dB/m	deg	Cm		
1 2 3 4 5 6 p	114.39 137.67 244.37 511.12 661.47 711.91	39.18 39.90 42.17 41.86 41.97 42.98	43.50 43.50 46.00 46.00 46.00 46.00	-4.32 -3.60 -3.83 -4.14 -4.03 -3.02	53.42 53.60 54.96 49.49 47.59 48.41	1.20 1.38 1.88 2.72 3.45 3.35	27.53 27.41 27.01 28.10 28.04 27.95	12.09 12.33 12.34 17.75 18.97 19.17	0 0 0 0 0	100 100 100 100	Peak Peak Peak Peak Peak Peak	HOR I ZONTAL HOR I ZONTAL HOR I ZONTAL HOR I ZONTAL HOR I ZONTAL HOR I ZONTAL

	Freq	Level	Limit Line	Over Limit			Preamp <i>A</i> Factor	antenna Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB	dB/m	deg	Cm		
1 2 q 4 ! 5 p	46.08 56.78 70.24 137.67 157.48 176.47	28.62 35.82 28.52 39.28 36.15 39.99	40.00 40.00 43.50 43.50	-11.38 -4.18 -11.48 -4.22 -7.35 -3.51	48.80 52.98 49.99	0.70 0.80 1.38 1.49 1.58	27.80 27.77 27.72 27.41 27.31 27.22	9.72 7.30 6.64 12.33 11.98 13.13	172 7 5 189 0	100	QP QP Peak	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.3. Antenna Requirements

4.3.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.3.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Sep. 01, 2010	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Apr. 24, 2010	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9K ~ 30MHz	Oct. 30, 2010	Conduction (CO01-CB)
PULSE LIMITER	R&S	ESH3-Z2	100430	9K~30MHz	Jan. 04, 2011	Conduction (CO01-CB)
COND Cable	-	Cable	-	0.15MHz~30MHz	Dec. 01, 2010	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D 22021		20MHz ~ 2GHz	Oct. 17, 2010	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 13, 2010	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Oct. 08, 2010	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 17, 2010	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Nov. 06, 2010	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26.5GHz ~ 40GHz	Nov. 17, 2010	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP	100304	9kHz ~ 40GHz	Nov. 06, 2010	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9KHz ~ 2.75GHz	Mar. 06, 2011	Radiation (03CH01-CB)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	Sep. 09, 2010*	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N/A	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO2000	N/A	1 m - 4 m	N/A	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	-	30 MHz - 1 GHz	Nov. 17, 2010	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-1	-	1 GHz – 26.5 GHz	Nov. 17, 2010	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-2	-	1 GHz – 26.5 GHz	Nov. 17, 2010	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	-	1 GHz - 40 GHz	Nov. 17, 2010	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	-	1 GHz - 40 GHz	Nov. 17, 2010	Radiation (03CH01-CB)

Note: Calibration Interval of instruments listed above is one year.

Note: For "*" Calibration Interval of instruments listed above is two years.

6. TEST LOCATION

SHIJR	ADD	:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	886-2-2696-2468
	FAX	:	886-2-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	886-3-327-3456
	FAX	:	886-3-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	886-2-2601-1640
	FAX	:	886-2-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	886-2-2631-4739
	FAX	:	886-2-2631-9740
JUNGHE	ADD	:	7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	886-2-8227-2020
	FAX	:	886-2-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	886-2-2794-8886
	FAX	:	886-2-2794-9777
JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.
	TEL	:	886-3-656-9065
	FAX	:	886-3-656-9085
	•		

7. TAF CERTIFICATE OF ACCREDITATION

	Certificate No. : L1190-091230 財團法人全國認證基金會 Taiwan Accreditation Foundation							
Ce	Certificate of Accreditation							
	This is to certify that Sporton International Inc.							
	& Wireless Communications Laboratory ., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien,							
10.52, Hwa 14 151 KG	Taiwan, R.O.C.							
is	is accredited in respect of laboratory							
Accreditation Criteria	: ISO/IEC 17025:2005							
Accreditation Number	: 1190							
Originally Accredited	: December 15, 2003							
Effective Period	: January 10, 2010 to January 09, 2013							
Accredited Scope	: Testing Field, see described in the Appendix							
Specific Accreditation : Accreditation Program for Designated Testing Laborators Program : Accreditation Program for Designated Testing Laborators Accreditation Program for Telecommunication Equip Testing Laboratory Accreditation Program for BSMI Mutual Recognition Arrangment with Foreign Authorities								
	Jay-san Chen							
	Jay-San Chen President, Taiwan Accreditation Foundation Date : December 30, 2009							
P1, total 22 pages								

The Appendix forms an integral part of this Certificate, which shall be invalid when use without the Appendix