

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Wistron NeWeb Corporation
Applicant Address	20 Park Avenue II, Hsinchu Science Park, Hsinchu 308,Taiwan,R.O.C.
FCC ID	NKR-DNUBAT1
Manufacturer's company	Wistron NeWeb Corporation
Manufacturer Address	20 Park Avenue II, Hsinchu Science Park, Hsinchu 308, Taiwan, R.O.C.

Product Name	802.11 a/b/g/n 2x2 USB Dongle
Brand Name	VESTEL
Model No.	VEZZY110
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5350 MHz / 5470 ~ 5725 MHz
Received Date	Oct. 08, 2015
Final Test Date	Oct. 18, 2015
Submission Type	Original Equipment

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 v01r04, KDB662911 D01 v02r01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.`	VERIF	ICATION OF COMPLIANCE	1
2.	SUMN	MARY OF THE TEST RESULT	2
3.	GENE	RAL INFORMATION	3
	3.1.	Product Details	
	3.2.	Accessories	4
	3.3.	Table for Filed Antenna	5
	3.4.	Table for Carrier Frequencies	6
	3.5.	Table for Test Modes	7
	3.6.	Table for Testing Locations	8
	3.7.	Table for Supporting Units	9
	3.8.	Table for Parameters of Test Software Setting	10
	3.9.	EUT Operation during Test	10
	3.10.	Duty Cycle	10
	3.11.	Test Configurations	11
4 . [•]	test f	RESULT	14
	4.1.	AC Power Line Conducted Emissions Measurement	14
	4.2.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	18
	4.3.	Maximum Conducted Output Power Measurement	33
	4.4.	Power Spectral Density Measurement	36
	4.5.	Radiated Emissions Measurement	45
	4.6.	Band Edge Emissions Measurement	77
	4.7.	Frequency Stability Measurement	87
	4.8.	Antenna Requirements	94
5.	list c	DF MEASURING EQUIPMENTS	95
6.	MEAS		96
AP	PEND	IX A. TEST PHOTOS A1 \sim	A5

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR273144-14AB	Rev. 01	Initial issue of report	Nov. 14, 2017

Report No.: FR273144-14AB

Project No: CB10610180

1. VERIFICATION OF COMPLIANCE

Product Name	:	802.11 a/b/g/n 2x2 USB Dongle
Brand Name	:	VESTEL
Model No.	:	VEZZY110
Applicant	:	Wistron NeWeb Corporation
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Oct. 08, 2015 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Cliff Chang SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Part Rule Section Description of Test						
4.1	15.207	AC Power Line Conducted Emissions	Complies				
4.2	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied Bandwidth	Complies				
4.3	15.407(a)	Maximum Conducted Output Power	Complies				
4.4	15.407(a)	Power Spectral Density	Complies				
4.5	15.407(b)	Radiated Emissions	Complies				
4.6	15.407(b)	Band Edge Emissions	Complies				
4.7	15.407(g)	Frequency Stability	Complies				
4.8	15.203	Antenna Requirements	Complies				

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	IEEE 802.11a: WLAN (1TX, 1RX)
	IEEE 802.11n: WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From host system
Modulation	IEEE 802.11a: OFDM
	IEEE 802.11n: see the below table
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)
	IEEE 802.11n: see the below table
Frequency Range	5150 ~ 5350 MHz / 5470 ~ 5725 MHz
Channel Number	19 for 20MHz bandwidth ; 9 for 40MHz bandwidth
Channel Band Width (99%)	Band 1:
	IEEE 802.11a: 27.00 MHz
	IEEE 802.11n MCS0 (HT20): 23.44 MHz
	IEEE 802.11n MCS0 (HT40): 38.35 MHz
	Band 2:
	IEEE 802.11a: 28.22 MHz
	IEEE 802.11n MCS0 (HT20): 24.66 MHz
	IEEE 802.11n MCS0 (HT40): 49.93 MHz
	Band 3:
	IEEE 802.11a: 18.76 MHz
	IEEE 802.11n MCS0 (HT20): 20.41 MHz
	IEEE 802.11n MCS0 (HT40): 56.73 MHz
Maximum Conducted Output Power	Band 1:
	IEEE 802.11a: 19.99 dBm
	IEEE 802.11n MCS0 (HT20): 21.48 dBm
	IEEE 802.11n MCS0 (HT40): 18.01 dBm
	Band 2:
	IEEE 802.11a: 19.96 dBm
	IEEE 802.11n MCS0 (HT20): 21.68 dBm
	IEEE 802.11n MCS0 (HT40): 21.14 dBm
	Band 3:
	IEEE 802.11a: 18.50 dBm
	IEEE 802.11n MCS0 (HT20): 21.27 dBm
	IEEE 802.11n MCS0 (HT40): 21.99 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description			
Communication Mode	\square	IP Based (Load Based)		Frame Based
TPC Function	\boxtimes	With TPC		Without TPC
Weather Band (5600~5650MHz)	\boxtimes	With 5600~5650MHz		Without 5600~5650MHz
Beamforming Function		With beamforming	\boxtimes	Without beamforming
Operating Mode		Outdoor access point		
] Indoor access point		
		Fixed point-to-point access points		
	\boxtimes	Mobile and portable client devices		

Antenna and Bandwidth

Antenna	Singl	e (TX)	Two (TX)		
Band width Mode	20 MHz	40 MHz	20 MHz	40 MHz	
IEEE 802.11a	V	х	х	х	
IEEE 802.11n	х	х	V	V	

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS				
802.11n (HT20)	2	MCS0-15				
802.11n (HT40)	2	MC\$0-15				
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput).						
Then EUT supports HT20 and HT40.						
Note 2: Modulation modes c	Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n					

3.2. Accessories

N/A

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector
1	-	-	Printed Antenna	N/A
2	-	-	Printed Antenna	N/A

Gain (dBi)							
Chain/Port	5GHz Band 3	5GHz Band 4					
1	-0.46	2.41	3.98	4.70	3.90		
2	0.29	1.14	2.05	3.04	2.96		

Note: The EUT has two antennas.

<For 2.4GHz Band>

For IEEE 802.11n mode (2TX/2RX):

Chain 1 and Chain 2 could transmit/receive simultaneously.

For IEEE 802.11b/g mode (1TX/1RX):

The EUT supports the antenna with TX and RX diversity functions.

Both Chain 1 and Chain 2 support transmit and receive functions, but only one of them will be used at one time.

Chain 1 is the worst case, so it was selected to test and record in the report.

<For 5GHz Band>

For IEEE 802.11n mode (2TX/2RX):

Chain 1 and Chain 2 could transmit/receive simultaneously.

For IEEE 802.11a mode (1TX/1RX):

The EUT supports the antenna with TX and RX diversity functions.

Both Chain 1 and Chain 2 support transmit and receive functions, but only one of them will be used at one time.

Chain 2 is the worst case, so it was selected to test and record in the report.

3.4. Table for Carrier Frequencies

The EUT has two bandwidth system.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140.

For 40MHz bandwidth s	vstems use Cho	nnel 38 46	54 62	102 110	118	126 134
	ysierns, use cric	40, 40, 40, 40, 40, and a state of the state	J4, UZ,	102, 110	, 110,	120, 134.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150~5250 MHz	36	5180 MHz	44	5220 MHz
Band 1	38	5190 MHz	46	5230 MHz
bana 1	40	5200 MHz	48	5240 MHz
5250~5350 MHz	52	5260 MHz	60	5300 MHz
Band 2	54	5270 MHz	62	5310 MHz
Bana 2	56	5280 MHz	64	5320 MHz
	100	5500 MHz	120	5600 MHz
	102	5510 MHz	124	5620 MHz
	104	5520 MHz	126	5630 MHz
5470~5725 MHz	108	5540 MHz	128	5640 MHz
Band 3	110	5550 MHz	132	5660 MHz
	112	5560 MHz	134	5670 MHz
	116	5580 MHz	136	5680 MHz
	118	5590 MHz	140	5700 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mo	de	Data Rate	Channel	Chain
AC Power Conducted Emission	Normal Link		-	-	-
Max. Conducted Output Power	11a/BPSK	Band 1-3	6Mbps	36/40/48/52/60/64 /100/116/140	2
	11n HT20	Band 1-3	MC\$0	36/40/48/52/60/64 /100/116/140	1+2
	11n HT40	Band 1-3	MCS0	38/46/54/62/ 102/110/134	1+2
Power Spectral Density	11a/BPSK	Band 1-3	6Mbps	36/40/48/52/60/64 /100/116/140	2
	11n HT20	Band 1-3	MC\$0	36/40/48/52/60/64 /100/116/140	1+2
	11n HT40	Band 1-3	MCS0	38/46/54/62/ 102/110/134	1+2
26dB Spectrum Bandwidth & 99% Occupied Bandwidth	11a/BPSK	Band 1-3	6Mbps	36/40/48/52/60/64 /100/116/140	2
Measurement	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64 /100/116/140	1+2
	11n HT40	Band 1-3	MCS0	38/46/54/62/ 102/110/134	1+2
Radiated Emission Below 1GHz	Normal Link		-	-	-
Radiated Emission Above 1GHz	11a/BPSK	Band 1-3	6Mbps	36/40/48/52/60/64 /100/116/140	2
	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64 /100/116/140	1+2
	11n HT40	Band 1-3	MCS0	38/46/54/62/ 102/110/134	1+2
Band Edge Emission	11a/BPSK	Band 1-3	6Mbps	36/40/48/52/60/64 /100/116/140	2
	11n HT20	Band 1-3	MCS0	36/40/48/52/60/64 /100/116/140	1+2
	11n HT40	Band 1-3	MCS0	38/46/54/62/ 102/110/134	1+2
Frequency Stability	20 MHz	Band 1-3	-	40/60/116	1
	40 MHz	Band 1-3	-	38/62/110	1

Note: The EUT can bundle with mobile device only.

The following test modes were performed for all tests:

For Conducted Emission test:

Mode 1. Normal Link - 2.4G

Mode 2. Normal Link - 5G

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission Below 1GHz test:

Mode 1. Normal Link - EUT in Z axis + 2.4G

Mode 2. Normal Link - EUT in Z axis + 5G

Mode 1 is the worst case, so it was selected to record in this test report.

For Radiated Emission Above 1GHz test:

The EUT was performed at Y axis and Z axis position for Radiated emission above 1GHz test, and the worst case was found at Z axis. So the measurement will follow this same test configuration.

3.6. Table for Testing Locations

Test Site Location								
Address:	Address: No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.							
TEL:	TEL: 886-3-656-9065							
FAX:	FAX: 886-3-656-9085							
Test Site N	lo.	Site Category	Location	FCC Designation No.	IC File No.	VCCI Reg. No		
03CH01-0	CB	SAC	Hsin Chu	TW0006	IC 4086D	-		
CO02-C	В	Conduction	Hsin Chu	TW0006	IC 4086D	-		
TH01-CE	3	OVEN Room	Hsin Chu	-	-	-		

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Table for Supporting Units

For Test Site No: CO02-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E6430	DoC
AP Router	Planex	GW-AP54SGX	KA220030603014-1
Mouse	Logitech	M-U0026	DoC
Earphone	SHYARO CHI	MIC-04	N/A

For Test Site No: 03CH01-CB (For Below 1GHz)

Support Unit	ort Unit Brand Model		FCC ID
NB	DELL	E4300	DoC
Wireless ac AP	Netgear	R6300V2	PY313200227
Mouse	Logitech	M-U0026	DoC
Earphone	SHYARO CHI	MIC-04	N/A

For Test Site No: 03CH01-CB (For Above 1GHz) and TH01-CB

Support Unit	Brand	Model	FCC ID	
NB	DELL	E4300	DoC	

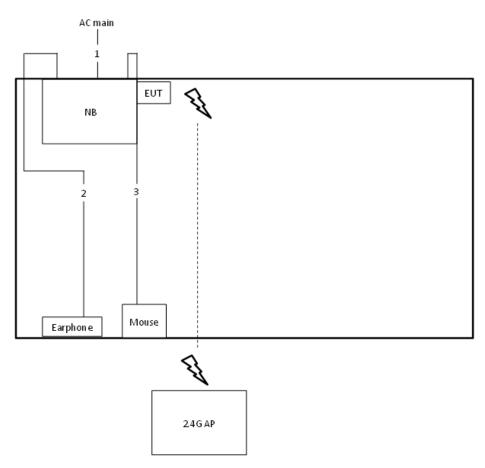
3.8. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version	Mtool 1.0.0.9										
	Test Frequency (MHz)										
Mada					Ν	ICB: 20MH	Iz				
Mode	5180	5200	524	10	5260	5300	5320	55	00	5580	5700
	MHz	MHz	MH	łz	MHz	MHz	MHz	М	Hz	MHz	MHz
802.11a	66	73	70	ט	73	73	59	6	3	73	65
802.11n MCS0 HT20	61	73	70)	73	73	50	5	62	73	56
Mode	NCB: 40MHz										
802.11n MCS0 HT40	5190 MHz	0 MHz 5230 MHz		527	0 MHz	5310 MHz	5510 N	ЛНz	5550) MHz	5670 MHz
	42	5	7		73	39	37		7	'3	58

3.9. EUT Operation during Test

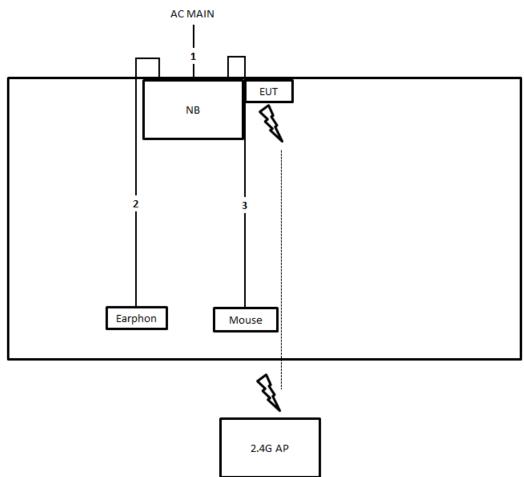
The EUT was programmed to be in continuously transmitting mode.


3.10. Duty Cycle

Mada	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
Mode	(ms)	(ms)	(%)	(dB)	(kHz)
802.11a	2.060	2.102	98.00	0.09	0.01
802.11n MCS0 HT20	1.890	2.000	94.50	0.25	0.53
802.11n MCS0 HT40	0.907	1.032	87.89	0.56	1.10

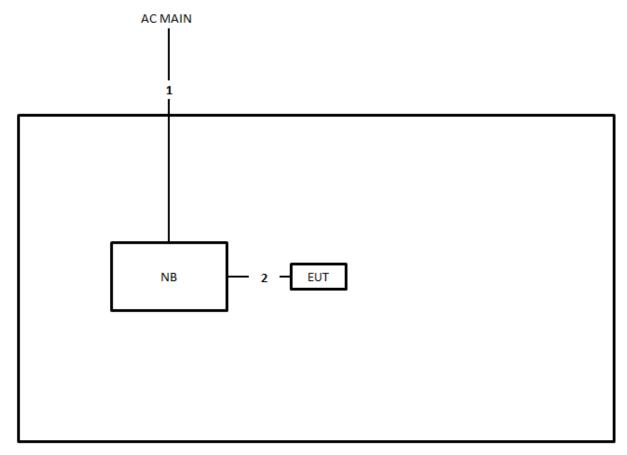
3.11. Test Configurations

3.11.1. AC Power Line Conduction Emissions Test Configuration



Item	Connection	Connection Shielded	
1	Power cable	No	3.6m
2	Audio cable	No	1.1m
3	USB cable	Yes	1.8m

3.11.2. Radiation Emissions Test Configuration


Test Configuration: 30MHz ~1GHz

Item	Connection	Connection Shielded	
1	Power cable	No	3.6m
2	Audio cable	No	1.1m
3	USB cable	Yes	1.8m

Item	Connection	Shielded	Length	
1	Power cable	No	3.6m	
2	USB cable	Yes	1.8m	

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

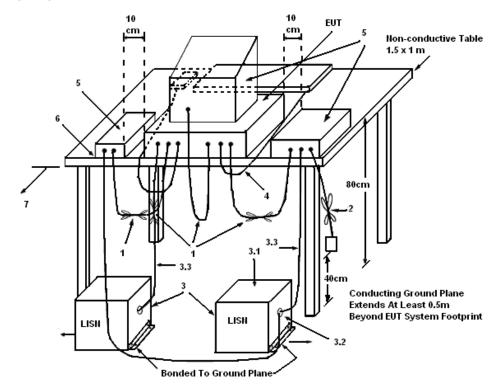
For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

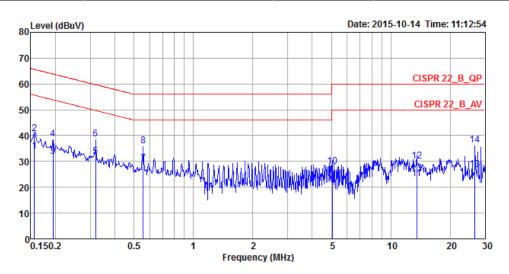
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

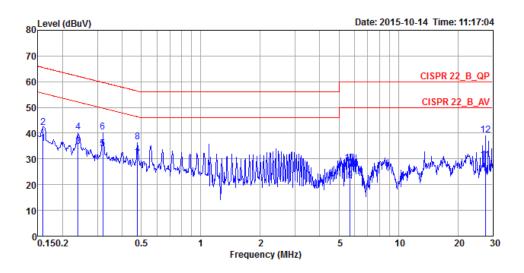
4.1.5. Test Deviation

There is no deviation with the original standard.


4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	24°C	Humidity	61%	
Test Engineer	Ryo Fan	Phase	Line	
Configuration	Normal Link	Test Mode	Mode 1	

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.1565	34.03	-21.62	55.65	23.86	10.00	Average	LINE
2	0.1565	40.71	-24.94	65.65	30.54	10.00	QP	LINE
3	0.1945	31.85	-21.99	53.84	21.65	10.01	Average	LINE
4	0.1945	38.67	-25.17	63.84	28.47	10.01	QP	LINE
5	0.3200	31.97	-17.74	49.71	21.76	10.01	Average	LINE
6	0.3200	38.75	-20.96	59.71	28.54	10.01	QP	LINE
7	0.5552	29.13	-16.87	46.00	18.91	10.02	Average	LINE
8	0.5552	35.88	-20.12	56.00	25.66	10.02	QP	LINE
9	5.0848	21.01	-28.99	50.00	10.57	10.12	Average	LINE
10	5.0848	27.90	-32.10	60.00	17.46	10.12	QP	LINE
11	13.5509	23.25	-26.75	50.00	12.54	10.29	Average	LINE
12	13.5509	30.05	-29.95	60.00	19.34	10.29	QP	LINE
13	26.6022	26.96	-23.04	50.00	15.94	10.48	Average	LINE
14	26.6022	36.16	-23.84	60.00	25.14	10.48	QP	LINE

Temperature	24 °C	Humidity	61%	
Test Engineer	Ryo Fan	Phase	Neutral	
Configuration	Normal Link	Test Mode	Mode 1	

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Remark	Pol/Phase
	MHz	dBuV	dB	dBuV	dBuV	dB		
1	0.1590	36.04	-19.48	55.52	25.87	10.00	Average	NEUTRAL
2	0.1590	42.26	-23.26	65.52	32.09	10.00	QP	NEUTRAL
3	0.2391	34.95	-17.18	52.13	24.75	10.01	Average	NEUTRAL
4	0.2391	40.47	-21.66	62.13	30.27	10.01	QP	NEUTRAL
5	0.3200	33.93	-15.78	49.71	23.72	10.01	Average	NEUTRAL
6	0.3200	40.42	-19.29	59.71	30.21	10.01	QP	NEUTRAL
7	0.4786	30.07	-16.29	46.36	19.86	10.01	Average	NEUTRAL
8	0.4786	36.63	-19.73	56.36	26.42	10.01	QP	NEUTRAL
9	5.6833	21.44	-28.56	50.00	10.98	10.13	Average	NEUTRAL
10	5.6833	28.30	-31.70	60.00	17.84	10.13	QP	NEUTRAL
11	27.5436	29.59	-20.41	50.00	18.55	10.49	Average	NEUTRAL
12	27.5436	39.34	-20.66	60.00	28.30	10.49	QP	NEUTRAL

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB B0	andwidth
Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 26dB Bandwidth
RBW	Approximately 1% of the emission bandwidth
VBW	VBW > RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto
99% Оссирі	ed Bandwidth
Spectrum Parameters	Setting
Span	1.5 times to 5.0 times the OBW
RBW	1 % to 5 % of the OBW
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold

4.2.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

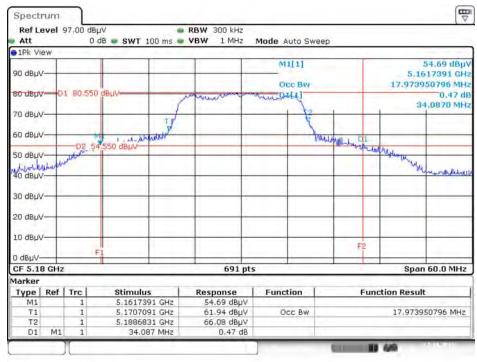
4.2.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement: This test setup layout is the same as that shown in section 4.5.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

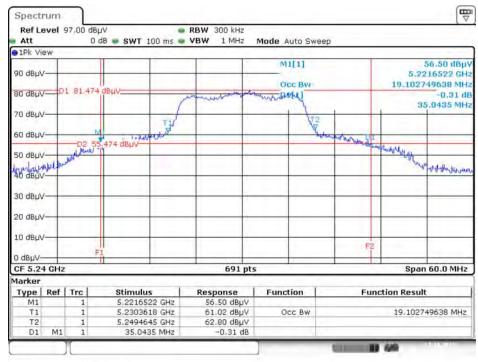
4.2.6. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

Temperature	25°C	Humidity	45%
Test Engineer	Kenneth Huang		
Mode	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	5180 MHz	34.09	17.97
	5200 MHz	42.78	27.00
	5240 MHz	35.04	19.10
	5260 MHz	43.13	25.53
802.11a	5300 MHz	43.65	28.22
	5320 MHz	26.96	17.02
	5500 MHz	29.30	17.11
	5580 MHz	37.22	18.76
	5700 MHz	31.48	17.11
	5180 MHz	37.39	17.80
	5200 MHz	40.87	23.44
	5240 MHz	40.26	19.88
000 11- MCCO	5260 MHz	39.91	21.01
802.11n MCS0 HT20	5300 MHz	41.13	24.66
HIZU	5320 MHz	28.00	17.19
	5500 MHz	27.30	17.28
	5580 MHz	40.61	20.41
	5700 MHz	30.00	17.37
	5190 MHz	45.07	37.19
	5230 MHz	90.58	38.35
802.11n MCS0	5270 MHz	92.75	49.93
HT40	5310 MHz	41.16	37.05
T140	5510 MHz	43.04	37.19
	5550 MHz	95.36	56.73
	5670 MHz	87.68	38.35

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5180 MHz

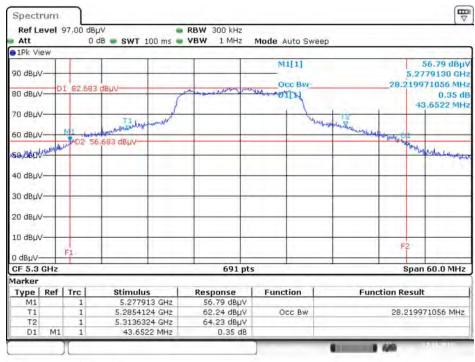

Date: 17.0CT.2015 03:02:01

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5200 MHz

Ref L	evel	97,00 0	∃ВµV 0 dB — SWT 10		RBW 300 kHz VBW 1 MHz	Mode Auto Sw	een	
1Pk Vi	eW	-				india india an		
90 dBµ\			97 dBuV			M1[1]		58.17 dBµ 5.1780000 GH 27.004341534 MH
80 dBhv		1 83,1	ay uppy	1	and a grand mark of	DALA		-0,84 d 42,7826 MH
70 dBµA		-	T1 Uneuromation	met	-		then S.	Landson by hayebachity w
60 dBhv	-	D2	57.197 dBuV		-	-	an the port the started	habertager,
ED-WODK	HARAN	140			-			Webayabachterad
40 dBµ\		-	-	-			-	
30 dBµ\		-	-	-				
20 dBµA		-		-				
10 dBµA		-					-	F2
0 dBµV-	_	F1						12
CF 5.2	GHz	-			691 pts	5		Span 60.0 MHz
Aarker								
Туре	Ref	_	Stimulus		Response	Function	Funct	ion Result
M1	_	1		3 GHz	58.17 dBµV	0		07 004044 504 444
T1 T2		1	5.1854993		62.52 dBµV 63.96 dBµV	Occ Bw		27.004341534 MHz
D1	M1	1	42.7826		-0.84 dB			

Date: 17.0CT.2015 03:32:54

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5240 MHz

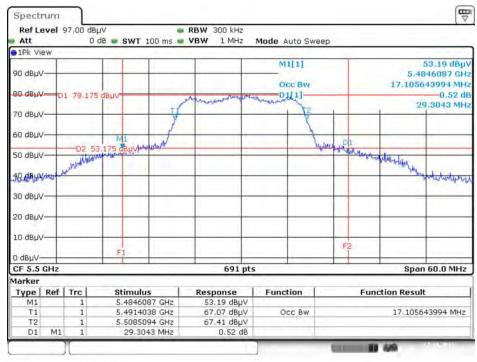

Date: 17.0CT.2015 03:04:16

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5260 MHz

Ref Li	evel	97,00	∃Вµ∨ О dB ● SWT 10		RBW 300 kHz VBW 1 MHz	Mode Auto Sw	вер		
1Pk Vi	ew								
90 dBµ\						M1[1]		5.23	57.38 dBµ 83478 GH 19971 MH
80 dBµ\	/	1 83.2	96 dBuv	5	mun	OCCBW			-0.03 di 3.1304 MH
70 dBµ\		Ma	underse Inou	wint		4	- toring where we have		
60 dBhv		-D2	57.296 dBuV				and a state of the	Huro Ast	-
501dBill	hereber	100			-		-	heret	Hersternty and
40 dBµ\		+					-	-	
30 dBµ\		+	-	-			-	-	
20 dBµA		-			-			-	
10 dBµ\	-	-	-						
0 dBuV-	-	F1			_			F2	
CF 5.2	5 GHz				691 pts	5		Span	60.0 MHz
larker									
Type	Ref	_	Stimulus		Response	Function	Functi	ion Result	t
M1	_	1	5.2383478		57.38 dBµV				
T1		1	5.2464544		66.33 dBµV	Occ Bw		25.5282	19971 MHz
T2 D1	M1	1	5.2719826		62.15 dBµV -0.03 dB				

Date: 17.0CT.2015 03:05:12

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5300 MHz

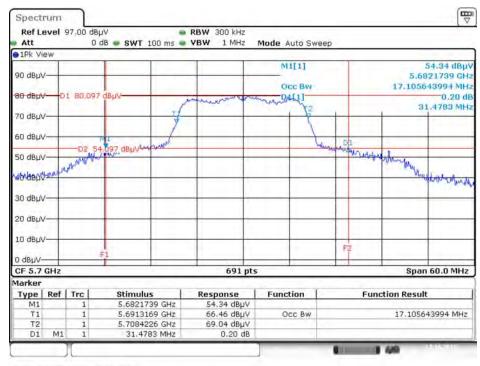

Date: 17.0CT.2015 03:06:06

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5320 MHz

	evel	97,00 de			RBW 300 kHz	in an A				
Att	0.44	0	dB 🖝 SWT 100 r	ns 🖷	VBW 1 MHz	Mode A	uto Swee	2p		
90 dBµ\	/					0	1[1] cc Bw		5.30	53.72 dBµ 065217 GH 13314 MH
80 dBLA	0	1 79.25	4 dBµV	P	manananan	- new with	uti-		2	-0.15 dl
70 dBµA				¥		-	12	1	1	
60 dBµ\			3.254 dBuvere	1			h	. D1		-
50 dBu	1	-D2 5	3.254 dBuyton	_				When the LAN	Windshire	-
19. MRH	hant	ward where				-			or manufactures	Waterwein
30 dBµ\	-	_		-					-	
20 dBµA		-			-					
10 dBµA	-						-	F2	-	-
O dBuV-	-		F1	_						
CF 5.3	2 GHz		-		691 pts	5	-		Spar	60.0 MHz
1arker									a second and	
Туре	Ref		Stimulus		Response	Func	tion	F	unction Resul	t
M1		1	5.3065217 G		53.72 dBµV	-			17.0100	10012.001-
T1 T2		1	5.3114038 G 5.3284226 G		66.72 dBµV 67.20 dBµV	0	CC BW	_	17.0188	13314 MHz
D1	M1	1	26.9565 M		-0.15 dB					

Date: 17.0CT.2015 03:06:47

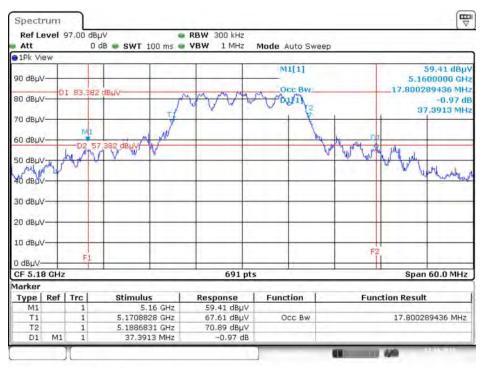
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5500 MHz


Date: 17.0CT.2015 03:07:38

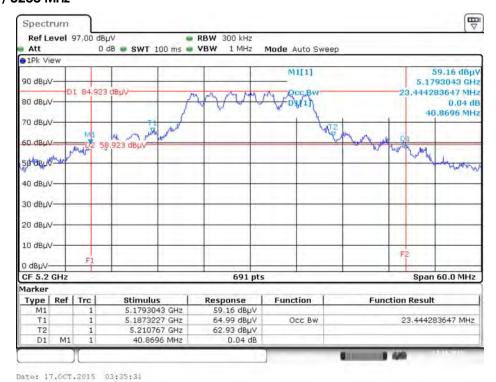
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5580 MHz

Ref Lo Att	evel	97,00 d			RBW 300 kHz VBW 1 MHz			
1Pk Vi	ew.		0 dB 💿 SWT 1	00 ms 🖷	VBW 1MH2	Mode Auto Sw	eep	
90 dBµ\	/					M1[1] Occ Bw		55.24 dBµ 5.5606957 GH 18.755426918 MH
80 dBhV	D	1 82.00)8 dBµV	1	- manun			0.34 d 37.2174 MH
70 dBµA		-		Ty	-	1	-	
60 dBµV		-02	56,008 dBµV	- Berlin		1	and all and the sound and the	and white was the rate
50 dBuv	1.1Bach	- الملكم الم		-	-	-	-	man which is he
40 dBµ\		-		-	+ +		-	and so a low weather
30 dBµ\		_		_				
20 dBµ\		-		_				
10 dBµ\	-	-		_				
0 dBuV-	-	F	1				E.	
CF 5.5					691 pts	5		Span 60.0 MHz
Marker								
Type M1	Ref	Trc 1	Stimulus 5,560695		S6.24 dBµV	Function	Fund	ction Result
T1	_	1	5.570448		62.52 dBµV	Occ Bw		18.755426918 MHz
T2	_	1	5.589204		64.86 dBuV	JCC DW		101100 120910 11112
D1	M1	1	37.217		0.34 dB			

Date: 17.0CT.2015 03:08:26

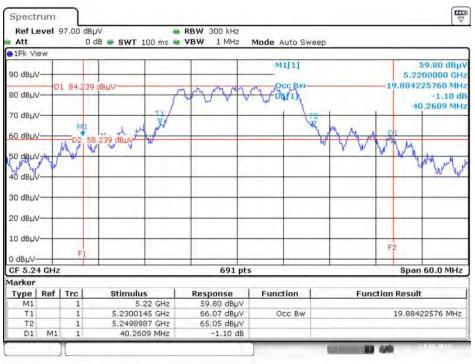


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 2 / 5700 MHz

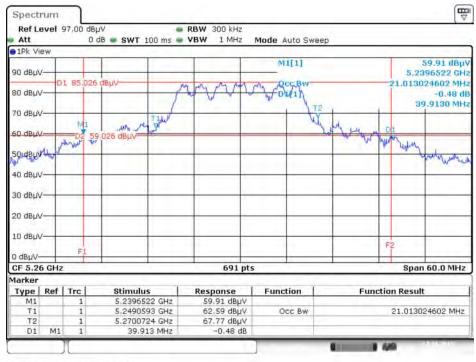

Date: 17.0CT.2015 03:09:07

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5180 MHz

Date: 17.0CT.2015 03:34:53

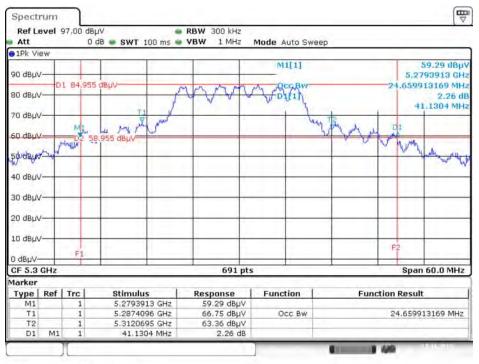


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5200 MHz


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

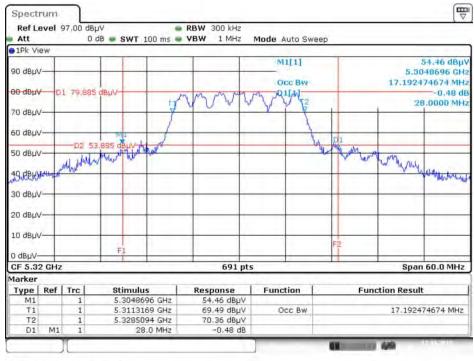
+ Chain 2 / 5240 MHz

Date: 17.0CT.2015 03:36:24



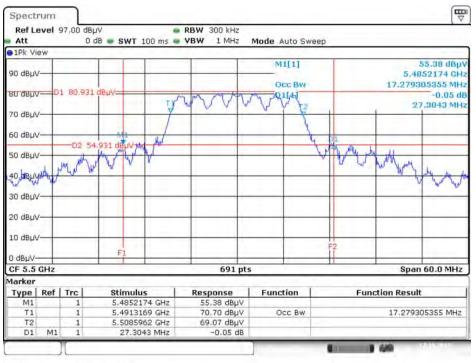
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5260 MHz

Date: 17.0CT.2015 03:16:18


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

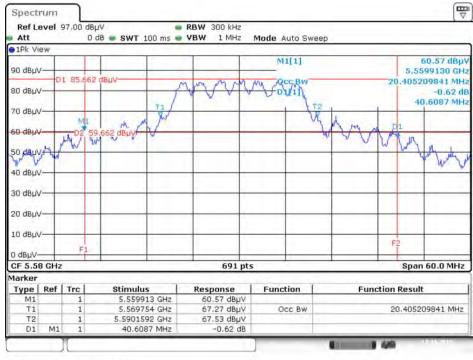
+ Chain 2 / 5300 MHz

Date: 17.0CT.2015 03:16:53



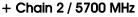
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5320 MHz

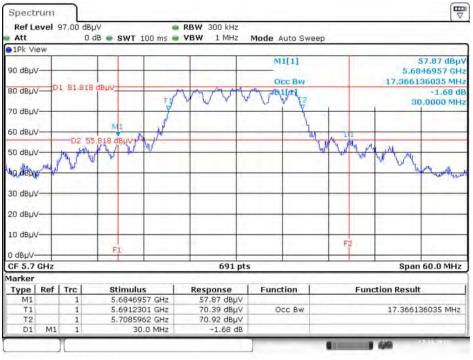
Date: 17.0CT.2015 03:17:36


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

+ Chain 2 / 5500 MHz

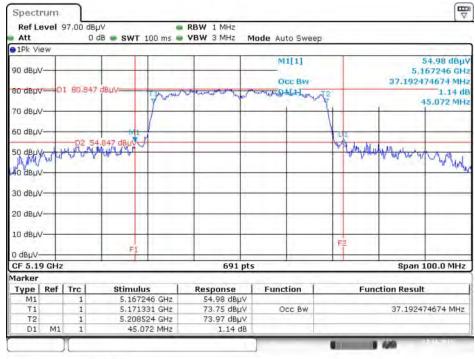
Date: 17.0CT.2015 03:18:12



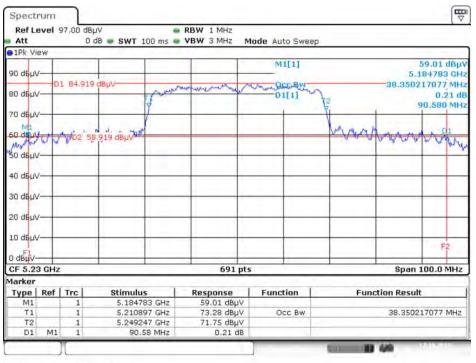


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5580 MHz

Date: 17.0CT.2015 03:18:58


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1

Date: 17.0CT.2015 03:19:38



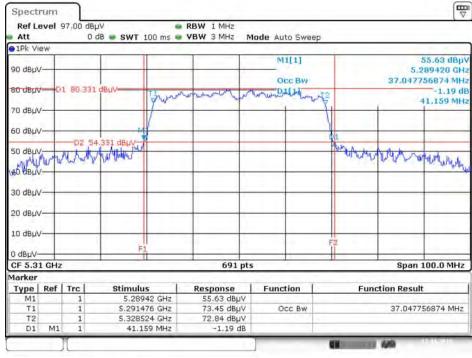
26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5190 MHz

Date: 17.0CT.2015 03:23:59

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1

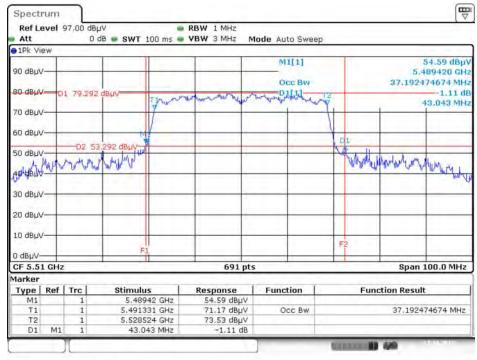
+ Chain 2 / 5230 MHz

Date: 17.0CT.2015 03:24:56



Att		97,00 di C	dB . SWT		RBW 1 MHz VBW 3 MHz	Mode Auto	Sween			
1Pk V	ew	-			1011 0 1110	HOUL AUTO	oncop			
10.0	T	_				M1[1]			61.98 dBp
90 dBu	/	1 87.54	4 dBuV		manut a	-				222464 GH
				now	manner 540	minado		V	49.927	641100 MH
3C dBh	-			17		D1[11	1		0.41 d 92.754 MH
7C dBµ	1-	_	T1	1		-		1 12	1	
MI	MAN	MUM IM	1.544 dBuV	1				the and the	man	D1
d de t	1	D2 (51.544 dBµV		+ +			-	The state of the s	Contraction of the second
1										
SC dBU										
	1								_	
TC UDD										
C dBu	1-		+		-			-	-	
2C dBu			-					-	-	
in de la	2									
1C dBu			1					-		F2
FIBBUV	-							-		Ĩ
CF 5.2					691 p	ts		-	Span	100.0 MHz
1arker	-									
Туре	Ref	Trc	Stimulu		Response	Functio	on	Fur	nction Resu	lt
M1	-	1	5.2224		61.98 dBµ\					
T1		1	5.2426		66.66 dBµ\		BW		49.9	276411 MHz
T2 D1	M1	1	5.2925	76 GHz 54 MHz	66.46 dBµV 0.41 dB					
01	IVII	1	92.73	54 14/12	0.41 ut					

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5270 MHz


Date: 17.0CT.2015 03:25:45

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5310 MHz

Date: 17.0CT.2015 03:26:27

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5510 MHz

Date: 17.0CT.2015 03:27:02

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1

+ Chain 2 / 5550 MHz

Att	evel	97,00 0	оdв 🖷 SWT 10	00 ms 🛢	and a first of	lode Auto Swee	ep		
1Pk Vi	ew								
Lars				-		M1[1]		64.74 dBj	
30 dBLV	D	1 89.0	72 dBµV	nour	man out 1	Mana Mar	10	5.502174 G	
80 dBu				www	- man a more	man BCC Blan	~	56.729377713 M	
и перл						D1[1]	1	0.59 c 95.362 Mi	
dBul	-		11 AV		_	1	hat		
Then	MIN	nni	MANN V S				and	whanny	
D dBU		-02	63,072 dBuy	_				- Vala	
100									
50 dBµN			-		-				
a da a	e 14								
to dBui									
dBu	-	_	-		· · · · · · · · · · · · · · ·				
acp.									
D dBLA				_					
10 dBul			-				-		
Flaguv-			- 1					F2	
		_							
CF 5.5	5 GHZ			_	691 pt	s		Span 100.0 MH	
larker Type	Def	Trc	Stimulus	- 1	Response	Function		inction Result	
M1	Rei	1	5.50217		64.74 dBµV	Function	Fu	inction Result	
T1		1	5.52062		67.62 dBµV	Occ Bw		56.729377713 MHz	
T2		1	5.57735		67.97 dBµV				
D1	M1	1	95,362	2 MHz	0.59 dB				

Date: 17.0CT.2015 03:27:55

Att		C) dB 🖷 SWT 100 m	ns 🖷	VBW 3 MHz N	lode Auto S	weep	e			
90 dBµ\ 80 dBµ\	/D	1 86.12	12 dBµV	-	anort	M1[1]		12		1.624 0217	.54 dBµ 638 GH 077 MH 0.63 d 681 MH
70 d8µ\		a 1						hard	1000	1	1
50 dBu		M D2 6	50.122 dBuy			-		Mr. And	" unu"	www.	M
40 dBµ\										1	
30 dBhV			-	-			_	-		+	-
20 d8µN			-	_				-		+	
									-	F	2
CF 5.6			1 1		691 pts	5			Spar	n 10	D.0 MHz
Marker				10.1						-	
Туре	Ref		Stimulus		Response	Function		Fund	Function Result		
M1		1 5.624638 GHz			60.54 dBµV			38.350217077 MHz			
T1 T2		1			70.07 dBµV 74.18 dBµV				38.350	J217(J77 MHz
12		1 5.688958 GHz 1 1 87.681 MHz			0.63 dB		-				

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5670 MHz

Date: 17.0CT.2015 03:28:42

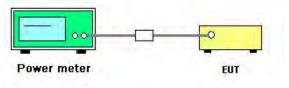
4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

	Frequency Band	Limit
5.15	5~5.25 GHz	
Ope	erating Mode	
	Outdoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	Indoor access point	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	Fixed point-to-point access points	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
\boxtimes	Client devices	The maximum conducted output power over the frequency band of operation shall not exceed 250 mW (24dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.25-5.35 GHz	The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. If
5.470-5.725 GHz	transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- Test was performed in accordance with KDB789033 D02 v01r04 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	25℃	Humidity	45%
Test Engineer	Kenneth Huang	Test Date	Oct. 17, 2015

Mode	Frequency -	Conducted Power (dBm) Chain 2	Max. Limit (dBm)	Result
	5180 MHz	16.85	24.00	Complies
	5200 MHz	19.99	24.00	Complies
	5240 MHz	17.57	24.00	Complies
	5260 MHz	19.88	24.00	Complies
802.11a	5300 MHz	19.96	24.00	Complies
	5320 MHz	15.32	24.00	Complies
	5500 MHz	15.31	24.00	Complies
	5580 MHz	18.50	24.00	Complies
	5700 MHz	16.75	24.00	Complies

Mada		Con	ducted Power (d	dBm)	Max. Limit	Desult
Mode	Frequency	Chain 1	Chain 2	Total	(dBm)	Result
	5180 MHz	16.37	15.52	18.98	24.00	Complies
	5200 MHz	18.03	18.87	21.48	24.00	Complies
	5240 MHz	18.16	16.78	20.53	24.00	Complies
000 11-	5260 MHz	17.44	18.85	21.21	24.00	Complies
802.11n	5300 MHz	17.91	19.31	21.68	24.00	Complies
MCS0 HT20	5320 MHz	13.25	13.91	16.60	24.00	Complies
	5500 MHz	14.46	12.95	16.78	24.00	Complies
	5580 MHz	17.98	18.53	21.27	24.00	Complies
	5700 MHz	15.28	15.29	18.30	24.00	Complies
	5190 MHz	9.75	11.40	13.66	24.00	Complies
	5230 MHz	14.90	15.10	18.01	24.00	Complies
900 11-	5270 MHz	16.93	19.07	21.14	24.00	Complies
802.11n MCS0 HT40	5310 MHz	10.12	10.40	13.27	24.00	Complies
	5510 MHz	10.08	9.34	12.74	24.00	Complies
	5550 MHz	19.05	18.90	21.99	24.00	Complies
	5670 MHz	15.86	15.48	18.68	24.00	Complies

4.4. Power Spectral Density Measurement

4.4.1. Limit

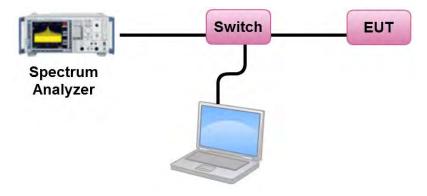
The following table is power spectral density limits and decrease power density limit rule refer to section

4.3.1.

		Frequency Band	Limit
\square	5.18	5~5.25 GHz	
	Ope	erating Mode	
		Outdoor access point	17 dBm/MHz
		Indoor access point	17 dBm/MHz
		Fixed point-to-point access points	17 dBm/MHz
	\boxtimes	Mobile and portable client devices	11 dBm/MHz
\boxtimes	5.2	5-5.35 GHz	11 dBm/MHz
\square	5.47	70-5.725 GHz	11 dBm/MHz

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.


Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal			
RBW	1000 kHz			
VBW	3000 kHz			
Detector	RMS			
Trace	AVERAGE			
Sweep Time	Auto			
Trace Average 100 times				
Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to				
the measured result, whereas RBW ($<$ 500 kHz) is the reduced resolution bandwidth of the				
spectrum analyze	r set during measurement.			

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- Test was performed in accordance with KDB789033 D02 v01r04 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.
- 5. For $5.725 \sim 5.85$ GHz, the measured result of PSD level must add $10\log(500 \text{kHz/RBW})$ and the final result should ≤ 30 dBm.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	25 ℃	Humidity	45%
Test Engineer	Kenneth Huang		

Configuration IEEE 802.11a / Chain 2

Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	3.54	11.00	Complies
40	5200 MHz	6.72	11.00	Complies
48	5240 MHz	4.27	11.00	Complies
52	5260 MHz	6.57	11.00	Complies
60	5300 MHz	6.74	11.00	Complies
64	5320 MHz	1.99	11.00	Complies
100	5500 MHz	2.18	11.00	Complies
116	5580 MHz	5.13	11.00	Complies
140	5700 MHz	3.65	11.00	Complies

Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2

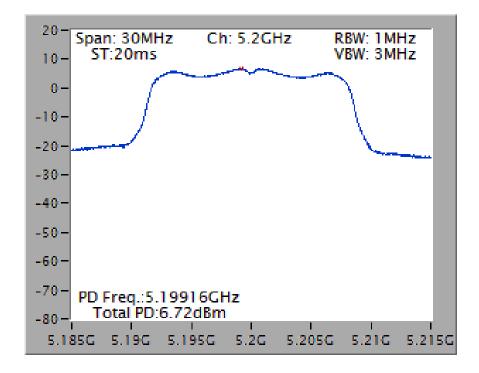
Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	5.81	11.00	Complies
40	5200 MHz	8.12	11.00	Complies
48	5240 MHz	7.13	11.00	Complies
52	5260 MHz	7.94	10.92	Complies
60	5300 MHz	8.33	10.92	Complies
64	5320 MHz	3.39	10.92	Complies
100	5500 MHz	3.40	10.08	Complies
116	5580 MHz	8.02	10.08	Complies
140	5700 MHz	5.06	10.08	Complies

Note:
$$Directional Gain = 10 \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 4.81 \text{dBi} < 6 \text{dBi, so the B1 limit doesn't reduce.}$$

Note:
$$Directional Gain = 10 \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 6.08 dBi > 6 dBi, So B2 Limit = 11-(6.08-6) = 10.92 dBm/MHz.$$

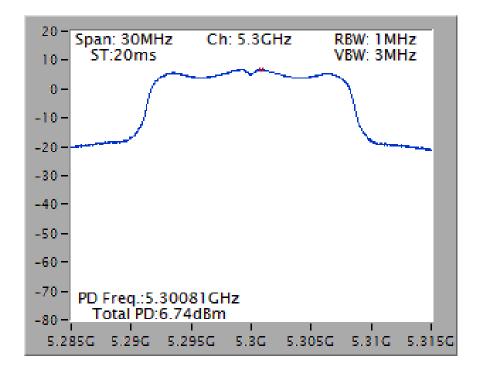
Note:
$$Directional \, Gain = 10 \log \left[\frac{\sum_{j=1}^{N_{ss}} \left[\sum_{K=1}^{N_{aNT}} g_{j,k} \right]^2}{N_{aNT}} \right] = 6.92 \text{dBi} > 6 \text{dBi}, \text{So B3 Limit} = 11-(6.92-6) = 10.08 \text{dBm/MHz}.$$

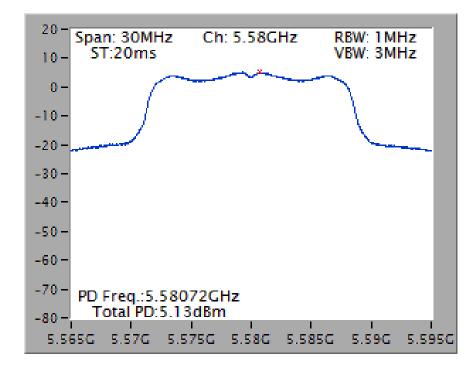
Channel	Frequency	Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-2.72	11.00	Complie
46	5230 MHz	1.62	11.00	Complie
54	5270 MHz	4.82	10.92	Complie
62	5310 MHz	-2.94	10.92	Complie
102	5510 MHz	-3.62	10.08	Complie
110	5550 MHz	5.64	10.08	Complie
134	5670 MHz	2.62	10.08	Complie


Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2

Note:
$$Directional \ Gain = 10 \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 4.81 dBi < 6dBi, \text{ so the B1 limit doesn't reduce.}$$
Note:
$$Directional \ Gain = 10 \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 6.08 dBi > 6dBi, \text{So B2 Limit = 11-(6.08-6) = 10.92 dBm/MHz.}$$
Note:
$$Directional \ Gain = 10 \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 6.92 dBi > 6dBi, \text{So B3 Limit = 11-(6.92-6) = 10.08 dBm/MHz.}$$

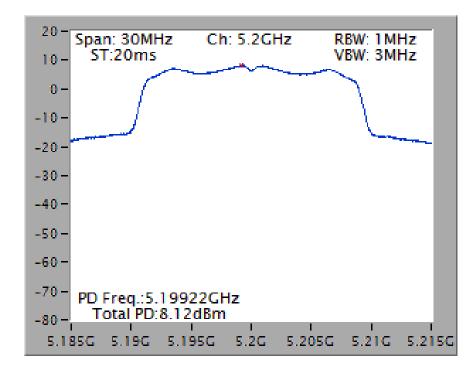
Note: All the test values were listed in the report.

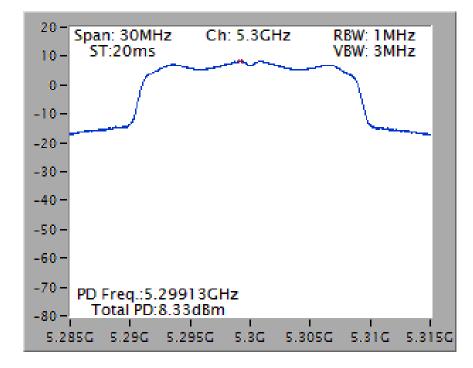

For plots, only the channel with worse result was shown.



Power Density Plot on Configuration IEEE 802.11a / Chain 2 / 5200 MHz

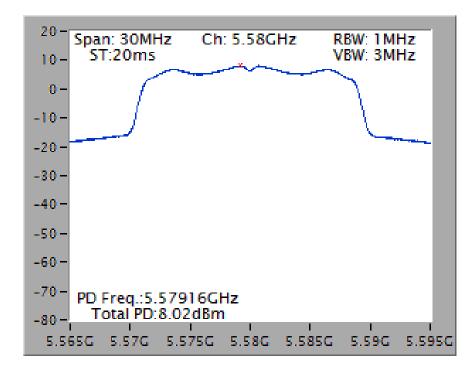
Power Density Plot on Configuration IEEE 802.11a / Chain 2 / 5300 MHz

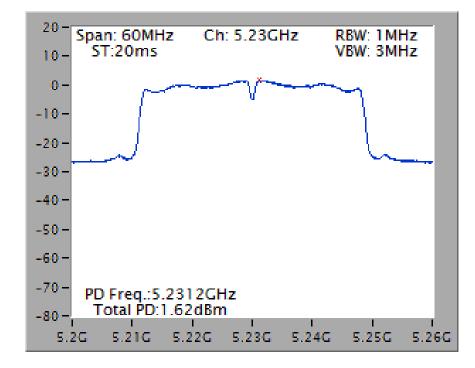




Power Density Plot on Configuration IEEE 802.11a / Chain 2 / 5580 MHz

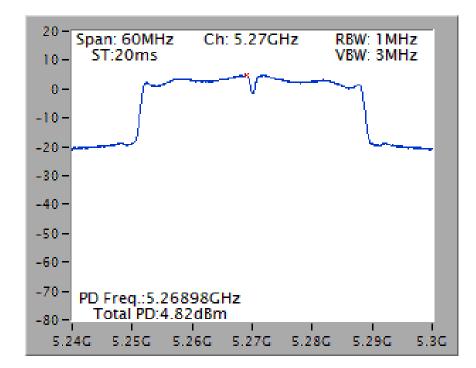
Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5200 MHz

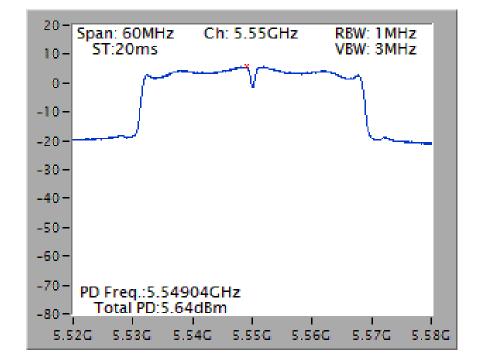




Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5300 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / Chain 1 + Chain 2 / 5580 MHz





Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5230 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5270 MHz

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / Chain 1 + Chain 2 / 5550 MHz

4.5. Radiated Emissions Measurement

4.5.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

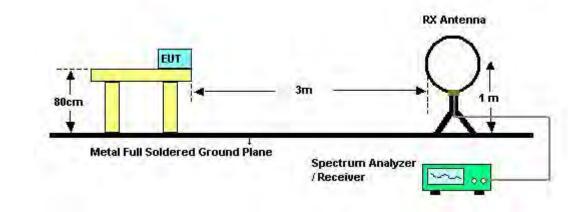
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

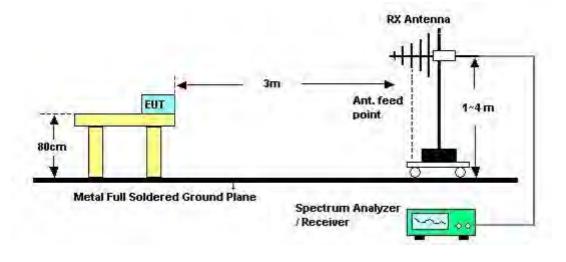
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start \sim Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

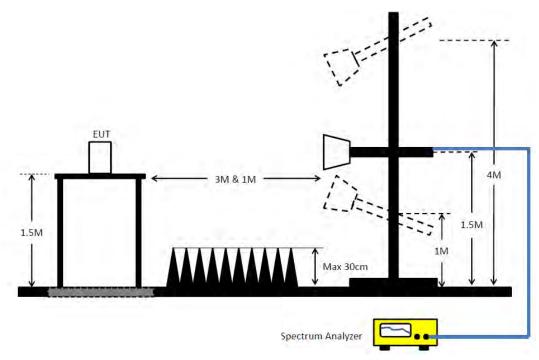

4.5.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1m & 3m far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



4.5.4. Test Setup Layout

For Radiated Emissions: 9kHz \sim 30MHz



For Radiated Emissions: 30MHz~1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

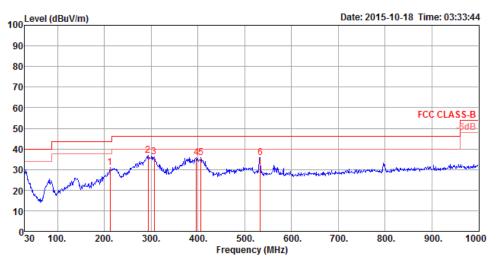
Temperature	24 °C	Humidity	55%
Test Engineer	Stim Sung	Configurations	Normal Link
Test Date	Oct. 18, 2015	Test Mode	Mode 1

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);


Limit line = specific limits (dBuV) + distance extrapolation factor.

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24 °C	Humidity	55%
Test Engineer	Stim Sung	Configurations	Normal Link
Test Mode	Mode 1		

Horizontal

Limit Over Read CableAntenna Preamp A/Pos T/Pos Remark Pol/Phase Freq Level Line Limit Level Loss Factor Factor MHz dBuV/m dBuV/m dB/m dB dBuV dB dB deg cm 10.78 32.32 212.36 31.13 43.50 -12.37 51.38 200 128 Peak HORIZONTAL 1 1.29 2 293.84 36.98 46.00 -9.02 54.00 1.48 13.78 32.28 125 155 Peak HORIZONTAL HORIZONTAL 3 306.45 36.10 46.00 -9.90 52.78 1.51 14.09 32.28 200 299 Peak 4 396.66 35.91 46.00 -10.09 50.11 1.72 16.41 32.33 100 194 Peak HORIZONTAL 5 406.36 35.93 46.00 -10.07 49.95 1.74 16.57 32.33 100 185 Peak HORIZONTAL 6 533.43 35.70 46.00 -10.30 47.70 1.96 18.41 32.37 200 169 Peak HORIZONTAL

FCC CLASS-B

900.

1000

Vertical

20 10

0<mark>11</mark> 30

100.

200.

300.

100 Level (dBuV/m) Date: 2015-10-18 Time: 03:35:19 90 80 70 60 50 40 30

400.

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	31.94	35.77	40.00	-4.23	48.66	0.64	18.87	32.40	133	221	QP	VERTICAL
2	78.50	33.91	40.00	-6.09	57.99	0.85	7.47	32.40	150	225	Peak	VERTICAL
3	144.46	31.31	43.50	-12.19	50.89	1.09	11.69	32.36	100	188	Peak	VERTICAL
4	296.75	41.84	46.00	-4.16	58.80	1.48	13.84	32.28	200	338	Peak	VERTICAL
5	301.60	42.31	46.00	-3.69	59.17	1.49	13.93	32.28	200	341	Peak	VERTICAL
6	531.49	40.23	46.00	-5.77	52.27	1.95	18.38	32.37	125	104	Peak	VERTICAL

500.

Frequency (MHz)

600.

700.

800.

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.5.9. Results for Radiated Emissions (1GHz~40GHz)

Tem	perature	24	l°C		н	Humidity Configurations			55%									
Test	Engineer	Sti	m Sung		С				Configurations IEEE 802.11a CH 36 / Chain 2			IEEE 802.11a CH 36 / Chain 2					IEEE 802.11a CH 36 / Chain 2	
Test	Date	0	Oct. 15, 2015															
Horiz	ontal																	
	Freq	Level	Limit Line	Over Limit	Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase						
	MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg								
1 2	15539.20 15540.86	63.28 49.01	74.00 54.00	-10.72 -4.99	46.26 31.99	12.58 12.58		33.70 33.70	101 101		Peak Average	HORIZONTAL HORIZONTAL						

Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
15540.29 15541.21										Avenage Peak	VERTICAL VERTICAL

Tem	perature	24	₽°C		Humidit	у	55%	55%					
Test	Engineer	St	m Sung			Configu	ırations	IEEE	IEEE 802.11a CH 40 / Chain 2				
Test	Date	0	ct. 15, 2	2015									
Horiz	ontal												
	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∀/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg			
1 2	15598.74 15599.13	49.22 62.95		-4.78 -11.05	32.36 46.12		38.03 38.03		101 101		Average Peak	HORIZONTAL HORIZONTAL	

Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBư∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
15599.54 15599.87								147 147		Peak Average	VERTICAL VERTICAL

Temper	rature	24	l°C		Hu	Humidity			55%				
Test Eng	gineer	Sti	m Sung		Configurations IEEE 802.11a CH 48 / Chain 2							2	
Test Da	te	0	ct. 15, 2	015									
Horizont	al												
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg			
	718.62	62.01 48.50		-11.99 -5.50	45.48 31.97	12.57 12.57			102 102		Peak Average	HORIZONTAL HORIZONTAL	

Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
15718.92 15719.33								146 146		Peak Average	VERTICAL VERTICAL

Tem	perature	24	₽°C		H	lumidit	y	55%					
Test	Engineer	St	m Sung		C	Configu	irations	IEEE	802.11	a CH 5	2 / Chain 2	2	
Test	Date	0	ct. 15, 2	2015									
Horiz	ontal												
	Freq	Level	Limit Line	0∨er Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg			
1	15778.79	61.96		-12.04	45.58				101		Peak	HORIZONTAL	
2	15781.16	48.57	54.00	-5.43	32.19	12.57	37.76	33.95	101	210	Average	HORIZONTAL	

Freq	Level	Limit Line						A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
15780.14 15780.88								148 148		Average Peak	VERTICAL VERTICAL

Temperature	24 °C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11a CH 60 / Chain 2
Test Date	Oct. 15, 2015		

Horizontal

	Freq	Level		0∨er Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	10599.00	46.25	54.00	-7.75	31.32	10.16	38.40	33.63	104	180	Average	HORIZONTAL
2	10599.30	62.57	74.00	-11.43	47.64	10.16	38.40	33.63	104	180	Peak	HORIZONTAL
3	15899.14	62.58	74.00	-11.42	46.49	12.57	37.57	34.05	101	201	Peak	HORIZONTAL
4	15900.98	48.77	54.00	-5.23	32.71	12.57	37.54	34.05	101	201	Average	HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3	10599.50 10600.18 15898.57	58.90	74.00	-15.10	43.97	10.16	38.40	33.63	135 135 146	170	Average Peak Peak	VERTICAL VERTICAL VERTICAL
4	15901.26	47.87	54.00	-6.13	31.81	12.57	37.54	34.05	146	70	Average	VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11a CH 64 / Chain 2
Test Date	Oct. 15, 2015		

Horizontal

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∨/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1 2 3 4	10638.97 10639.35 15958.54 15959.06	61.07 48.26	74.00 54.00	-12.93 -5.74	46.06 32.37	10.21 12.56	38.40 37.46	33.60 34.13	101 101 101 101	180 200	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	10640.07								132		Average	VERTICAL
2	10640.82	57.94	74.00	-16.06	42.93	10.21	38.40	33.60	132	176	Peak	VERTICAL
3	15960.47	61.70	74.00	-12.30	45.81	12.56	37.46	34.13	142	75	Peak	VERTICAL
4	15960.67	47.91	54.00	-6.09	32.02	12.56	37.46	34.13	142	75	Average	VERTICAL

Tem	perature	24	24°C			lumidity	/	55%					
Test	Engineer	St	m Sung		C	Configu	rations	IEEE	802.11	a CH 1	00 / Chain	2	
Test	Date	0	ct. 15, 2	015									
Horiz	ontal												
	Freq	Level	Limit Line	Over Limit	Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg			
1	10999.83	57.47		-16.53	41.90	10.55			102		Peak	HORIZONTAL	
2	11000.37	43.81	54.00	-10.19	28.24	10.55	38.40	33.38	102	212	Average	HORIZONTAL	

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1 2	10999.44 11000.10								147 147		Peak Average	VERTICAL VERTICAL

Tem	perature	24	1 °C		H	lumidit	у	55%	,			
Test	Engineer	Sti	m Sung		C	Configu	irations	IEEE	802.110	a CH 1	16 / Chain	2
Test	Date	0	ct. 15, 2	015								
Horiz	ontal											
	Freq	Level	Limit Line	0∨er Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu\∕/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	11160.03	64.25	74.00	-9.75	48.46	10.60		33.38	100		Peak	HORIZONTAL
2	11160.37	48.96	54.00	-5.04	33.17	10.60	38.57	33.38	100	212	Average	HORIZONTAL

Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
11159.51 11160.73								148 148		Average Peak	VERTICAL VERTICAL

Tem	perature	24	l°C		Hu	midity		55%						
Test	Engineer	Sti	m Sung		Co	onfigure	ations	IEEE 8	802.11a	CH 14	0 / Chain	2		
Test	Date	0	ct. 15, 2	015										
Horiz	ontal													
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase		
	MHz	dBu\/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg				
1	11399.39 11400.02	62.97 48.31	74.00 54.00	-11.03 -5.69	46.85 32.19	10.69 10.69			101 101		Peak Avenage	HORIZONTAL HORIZONTAL		

Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
11399.30 11401.39								149 149		Average Peak	VERTICAL VERTICAL

Tem	perature	2	4°C		Hu	midity		55%				
Tost	Engineer	C.	im Sung		Co	nfigura	tions	IEEE 8	802.11n	MCS0	HT20 CH 3	6
1031	LIGINEE	5	in Sung			mgulu		/ Cho	iin 1 + 0	Chain 2	2	
Test	Date	С	oct. 16, 2	2015								
Horiz	ontal											
	Freq	Level	Limit Line	0∨er Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/n	dBu∀/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	15540.18	63.16	74.00	-10.84	46.14	12.58	38.14	33.70	101	310	Peak	HORIZONTAL
2	15540.25	50.91	54.00	-3.09	33.89	12.58	38.14	33.70	101	310	Average	HORIZONTAL

Freq	Level		0∨er Limit				•	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
15539.59 15540.10								123 123		Peak Average	VERTICAL VERTICAL

Tem	perature	2	4°C		Hur	nidity		55%					
Test	Engineer	s	lim Sung	l	Со	nfigurat	ions		802.11 nain 1 +		0 HT20 CH 2	40	
Test	Date	C	oct. 16, 2	2015									
Horiz	ontal												
	Freq	Leve]	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∀/n	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg			
1	15598.51	62.98	74.00	-11.02	46.12	12.58	38.03	33.75	101	311	Peak	HORIZONTAL	
2	15598.85	49.68						33.78	101	311	Average	HORIZONTAL	

Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
15598.80 15599.33								123 123		Avenage Peak	VERTICAL VERTICAL

Tem	perature	2	4°C		Hu	umidity		55%				
Teat	Engineer		tim Cuna			opfiqura	diana	IEEE	802.11r	n MCSO	HT20 CH	48
lesi	Engineer	3	tim Sung			onfiguro	mons	/ Ch	ain 1 +	Chain	2	
Test	Date	C	Oct. 16, 2	2015								
Horiz	ontal											
	Freq	Leve	Limit L Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∀∕ı	n dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	15720.28	50.6		-3.37	34.10		37.84		102		Average	HORIZONTAL
2	15720.38	63.1	9 /4.00	-10.81	46.66	12.57	37.84	33.88	102	512	Peak	HORIZONTAL

Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
15719.60 15720.80								147 147		Avenage Peak	VERTICAL VERTICAL

Tem	perature	24	4°C		Hu	midity		55%					
Tost	Engineer	C+	im Sung		C	onfiguro	anoitr	IEEE	802.11r	n MCSO	HT20 CH	52	
1031	Engineer	51	in sung			Inguit	110113	/ Ch	ain 1 +	Chain	2		
Test	Date	0	ct. 16, 2	2015									
Horiz	ontal												
	Freq	Level	Limit Line	Over Limit	Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∨/m	dBu∀/m	dB	dBu√	dB	dB/m	dB	cm	deg			
1	15780.43	62.29	74.00	-11.71	45.91	12.57	37.76	33.95	101	306	Peak	HORIZONTAL	
2					32.69	12.57	37.73	33.95	101	306	Average	HORIZONTAL	

Т

Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu\//m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
15779.25 15780.67								146 146		Peak Average	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	eer Stim Sung Configurations		IEEE 802.11n MCS0 HT20 CH 60 / Chain 1 + Chain 2
Test Date	Oct. 16, 2015		

Horizontal

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	10599.65 10599.68 15899.89 15900.28	46.71 48.99	54.00 54.00	-7.29 -5.01	31.78 32.90	10.16 12.57	38.40 37.57	33.63 34.05	101 101 101 101	175 306	Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	10598.54	57.60	74.00	-16.40	42.67	10.16	38.40	33.63	145	177	Peak	VERTICAL
2	10598.92	44.24	54.00	-9.76	29.31	10.16	38.40	33.63	145	177	Average	VERTICAL
3	15899.75	60.12	74.00	-13.88	44.03	12.57	37.57	34.05	146	184	Peak	VERTICAL
4	15899.82	46.88	54.00	-7.12	30.79	12.57	37.57	34.05	146	184	Average	VERTICAL

Temperature	24 °C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11n MCS0 HT20 CH 64
			/ Chain 1 + Chain 2
Test Date	Oct. 16, 2015		

Horizontal

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	10618.54 10619.62 15929.52 15930.72	43.06 60.36	54.00 74.00	-10.94 -13.64	28.09 44.37	10.19 12.56	38.40 37.51	33.62 34.08	100 100 100 100	182 310	Peak Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level						Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
			cane	C ANNA C		2000		10000			rightin it	r ox, r nobe
	MHz	dBu\∕/m	dBư√/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	10618.80	55.90	74.00	-18.10	40.93	10.19	38.40	33.62	148	176	Peak	VERTICAL
2	10618.98	43.04	54.00	-10.96	28.07	10.19	38.40	33.62	148	176	Average	VERTICAL
3	15928.72	59.73	74.00	-14.27	43.74	12.56	37.51	34.08	147	167	Peak	VERTICAL
4	15930.67	47.09	54.00	-6.91	31.12	12.56	37.51	34.10	147	167	Average	VERTICAL

Tem	perature	2	4°C		Hur	nidity		55%					
Test Engineer Stim Sung Configurations IEEE 802.11n MCS0							MCS0	HT20 CH 1	00				
1621	Engineer	3	in sung			Configurations			iin 1 + 0	Chain 2	2		
Test	Date	C	oct. 15, 2	2015									
Horiz	ontal												
	Freq	Level	Limit Line	0∨er Limit	Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∀/n	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg			
1	10998.91	57.39	74.00	-16.61	41.82	10.55	38.40	33.38	102	136	Peak	HORIZONTAL	
2	10999.15	44.64	54.00	-9.36	29.07	10.55	38.40	33.38	102	136	Average	HORIZONTAL	

T

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2	10998.67 11000.48								149 149		Peak Average	VERTICAL VERTICAL

Tem	perature	2	4°C		н	umidity	,	55%					
Tort	Engineer	c.	im Sung			onfigur	ations	IEEE	802.11r	n MCSO	HT20 CH	116	
1031	Engineer	5	in Sung			oningui		/ Cho	ain 1 +	Chain	2		
Test	Date	C	oct. 16, 2	2015									
Horiz	ontal												
	Freq	Level	Limit Line	0∨er Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∨/n	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg			
1	11158.79	62.96		-11.04	47.17	10.60			101		Peak	HORIZONTAL	
2	11161.42	47.97	54.00	-6.03	32.18	10.60	38.57	33.38	101	0	Average	HORIZONTAL	

Freq	Level	Limit Line						A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
11158.94 11160.29								148 148		Avenage Peak	VERTICAL VERTICAL

Tem	nperature	2	4°C		Hu	midity		55%					
Test	Engineer	6	im Suna		6	onfigura	tions	IEEE 8	802.11n	MCS0	HT20 CH 1	40	
1621	Engineer	3	im Sung			niiguro		/ Cho	iin 1 + (Chain 2	2		
Test	Date	С	oct. 16, 2	2015									
Horiz	ontal												
	Freq	Level	Limit Line		Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∀/n	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg			
1 2	11399.21 11399.98	44.66 58.87		-9.34 -15.13					103 103		Average Peak	HORIZONTAL HORIZONTAL	

Freq	Level						Preamp Factor		T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
11398.68 11400.63								146 146	183 183	Avenage Peak	VERTICAL VERTICAL

Tem	nperature	2	4°C		Hu	midity		55%				
Teat	Engineer		tim Cuna		C		tions	IEEE 8	302.11n	MCS0	HT40 CH 3	38
iesi	Engineer	3	tim Sung			onfiguro	lions	/ Cho	ain 1 +	Chain 2	2	
Test	Date	C	oct. 16, 2	2015								
Horiz	ontal											
			Limit	Over				Preamp	A/Pos	T/Pos		0.1(0)
	Freq	Leve]	Line	Limit	Level	Loss	Factor	Factor			Remark	Pol/Phase
	MHz	dBu∨/n	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	15568.62	47.11	54.00	-6.89	30.17	12.58	38.09	33.73	101	75	Average	HORIZONTAL
2	15571.49	60.30	74.00	-13.70	43.36	12.58	38.09	33.73	101	75	Peak	HORIZONTAL

Freq	Level		Over Limit				•	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu\//m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
15570.37 15571.03								148 148		Peak Average	VERTICAL VERTICAL

Tem	perature	2	24°C		H	lumidity	/	55%					
Teat	Engineer		tim Suno			Configu	rationa	IEEE	802.11	n MCS	D HT40 CH	46	
1621	Engineer	3	tim Sung			Configu	ranons	/ Cł	nain 1 +	Chain	2		
Test	Date	C	Dct. 16, 2	2015									
Horiz	ontal												
	Freq	Leve	Limit l Line	0∨er Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∀/ı	n dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg			
1	15569.11	59.8	9 74.00	-14.11	42.95	12.58	38.09	33.73	101	232	Peak	HORIZONTAL	
2	15571.26	46.9	1 54.00	-7.09	29.97	12.58	38.09	33.73	101	232	Average	HORIZONTAL	

Freq	Level		Over Limit				•	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
15569.06 15571.32								146 146		Peak Average	VERTICAL VERTICAL

Tem	nperature	24	₽°C		H	lumidit	у	55%				
Test	Engineer	Sti	m Sung			Configu	ırations	IEEE	802.11	n MCS	D HT40 CH	54
1001	Liginool		moung			oorilige		/ Cł	nain 1 +	Chain	2	
Test	Date	0	ct. 16, 2	015								
Horiz	ontal											
	Enos	Level	Limit Line		Read Level		Antenna Factor	Preamp	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	15808.69	46.79	54.00	-7.21	30.50	12.57	37.70	33.98	101		Average	HORIZONTAL
2	15811.22	59.77	74.00	-14.23	43.48	12.57	37.70	33.98	101	224	Peak	HORIZONTAL

Freq	Level	Limit Line						A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
15810.66 15810.89								146 146		Avenage Peak	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11nMCS0 HT40 CH 62 / Chain 1 + Chain 2
Test Date	Oct. 16, 2015		

Horizontal

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	10618.84 10620.87 15930.54 15931.37	56.83 60.15	74.00 74.00	-17.17 -13.85	41.86 44.18	10.19 12.56	38.40 37.51	33.62 34.10	100 100 100 100	222 208	Average Peak Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu\∕/m	dBu\∕/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	10618.76	56.32	74.00	-17.68	41.35	10.19	38.40	33.62	148	177	Peak	VERTICAL
2	10619.38	43.01	54.00	-10.99	28.04	10.19	38.40	33.62	148	177	Average	VERTICAL
3	15931.18	46.76	54.00	-7.24	30.79	12.56	37.51	34.10	149	186	Average	VERTICAL
4	15931.21	59.93	74.00	-14.07	43.96	12.56	37.51	34.10	149	186	Peak	VERTICAL

Tem	perature	2	4°C		Hu	midity		55%				
Test	Engineer	SI	im Sung		Co	onfigura	itions		02.11n in 1 + 0		HT40 CH 1	02
Test	Date	0	oct. 16, 2	2015								
Horiz	ontal											
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∀/n	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	11020.43	42.88	54.00	-11.12	27.28	10.56	38.42	33.38	100		Average	HORIZONTAL
2	11020.68	55.98	74.00	-18.02	40.38	10.56	38.42	33.38	100	217	Peak	HORIZONTAL

T

Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
11020.37 11020.44								147 147		Peak Average	VERTICAL VERTICAL

Tem	perature	24	4°C		Hu	midity		55%					
Toot	Engineer	C+	im Suna			onfiguro	rtiona	IEEE	802.11n	MCS0	HT40 CH	110	
1621	Engineer	51	im Sung			Jinguid		/ Cho	ain 1 +	Chain :	2		
Test	Date	0	ct. 16, 2	2015									
Horiz	ontal												
	Freq	Level	Limit Line	Over Limit	Read Level		Antenna Factor	Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase	
	MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg			
1	11098.98	60.68	74.00	-13.32	44.98	10.58	38.50	33.38	100	356	Peak	HORIZONTAL	
2	11099.12	47.57	54.00	-6.43	31.87	10.58	38.50	33.38	100	356	Average	HORIZONTAL	

Т

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu\//m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2	11098.81 11099.19								146 146		Peak Average	VERTICAL VERTICAL

HORIZONTAL

HORIZONTAL

102 325 Peak

102 325 Average

Temperature	erature 24°C Humidity 55%							
Test Engineer	Stim Sung	Configurations	IEEE 802.11n MCS0 HT40 CH 134					
	Shim Sung	Comgaranons	/ Chain 1 + Chain 2					
Test Date	Oct. 16, 2015							
Horizontal								
Freq Le	Limit Over wel Line Limit	Read CableAntenna Level Loss Factor	•					
MHz dBu	i∨/m dBu∨/m dB	dBuV dB dB/m	n dB cm deg					

Vertical

1

Freq	Level	Limit Line					•	A/Pos	T/Pos	Remark	Pol/Phase
MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
11341.31 11341.33								147 147		Peak Average	VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

11338.62 58.44 74.00 -15.56 42.42 10.66 38.73 33.37

2 11341.22 44.80 54.00 -9.20 28.77 10.67 38.73 33.37

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6. Band Edge Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.6.3. Test Procedures

The test procedure is the same as section 4.5.3.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11a CH 36, 40, 48 / Chain 2
Test Date	Oct. 15, 2015		

Channel 36

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∿/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5148.60 5150.00 5180.00 5180.60	53.55 106.29	54.00			6.21 6.24		33.05 33.05	102 102 102 102	223 223	Peak Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line						A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5142.80 5150.00 5199.20 5200.00	48.72 98.36	54.00			6.21 6.27	33.74 33.82		100 100 100 100	191 191	Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5121.20	55.48	74.00	-18.52	48.67	6.17	33.69	33.05	101	223	Peak	HORIZONTAL
2	5149.40	42.34	54.00	-11.66	35.44	6.21	33.74	33.05	101	223	Average	HORIZONTAL
3	5240.00	102.83			95.71	6.30	33.87	33.05	101	223	Peak	HORIZONTAL
4	5240.60	90.35			83.23	6.30	33.87	33.05	101	223	Average	HORIZONTAL
5	5351.20	44.73	54.00	-9.27	37.26	6.47	34.06	33.06	101	223	Average	HORIZONTAL
6	5381.60	58.31	74.00	-15.69	50.76	6.50	34.11	33.06	101	223	Peak	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11a CH 52, 60, 64 / Chain 2
Test Date	Oct. 15, 2015		

	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5124.40	45.63	54.00	-8.37	38.80	6.17	33.71	33.05	112	188	Average	HORIZONTAL
2	5140.00	57.84	74.00	-16.16	50.98	6.17	33.74	33.05	112	188	Peak	HORIZONTAL
3	5260.60	99.56			92.35	6.34	33.93	33.06	112	188	Average	HORIZONTAL
4	5261.20	108.76			101.55	6.34	33.93	33.06	112	188	Peak	HORIZOHTAL
5	5362.60	47.35	54.00	-6.65	39.85	6.47	34.09	33.06	112	188	Average	HORIZONTAL
6	5394.40	60.19	74.00	-13.81	52.64	6.50	34.11	33.06	112	188	Peak	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5260 MHz.

Channel 60

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu√/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1 2 3 4	5298.40 5299.20 5350.00 5352.40	101.15 53.97	54.00			6.40 6.47	33.98 34.06	33.06 33.06 33.06 33.06	102 102 102 102	222	Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5300 MHz.

Channel 64

	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBu∨/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5318.80 5319.00 5350.20 5352.60	108.91 53.45			90.36 101.56 45.98 64.03	6.40 6.47	34.01 34.06	33.06 33.06 33.06 33.06	100 100 100 100	222 222	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5320 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11a CH 100, 116, 140 / Chain 2
Test Date	Oct. 15, 2015		

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∨/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1	5458.60	65.41	74.00	-8.59	57.65	6.60	34.22	33.06	100	185	Peak	HORIZONTAL
2	5460.00	49.90	54.00	-4.10	42.14	6.60	34.22	33.06	100	185	Average	HORIZONTAL
3	5467.60	71.39	74.00	-2.61	63.60	6.60	34.25	33.06	100	185	Peak	HORIZONTAL
4	5470.00	53.41	54.00	-0.59	45.62	6.60	34.25	33.06	100	185	Average	HORIZONTAL
5	5499.40	97.84			89.97	6.63	34.30	33.06	100	185	Average	HORIZONTAL
6	5499.80	110.40			102.53	6.63	34.30	33.06	100	185	Peak	HORIZONTAL

Item 5, 6 are the fundamental frequency at 5500 MHz.

Channel 116

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	5450.40	59.05	74.00	-14.95	51.29	6.60	34.22	33.06	100	220	Peak	HORIZONTAL
2	5455.80	46.97	54.00	-7.03	39.21	6.60	34.22	33.06	100	220	Average	HORIZONTAL
3	5466.60	59.58	74.00	-14.42	51.79	6.60	34.25	33.06	100	220	Peak	HORIZONTAL
4	5470.00	47.06	54.00	-6.94	39.27	6.60	34.25	33.06	100	220	Average	HORIZONTAL
5	5580.60	99.80			91.83	6.72	34.34	33.09	100	220	Average	HORIZONTAL
6	5580.60	109.59			101.62	6.72	34.34	33.09	100	220	Peak	HORIZONTAL
7	5730.00	46.31	54.00	-7.69	38.18	6.83	34.43	33.13	100	220	Average	HORIZONTAL
8	5730.00	58.67	74.00	-15.33	50.54	6.83	34.43	33.13	100	220	Peak	HORIZONTAL

Item 5, 6 are the fundamental frequency at 5580 MHz.

Channel 140

	Freq	Level			Read Level				A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5701.00 5701.00 5725.00 5725.20	110.48 53.47	54.00		90.90 102.37 45.34 62.03	6.81 6.83	34.42 34.43	33.12 33.12 33.13 33.13	100 100 100 100	221 221	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5700 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11n MCS0 HT20 CH 36, 40, 48 / Chain 1 + Chain 2
Test Date	Oct. 15, 2015		

	Freq	Level			Read Level					T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∿/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5146.20 5150.00 5180.60 5180.80	53.78 106.99	54.00			6.21 6.24	33.74 33.79	33.05 33.05 33.05 33.05	114 114 114 114	170 170	Peak Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level			Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∨/m	dB	dBu∖∕	dB	dB/m	dB	cm	deg		
1 2 3 4	5149.60 5149.60 5199.60 5199.60	60.09 99.33	74.00			6.27	33.74 33.82	33.05	100 100 100 100	223 223	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level		Over Limit	Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5101.40	43.48	54.00	-10.52	36.73	6.14	33.66	33.05	100	231	Average	HORIZONTAL
2	5115.80	56.75	74.00	-17.25	49.97	6.14	33.69	33.05	100	231	Peak	HORIZONTAL
3	5239.40	101.27			94.15	6.30	33.87	33.05	100	231	Average	HORIZONTAL
4	5239.40	110.92			103.80	6.30	33.87	33.05	100	231	Peak	HORIZONTAL
5	5358.20	45.43	54.00	-8.57	37.96	6.47	34.06	33.06	100	231	Average	HORIZONTAL
6	5368.40	58.29	74.00	-15.71	50.79	6.47	34.09	33.06	100	231	Peak	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11n MCS0 HT20 CH 52, 60, 64 / Chain 1 + Chain 2
Test Date	Oct. 15, 2015		

	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5123.80	45.73	54.00	-8.27	38.90	6.17	33.71	33.05	100	222	Average	HORIZONTAL
2	5139.40	57.85	74.00	-16.15	51.02	6.17	33.71	33.05	100	222	Peak	HORIZONTAL
3	5259.40	99.80			92.59	6.34	33.93	33.06	100	222	Average	HORIZONTAL
4	5259.40	108.47			101.26	6.34	33.93	33.06	100	222	Peak	HORIZONTAL
5	5352.40	47.49	54.00	-6.51	40.02	6.47	34.06	33.06	100	222	Average	HORIZONTAL
6	5360.20	60.57	74.00	-13.43	53.10	6.47	34.06	33.06	100	222	Peak	HORIZONTAL

Item 3, 4 are the fundamental frequency at 5260 MHz.

Channel 60

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5299.60 5299.60 5350.00 5350.80	110.53 51.42				6.40 6.47	33.98 34.06	33.06 33.06 33.06 33.06	102 102 102 102	223 223	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5300 MHz.

Channel 64

	Freq	Level			Read Level				A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBu∨/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5319.60	97.72			90.37	6.40	34.01	33.06	100	223	Average	HORIZONTAL
2	5319.60	107.75			100.40	6.40	34.01	33.06	100	223	Peak	HORIZONTAL
3	5350.20	53.58	54.00	-0.42	46.11	6.47	34.06	33.06	100	223	Average	HORIZONTAL
4	5350.60	68.53	74.00	-5.47	61.06	6.47	34.06	33.06	100	223	Peak	HORIZONTAL

Item 1, 2 are the fundamental frequency at 5320 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11n MCS0 HT20 CH 100, 116, 140 / Chain 1 + Chain 2
Test Date	Oct. 15, 2015		

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5459.20	49.93	54.00	-4.07	42.17	6.60	34.22	33.06	100	229	Average	HORIZONTAL
2	5459.60	62.88	74.00	-11.12	55.12	6.60	34.22	33.06	100	229	Peak	HORIZONTAL
3	5466.80	67.76	74.00	-6.24	59.97	6.60	34.25	33.06	100	229	Peak	HORIZONTAL
4	5469.60	53.32	54.00	-0.68	45.53	6.60	34.25	33.06	100	229	Average	HORIZONTAL
5	5499.20	108.72			100.85	6.63	34.30	33.06	100	229	Peak	HORIZONTAL
6	5499.60	99.33			91.46	6.63	34.30	33.06	100	229	Average	HORIZONTAL

Item 5, 6 are the fundamental frequency at 5500 MHz.

Channel 116

	Freq	Level	Limit Line	Over Limit	Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1	5434.80	58.24	74.00	-15.76	50.55	6.56	34.19	33.06	100	222	Peak	HORIZONTAL
2	5457.00	45.32	54.00	-8.68	37.56	6.60	34.22	33.06	100	222	Average	HORIZONTAL
3	5463.60	45.48	54.00	-8.52	37.69	6.60	34.25	33.06	100	222	Average	HORIZONTAL
4	5465.40	57.27	74.00	-16.73	49.48	6.60	34.25	33.06	100	222	Peak	HORIZONTAL
5	5579.40	100.30			92.33	6.72	34.34	33.09	100	222	Average	HORIZONTAL
6	5579.40	109.75			101.78	6.72	34.34	33.09	100	222	Peak	HORIZONTAL
7	5725.60	43.76	54.00	-10.24	35.63	6.83	34.43	33.13	100	222	Average	HORIZONTAL
8	5725.60	55.74	74.00	-18.26	47.61	6.83	34.43	33.13	100	222	Peak	HORIZONTAL

Item 5, 6 are the fundamental frequency at 5580 MHz.

Channel 140

	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∀/m	dB	dBu∖∕	dB	dB/m	dB	cm	deg		
1 2 3	5699.60 5700.00 5725.00	108.39		-0.24	90.99 100.29 45.63	6.81	34.41	33.12 33.12 33.13	102 102 102	222	Average Peak Average	HORIZONTAL HORIZONTAL HORIZONTAL
4	5725.00	69.56	74.00	-4.44	61.43	6.83	34.43	33.13	102	222	Peak	HORIZONTAL

Item 1, 2 are the fundamental frequency at 5700 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11n MCS0 HT40 CH 38, 46 /
	Sinn Sung	Conligurations	Chain 1 + Chain 2
Test Date	Oct. 15, 2015		

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBuV/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5149.20 5150.00 5192.00 5192.00	67.88 89.98	74.00			6.21 6.24	33.74 33.82		101 101 101 101	230 230	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBư∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5146.00 5150.00 5231.80 5231.80	46.13 95.77	54.00			6.21 6.30	33.74 33.87		100 100 100 100	223 223	Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11n MCS0 HT40 CH 54, 62 / / Chain 1 + Chain 2
Test Date	Oct. 15, 2015		

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5267.60 5272.40 5350.40 5350.40	106.68 52.07	54.00		88.69 99.44 44.60 59.21	6.37 6.47	33.93 34.06		100 100 100 100	214 214	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5270 MHz.

Channel 62

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5312.00 5312.00 5350.00 5352.40	100.62 53.80	54.00		81.53 93.27 46.33 62.19	6.40 6.47	34.01 34.06	33.06 33.06 33.06 33.06	100 100 100 100	232 232	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5310 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Stim Sung	Configurations	IEEE 802.11n MCS0 HT40 CH 102, 110, 134
Test Date	Oct. 15, 2015		/ Chain 1 + Chain 2

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5459.20	60.97	74.00	-13.03	53.21	6.60	34.22	33.06	100	228	Peak	HORIZONTAL
2	5459.60	47.90	54.00	-6.10	40.14	6.60	34.22	33.06	100	228	Average	HORIZONTAL
3	5467.20	68.37	74.00	-5.63	60.58	6.60	34.25	33.06	100	228	Peak	HORIZONTAL
4	5469.60	53.89	54.00	-0.11	46.10	6.60	34.25	33.06	100	228	Average	HORIZOHTAL
5	5512.00	90.04			82.16	6.65	34.30	33.07	100	228	Average	HORIZONTAL
6	5512.00	100.79			92.91	6.65	34.30	33.07	100	228	Peak	HORIZONTAL

Item 5, 6 are the fundamental frequency at 5510 MHz.

Channel 110

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∨/m	dBu∨/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1	5454.40	68.20	74.00	-5.80	60.44	6.60	34.22	33.06	101	222	Peak	HORIZONTAL
2	5459.60	49.87	54.00	-4.13	42.11	6.60	34.22	33.06	101	222	Average	HORIZONTAL
3	5467.60	71.60	74.00	-2.40	63.81	6.60	34.25	33.06	101	222	Peak	HORIZONTAL
4	5469.60	52.33	54.00	-1.67	44.54	6.60	34.25	33.06	101	222	Average	HORIZONTAL
5	5552.40	99.55			91.60	6.70	34.33	33.08	101	222	Average	HORIZONTAL
6	5552.40	109.60			101.65	6.70	34.33	33.08	101	222	Peak	HORIZONTAL

Item 5, 6 are the fundamental frequency at 5550 MHz.

Channel 134

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	cm	deg		
1 2 3 4	5672.40 5682.00 5725.00 5727.20	106.24 53.91	54.00			6.81 6.83	34.40 34.43	33.12 33.12 33.13 33.13	101 101 101 101	220 220	Average Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 1, 2 are the fundamental frequency at 5670 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

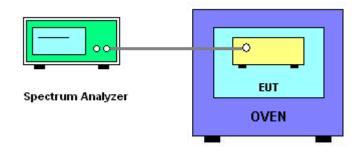
4.7. Frequency Stability Measurement

4.7.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.7.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.7.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 7. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 8. Extreme temperature is $-20^{\circ}C \sim 50^{\circ}C$.

4.7.4. Test Setup Layout

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.7.7. Test Result of Frequency Stability

Temperature	25 °C	Humidity	45%
Test Engineer	Kenneth Huang	Test Date	Oct. 17, 2015

Mode: 20 MHz / Chain 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
00	5200 MHz						
(^)	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5199.9461	5199.9447	5199.9429	5199.9408			
110.00	5199.9449	5199.9436	5199.9420	5199.9401			
93.50	5199.9435	5199.9424	5199.9412	5199.9390			
Max. Deviation (MHz)	0.0565	0.0576	0.0588	0.0610			
Max. Deviation (ppm)	10.87	11.08	11.32	11.74			
Result		Com	plies				

Temperature	Measurement Frequency (MHz)						
(10)	5200 MHz						
(°C)	0 Minute	2 Minute	5 Minute	10 Minute			
-20	5199.9503	5199.9490	5199.9473	5199.9449			
-10	5199.9488	5199.9476	5199.9460	5199.9441			
0	5199.9474	5199.9462	5199.9443	5199.9421			
10	5199.9461	5199.9448	5199.9433	5199.9415			
20	5199.9449	5199.9436	5199.9420	5199.9401			
30	5199.9435	5199.9424	5199.9410	5199.9394			
40	5199.9419	5199.9404	5199.9388	5199.9368			
50	5199.9402	5199.9390	5199.9375	5199.9348			
Max. Deviation (MHz)	0.0598	0.0610	0.0625	0.0652			
Max. Deviation (ppm)	11.51	11.74	12.03	12.55			
Result	Complies						

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
(V)	5300 MHz						
	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5299.9475	5299.9461	5299.9443	5299.9422			
110.00	5299.9463	5299.9450	5299.9434	5299.9415			
93.50	5299.9449	5299.9438	5299.9426	5299.9404			
Max. Deviation (MHz)	0.0551	0.0562	0.0574	0.0596			
Max. Deviation (ppm)	10.39	10.60	10.83	11.24			
Result	Complies						

Temperature	Measurement Frequency (MHz)							
(%)	5300 MHz							
(°C)	0 Minute	2 Minute	5 Minute	10 Minute				
-20	5299.9517	5299.9504	5299.9487	5299.9463				
-10	5299.9502	5299.9490	5299.9474	5299.9455				
0	5299.9488	5299.9476	5299.9457	5299.9435				
10	5299.9475	5299.9462	5299.9447	5299.9429				
20	5299.9463	5299.9450	5299.9434	5299.9415				
30	5299.9449	5299.9438	5299.9424	5299.9408				
40	5299.9433	5299.9418	5299.9402	5299.9382				
50	5299.9416	5299.9404	5299.9389	5299.9362				
Max. Deviation (MHz)	0.0584	0.0596	0.0611	0.0638				
Max. Deviation (ppm)	11.01	11.24	11.52	12.03				
Result	Complies							

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
		5580) MHz				
(^)	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5579.9370	5579.9356	5579.9338	5579.9317			
110.00	5579.9358	5579.9345	5579.9329	5579.9310			
93.50	5579.9344	5579.9333	5579.9321	5579.9299			
Max. Deviation (MHz)	0.0657	0.0668	0.0680	0.0702			
Max. Deviation (ppm)	11.77	11.96	12.18	12.57			
Result	Complies						

Temperature	Measurement Frequency (MHz)							
(10)	5580 MHz							
(°C)	0 Minute	2 Minute	5 Minute	10 Minute				
-20	5579.9412	5579.9399	5579.9382	5579.9358				
-10	5579.9397	5579.9385	5579.9369	5579.9350				
0	5579.9383	5579.9371	5579.9352	5579.9330				
10	5579.9370	5579.9357	5579.9342	5579.9324				
20	5579.9358	5579.9345	5579.9329	5579.9310				
30	5579.9344	5579.9333	5579.9319	5579.9303				
40	5579.9328	5579.9313	5579.9297	5579.9277				
50	5579.9311	5579.9299	5579.9284	5579.9257				
Max. Deviation (MHz)	0.0689	0.0701	0.0716	0.0743				
Max. Deviation (ppm)	12.36	12.57	12.84	13.32				
Result	Complies							

Mode: 40 MHz / Chain 1

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)						
00		5190) MHz				
(M)	0 Minute	2 Minute	5 Minute	10 Minute			
126.50	5189.9495	5189.9481	5189.9463	5189.9442			
110.00	5189.9483	5189.9470	5189.9454	5189.9435			
93.50	5189.9469	5189.9458	5189.9446	5189.9424			
Max. Deviation (MHz)	0.0531	0.0542	0.0554	0.0576			
Max. Deviation (ppm)	10.23	10.44	10.67	11.10			
Result		Com	plies				

Temperature	Measurement Frequency (MHz)					
(°C)	5190 MHz					
(°C)	0 Minute	2 Minute	5 Minute	10 Minute		
-20	5189.9473	5189.9460	5189.9443	5189.9419		
-10	5189.9458	5189.9446	5189.9430	5189.9411		
0	5189.9444	5189.9432	5189.9413	5189.9391		
10	5189.9431	5189.9418	5189.9403	5189.9385		
20	5189.9419	5189.9406	5189.9390	5189.9371		
30	5189.9405	5189.9394	5189.9380	5189.9364		
40	5189.9389	5189.9374	5189.9358	5189.9338		
50	5189.9372	5189.9360	5189.9345	5189.9318		
Max. Deviation (MHz)	0.0628	0.0640	0.0655	0.0682		
Max. Deviation (ppm)	12.11	12.34	12.63	13.15		
Result	Complies					

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)				
0.0	5310 MHz				
(^)	0 Minute	2 Minute	5 Minute	10 Minute	
126.50	5309.9444	5309.9430	5309.9412	5309.9391	
110.00	5309.9432	5309.9419	5309.9403	5309.9384	
93.50	5309.9418	5309.9407	5309.9395	5309.9373	
Max. Deviation (MHz)	0.0582	0.0593	0.0605	0.0627	
Max. Deviation (ppm)	10.96	11.16	11.39	11.80	
Result	Complies				

Temperature	Measurement Frequency (MHz)					
(°C)	5310 MHz					
(°C)	0 Minute	2 Minute	5 Minute	10 Minute		
-20	5309.9486	5309.9473	5309.9456	5309.9432		
-10	5309.9471	5309.9459	5309.9443	5309.9424		
0	5309.9457	5309.9445	5309.9426	5309.9404		
10	5309.9444	5309.9431	5309.9416	5309.9398		
20	5309.9432	5309.9419	5309.9403	5309.9384		
30	5309.9418	5309.9407	5309.9393	5309.9377		
40	5309.9402	5309.9387	5309.9371	5309.9351		
50	5309.9385	5309.9373	5309.9358	5309.9331		
Max. Deviation (MHz)	0.0615	0.0627	0.0642	0.0669		
Max. Deviation (ppm)	11.58	11.80	12.09	12.60		
Result	Complies					

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)				
	5550 MHz				
(^)	0 Minute	2 Minute	5 Minute	10 Minute	
126.50	5549.9461	5549.9447	5549.9429	5549.9408	
110.00	5549.9449	5549.9436	5549.9420	5549.9401	
93.50	5549.9435	5549.9390			
Max. Deviation (MHz)	0.0565	0.0576	0.0588	0.0610	
Max. Deviation (ppm)	10.19	10.39	10.60	11.00	
Result	Complies				

Temperature	Measurement Frequency (MHz)					
(***)	5550 MHz					
(°C)	0 Minute	2 Minute	5 Minute	10 Minute		
-20	5549.9467	5549.9454	5549.9437	5549.9413		
-10	5549.9452	5549.9440	5549.9424	5549.9405		
0	5549.9438	5549.9426	5549.9407	5549.9385		
10	5549.9425	5549.9412	5549.9397	5549.9379		
20	5549.9413	5549.9400	5549.9384	5549.9365		
30	5549.9399	5549.9388	5549.9374	5549.9358		
40	5549.9383	5549.9368	5549.9352	5549.9332		
50	5549.9366	5549.9354	5549.9339	5549.9312		
Max. Deviation (MHz)	0.0634	0.0646	0.0661	0.0688		
Max. Deviation (ppm)	11.43	11.65	11.92	12.40		
Result	Complies					

4.8. Antenna Requirements

4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
LISN	Schwarzbeck	NSLK 8127	8127650	9kHz ~ 30MHz	Nov. 17, 2014	Nov. 16, 2015	Conduction (CO02-CB)
LISN	Schwarzbeck	NSLK 8127	8127478	9kHz ~ 30MHz	Nov. 17, 2014	Nov. 16, 2015	Conduction (CO02-CB)
EMI Receiver	Agilent	N9038A	MY52260140	9kHz ~ 8.4GHz	Jan. 13, 2015	Jan. 12, 2016	Conduction (CO02-CB)
COND Cable	Woken	Cable	01	0.15 MHz ~ 30 MHz	Dec. 01, 2014	Nov. 30, 2015	Conduction (CO02-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	N.C.R.	Conduction (CO02-CB)
Pulse Limiter	Schwarzbeck	VTSD 9561F	9561-F073	9kHz ~ 30MHz	Sep. 30, 2015	Sep. 29, 2016	Conduction (CO02-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20MHz ~ 2GHz	May 06, 2015	May 05, 2016	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 12, 2015*	Mar. 11, 2017*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 28, 2014	Oct. 27, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 21, 2015	Jul. 20, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Feb. 24, 2015	Feb. 23, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 12, 2015	Jan. 11, 2016	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 25, 2014	Nov. 24, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 06, 2014	Nov. 05, 2015	Radiation (03CH01-CB)
EMI Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8.4GHz	Jan. 21, 2015	Jan. 20, 2016	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 15, 2014	Nov. 14, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	1 GHz ~ 40 GHz	Nov. 15, 2014	Nov. 14, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	1 GHz ~ 40 GHz	Nov. 15, 2014	Nov. 14, 2015	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 12, 2014	Dec. 11, 2015	Conducted (TH01-CB)
Spectrum analyzer	R&S	FSP40	100080	9kHz~40GHz	Sep. 21, 2015	Sep. 20, 2016	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 02, 2015	Jun. 01, 2016	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 15, 2014	Nov. 14, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 15, 2014	Nov. 14, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 15, 2014	Nov. 14, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 15, 2014	Nov. 14, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 15, 2014	Nov. 14, 2015	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 03, 2014	Nov. 02, 2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

*Calibration Interval of instruments listed above is two year.

N.C.R. means Non-Calibration required. Report Format Version: Rev. 01

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%