

FCC Test Report

FCC ID : NKR-DHUB81

Equipment : 11abgn WLAN/Bluetooth Combo adapter

Model No. : DHUB-81, 700-0022-001

Brand Name : WNC

Applicant : Wistron Neweb Corporation

Address : 20 Park Avenue II, Hsinchu Science Park,

Hsinchu 308, Taiwan, R.O.C.

Standard : 47 CFR FCC Part 15.247

Received Date : Feb. 18, 2014

Tested Date : Feb. 20 ~ Feb. 28, 2014

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

lac-MRA

Testing Laboratory

Report No.: FR421807AD Report Version: Rev. 01 Page: 1 of 46

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Measurement Uncertainty	g
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	Unwanted Emissions into Restricted Frequency Bands	14
3.3	Unwanted Emissions into Non-Restricted Frequency Bands	30
3.4	Conducted Output Power	35
3.5	Number of Hopping Frequency	37
3.6	20dB and Occupied Bandwidth	39
3.7	Channel Separation	41
3.8	Number of Dwell Time	43
4	TEST LABORATORY INFORMATION	46

Release Record

Report No.	Version	Description	Issued Date
FR421807AD	Rev. 01	Initial issue	Apr. 21, 2014

Report No.: FR421807AD Page : 3 of 46

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.156MHz 47.77 (Margin -7.92dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	Radiated Emissions [dBuV/m at 3m]: 898.22MHz 39.85 (Margin - 6.15dB) - PK	
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(1)	Conducted Output Power	Power [dBm]: BR: 3.95 EDR: 5.61	Pass
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR421807AD Page: 4 of 46

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description	
WNC	DHUB-81	11abgn WLAN/Bluetooth	markating purpose	
VVINC	700-0022-001	Combo adapter	marketing purpose	

[★] All models are electrically identical, different model names are for marketing purpose.

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information								
Frequency Range (MHz) Bluetooth Ch. Frequency Channel Number Data Rate								
2400-2483.5	BR V4.0	2402-2480	0-78 [79]	1 Mbps				
2400-2483.5	EDR V4.0	2402-2480	0-78 [79]	2 Mbps				
2400-2483.5	EDR V4.0	2402-2480	0-78 [79]	3 Mbps				

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

1.1.3 Antenna Details

Ant. No.	Туре	Type Gain (dBi) Connector		Remark
1	Printed	-2.48		

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	5Vdc from host
-------------------	----------------

1.1.5 Accessories

N/A

Report No.: FR421807AD Page: 5 of 46

The above models, model **DHUB-81** was selected as a representative one for the final test and only its data was recorded in this report.

Note 2: Bluetooth BR uses a GFSK.

Note 3: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.

1.1.6 Channel List

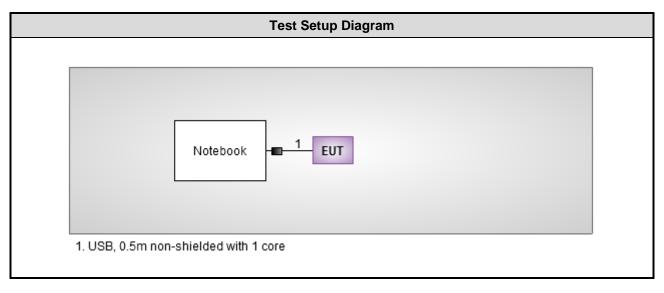
Frequency band (MHz)				2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.1.7 Test Tool and Duty Cycle

Test Tool	Blue Tool, V1.6.2.0

1.1.8 Power Setting

Madulation Mada	Test Frequency (MHz)			
Modulation Mode	2402	2441	2480	
GFSK/1Mbps	0	0	0	
8DPSK/3Mbps	0	0	0	


Report No.: FR421807AD Page: 6 of 46

1.2 Local Support Equipment List

	Support Equipment List							
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)		
1	Notebook	DELL	E6430		DoC	USB 0.5m non-shielded cable with 1 core.		

1.3 Test Setup Chart

Report No.: FR421807AD Page: 7 of 46

1.4 The Equipment List

Conducted Emission Conduction room 1 / (CO01-WS)								
								Instrument Manufacturer Model No. Serial No. Calibration Date Calibration U
R&S	ESCS 30	100169	Oct. 15, 2013	Oct. 14, 2014				
SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 23, 2013	Nov. 22, 2014				
SCHWARZBECK	Schwarzbeck 8127	8127-666	Dec. 04, 2013	Dec. 03, 2014				
Woken	CFD200-NL	CFD200-NL-001	Apr. 24, 2013	Apr. 23, 2014				
NA	50	04	Apr. 22, 2013	Apr. 21, 2014				
	Conduction room 1 / (Manufacturer R&S SCHWARZBECK SCHWARZBECK Woken	Conduction room 1 / (CO01-WS) Manufacturer Model No. R&S ESCS 30 SCHWARZBECK Schwarzbeck 8127 SCHWARZBECK Schwarzbeck 8127 Woken CFD200-NL	Manufacturer Model No. Serial No. R&S ESCS 30 100169 SCHWARZBECK Schwarzbeck 8127 8127-667 SCHWARZBECK Schwarzbeck 8127 8127-666 Woken CFD200-NL CFD200-NL-001	Manufacturer Model No. Serial No. Calibration Date R&S ESCS 30 100169 Oct. 15, 2013 SCHWARZBECK Schwarzbeck 8127 8127-667 Nov. 23, 2013 SCHWARZBECK Schwarzbeck 8127 8127-666 Dec. 04, 2013 Woken CFD200-NL CFD200-NL-001 Apr. 24, 2013				

Test Item	Radiated Emission				
Test Site	966 chamber 2 / (03C	CH02-WS)			
Instrument	Manufacturer Model No. Serial No. Calibration Date				Calibration Until
Spectrum Analyzer	R&S	FSV40	101499	Feb. 08, 2014	Feb. 07, 2015
Receiver	R&S	ESR3	101657	Jan. 18, 2014	Jan. 17, 2015
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-524	Jan. 08, 2014	Jan. 07, 2015
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1095	Jan. 07, 2014	Jan. 06, 2015
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Dec. 27, 2013	Dec. 26, 2014
Preamplifier	Burgeon	BPA-530	100218	Dec. 09, 2013	Dec. 08, 2014
Preamplifier	Agilent	83017A	MY39501309	Dec. 09, 2013	Dec. 08, 2014
Preamplifier	EM	EM18G40G	060572	Jun. 20, 2013	Jun. 19, 2014
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16140/4	Dec. 17, 2013	Dec. 16, 2014
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16018/4	Dec. 17, 2013	Dec. 16, 2014
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16015/4	Dec. 17, 2013	Dec. 16, 2014
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-003	Dec. 17, 2013	Dec. 16, 2014
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-004	Dec. 17, 2013	Dec. 16, 2014
Note: Calibration Inter	rval of instruments liste	ed above is one year.	•		•

Test Item	Radiated Emission ab	Radiated Emission above 1GHz							
Test Site	966 chamber 2 / (03C	966 chamber 2 / (03CH02-WS)							
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration Until							
Loop Antenna	R&S	R&S HFH2-Z2 100330 Nov. 15, 2012 Nov. 14, 2014							
Note: Calibration Interval of instruments listed above is two year.									

Report No.: FR421807AD Page: 8 of 46

Test Item	RF Conducted							
Test Site	(TH01-WS)							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101063	Feb. 17, 2014	Feb. 16, 2015			
Power Meter	Anritsu	ML2495A	1241002	Oct. 24, 2013	Oct. 23, 2014			
Power Sensor	Power Sensor Anritsu MA2411B 1207366 Oct. 24, 2013 Oct. 23, 2014							
Note: Calibration Interval of instruments listed above is one year.								

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 FCC Public notice DA 00-705 ANSI C63.10-2009

Note: The EUT has been tested and complied with FCC part 15B requirement. FCC Part 15B test results are issued to another report.

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±35.286 Hz				
Conducted power	±0.536 dB				
Frequency error	±35.286 Hz				
Temperature	±0.3 °C				
Conducted emission	±2.946 dB				
AC conducted emission	±2.43 dB				
Radiated emission	±2.49 dB				

Report No.: FR421807AD Page: 9 of 46

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	19°C / 65%	Skys Huang
Radiated Emissions	03CH02-WS	18°C / 63%	Anderson Hong Aska Huang
RF Conducted	TH01-WS	22°C / 62%	Mark Liao

FCC site registration No.: 657002IC site registration No.: 10807A-2

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Conducted Emissions	8DPSK	2441	3Mbps	-
Radiated Emissions < 1GHz	8DPSK	2441	3Mbps	-
Radiated Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	-
Conducted Output Power	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	-
Number of Hopping Channels	GFSK 8DPSK	2402~2480 2402~2480	1Mbps 3Mbps	-
Hopping Channel Separation	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	-
Dwell Time	GFSK 8DPSK	2402 2402	1Mbps 3Mbps	-

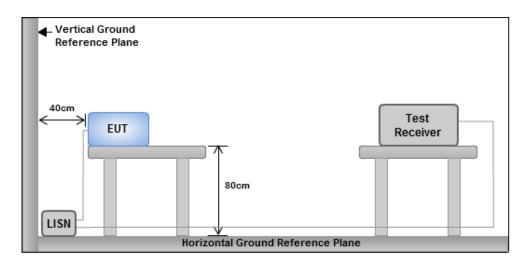
NOTE:

Report No.: FR421807AD Page: 10 of 46

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.

3 Transmitter Test Results

3.1 Conducted Emissions

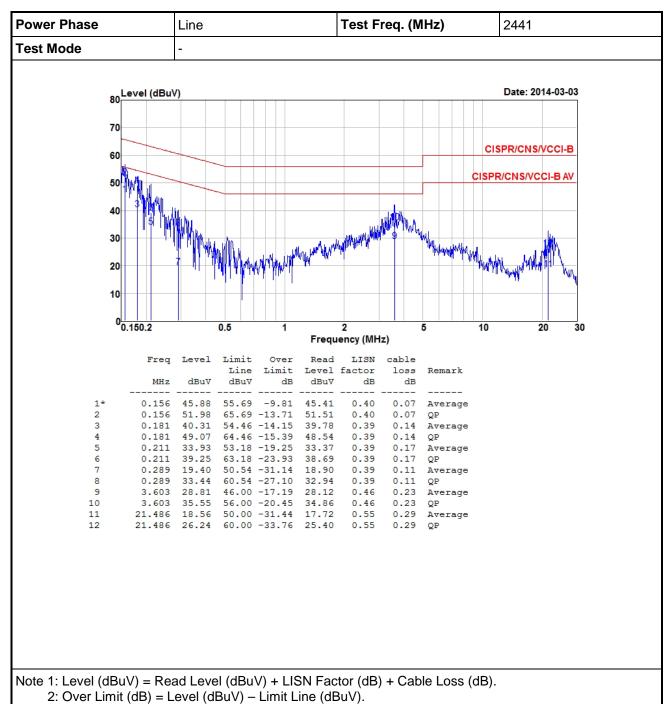

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5 66 - 56 * 56 -							
0.5-5	56	46					
5-30 60 50							
Note 1: * Decreases with the logarithm of the frequency.							

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup


Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR421807AD Page: 11 of 46

3.1.4 Test Result of Conducted Emissions

Report No.: FR421807AD Page: 12 of 46

Report No.: FR421807AD Page: 13 of 46

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960	500	54	3				

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit

Note 2:

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.2.2 Test Procedures

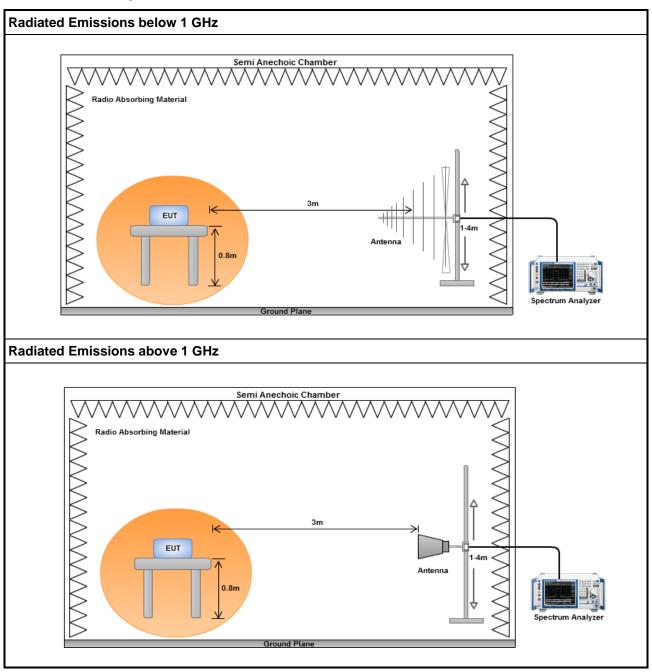
- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

3

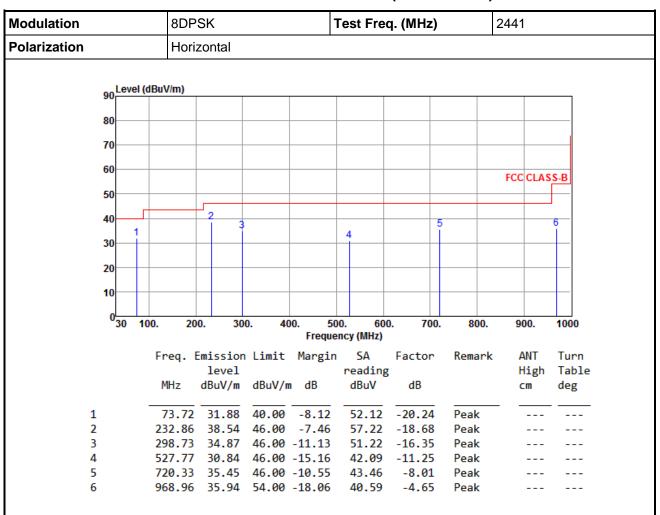
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics
The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:


20log (Duty cycle) = 20log
$$\frac{1s / 1600 * 5}{100 \text{ ms}}$$
 = -30.1dB

4. Radiated emission above 1GHz / Average value for other emissions RBW=1MHz, VBW=1/T and Peak detector

Report No.: FR421807AD Page: 14 of 46


3.2.3 Test Setup

Report No.: FR421807AD Page : 15 of 46

3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR421807AD Page: 16 of 46

Modulation		8	8DPSK T		Test Fre	est Freq. (MHz)		2441					
Polarization			١	Vertical									
	90	Level	(dBuV/r	n)									
	80												
	70												
	60										FCC	CLAS	S-B
	50												
	40							4				i 	
	30	1	2		3			-					
	20												
	10												
	0	30	100.	20	0. 30	0. 40	00. 50 Freque	0. 60 ncy (MHz)	0. 700.	800.	9	00.	1000
			Fre	q. E	Emission	Limit	Margin	SA	Factor	Remark	: 4	ANT	Turn
					level			reading	_			ligh	Table
			MH	Z	dBuV/m	dBuV/n	n dB	dBuV	dB		(m	deg
:	1		50	.48	28.80	40.00	-11.20	45.51	-16.71	Peak			
	2			.93			-17.32		-22.06	Peak			
	3			.73			-15.32		-18.21	Peak			
•	4		527	.81	32.77	46.00	-13.23	44.02	-11.25	Peak			

44.35 -6.79

-5.45

45.30

Peak

Peak

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

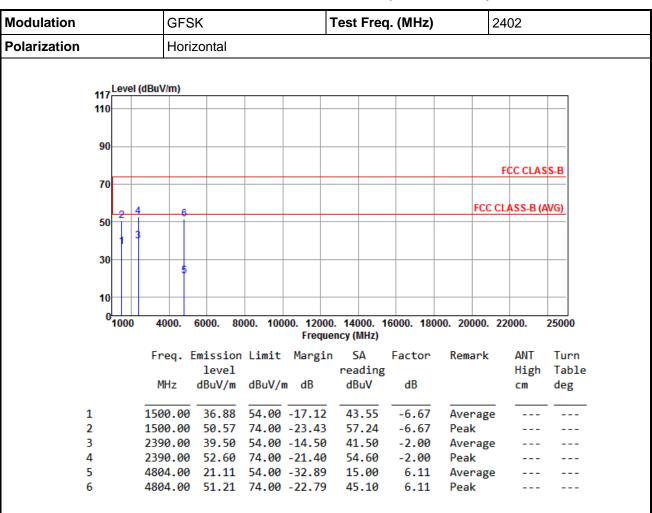
*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

798.53

39.85

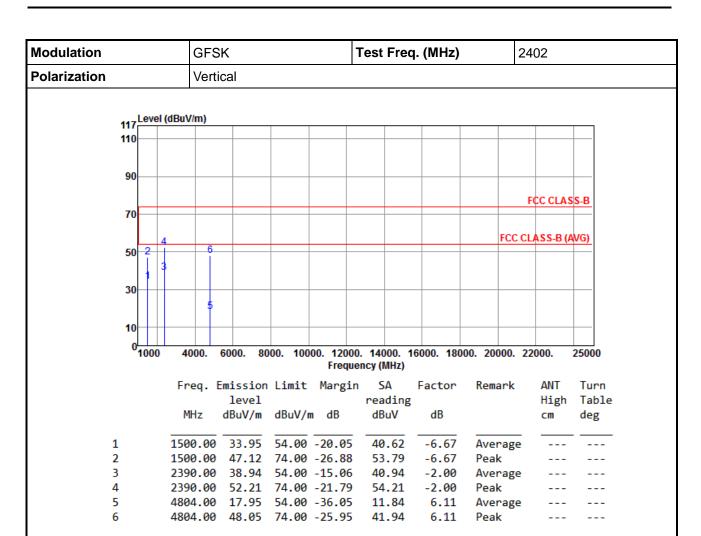
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.


37.56 46.00 -8.44

46.00 -6.15

Report No.: FR421807AD Page: 17 of 46

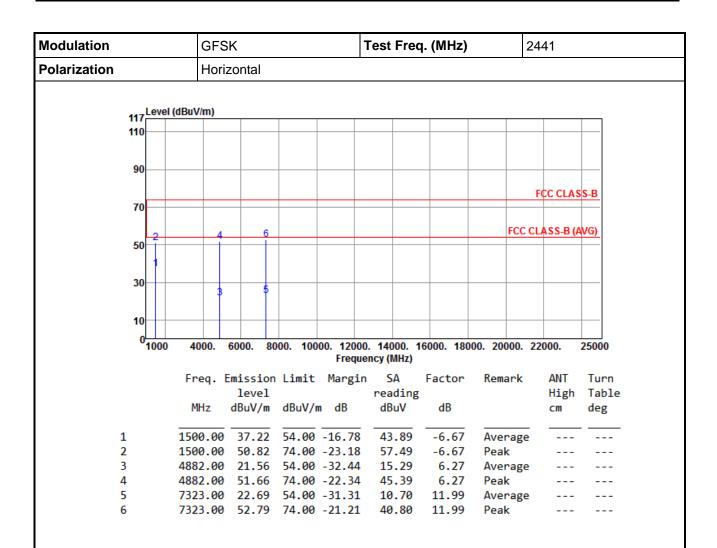
3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

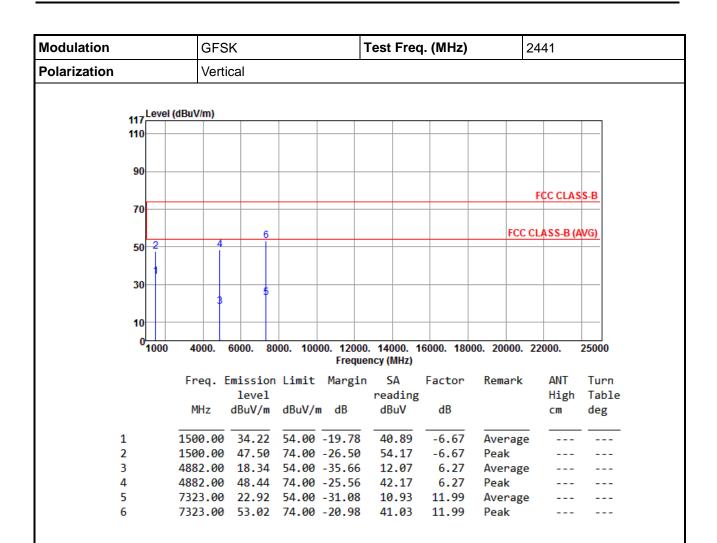
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR421807AD Page: 18 of 46



Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

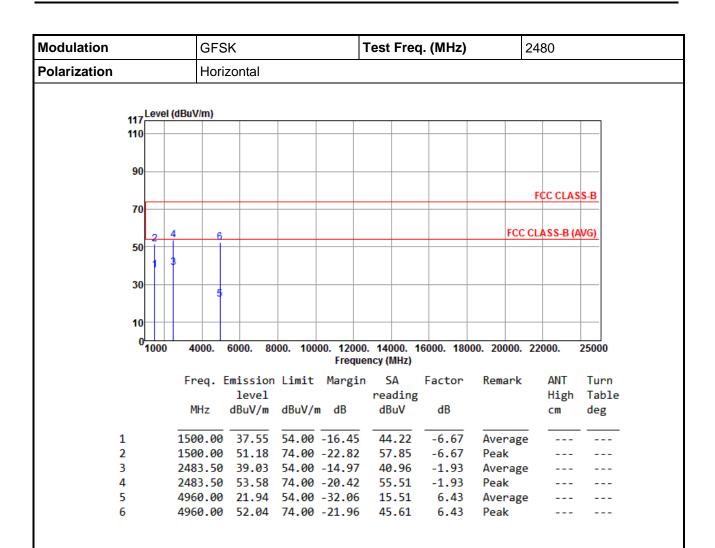
Report No.: FR421807AD Page: 19 of 46


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

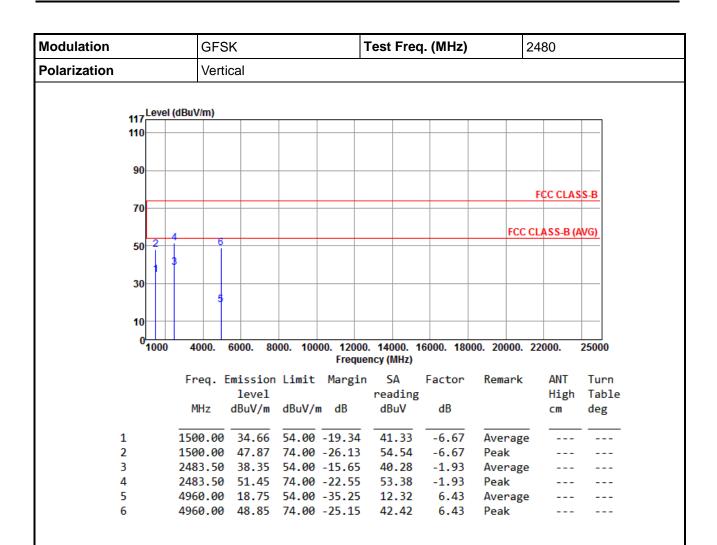
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR421807AD Page: 20 of 46



Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR421807AD Page: 21 of 46

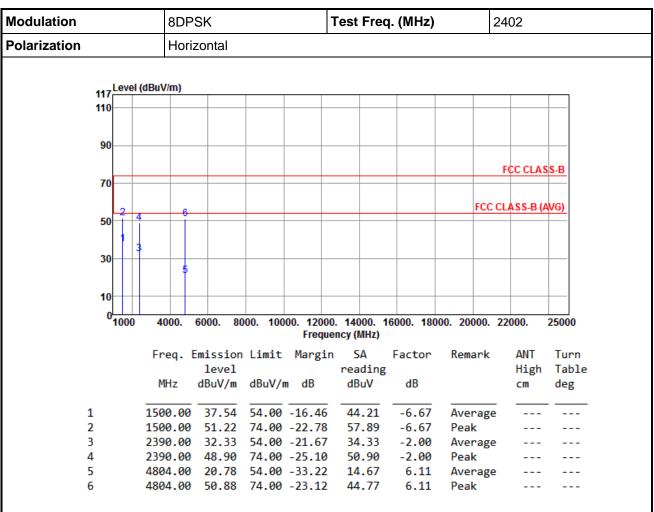

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR421807AD Page: 22 of 46

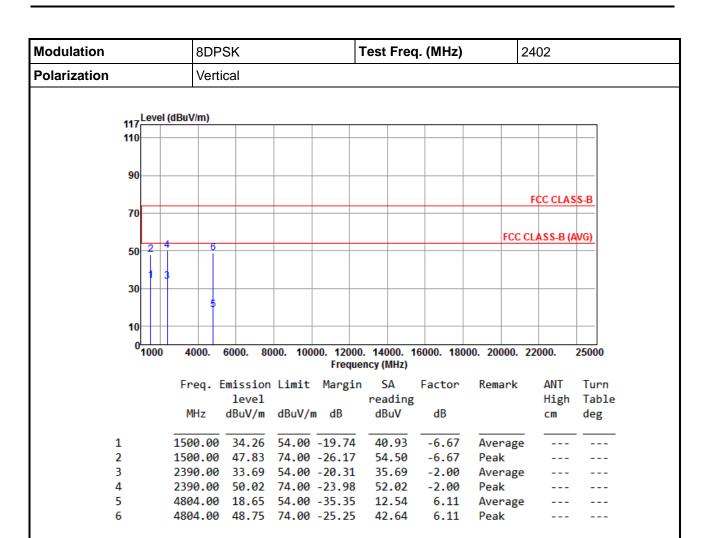
Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR421807AD Page: 23 of 46

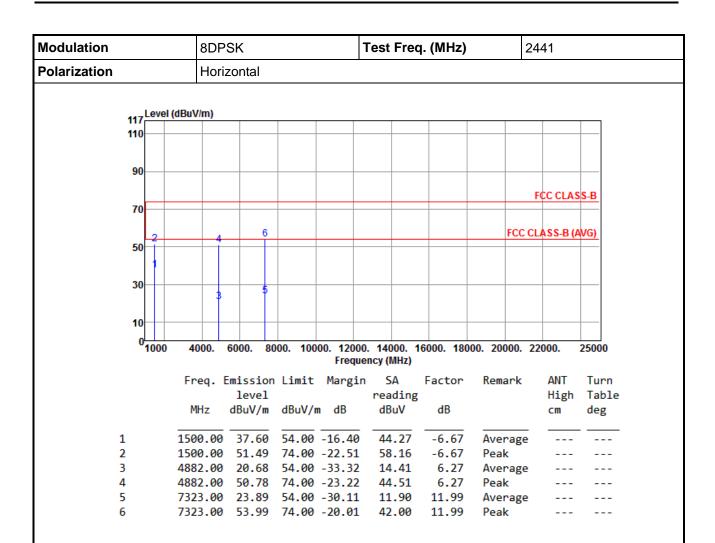
3.2.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

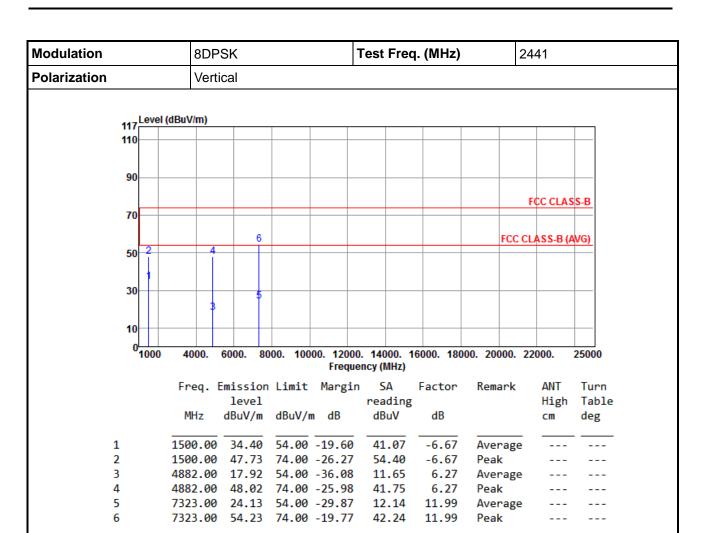
Report No.: FR421807AD Page: 24 of 46


Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

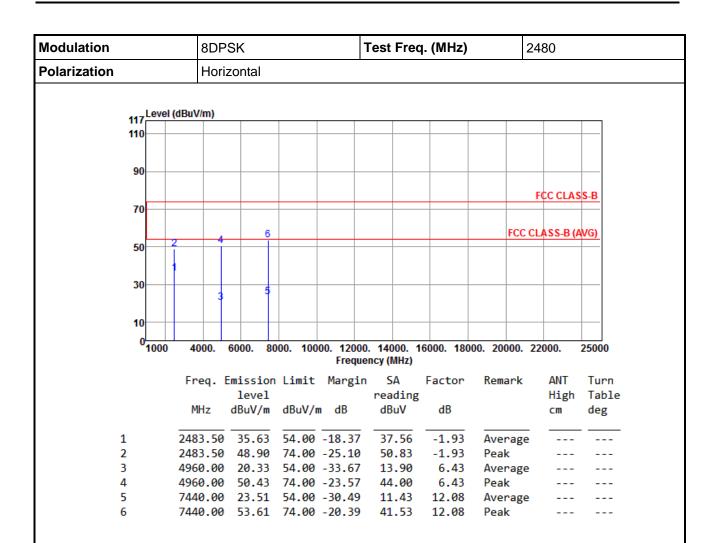
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR421807AD Page: 25 of 46



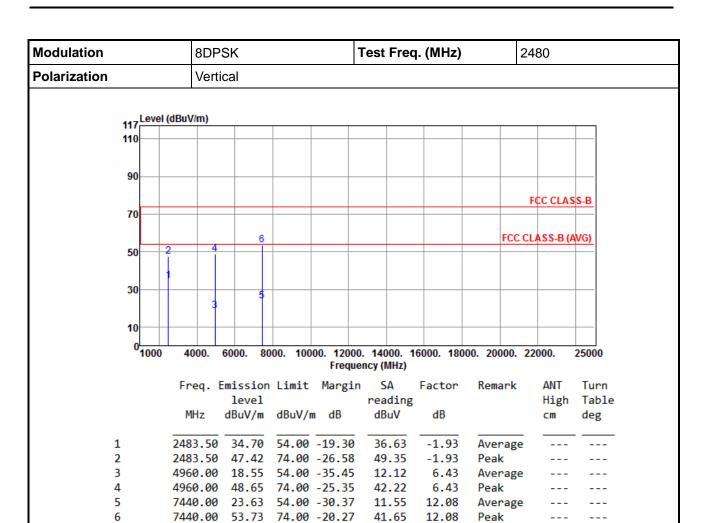
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR421807AD Page: 26 of 46



Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR421807AD Page: 27 of 46



Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR421807AD Page: 28 of 46

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

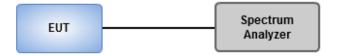
Report No.: FR421807AD Page: 29 of 46

3.3 Unwanted Emissions into Non-Restricted Frequency Bands

3.3.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.3.2 Test Procedures

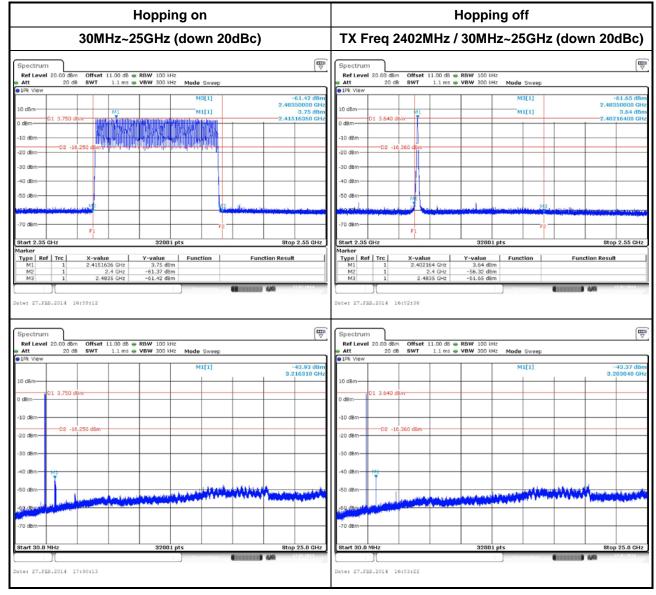

Reference Level Measurement

- Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

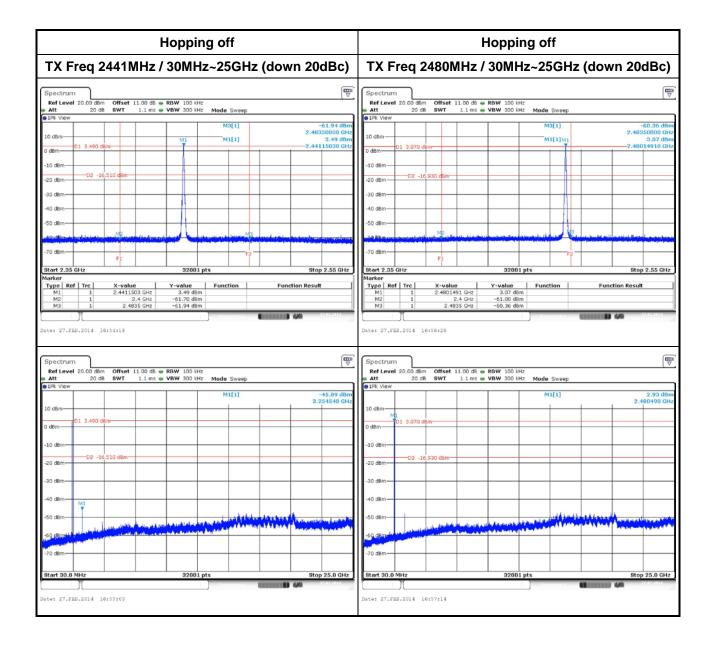
Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

3.3.3 Test Setup

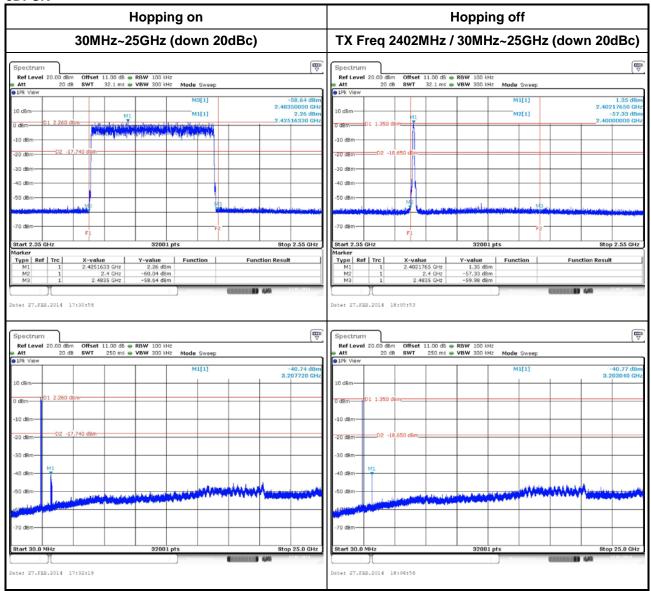


Report No.: FR421807AD Page: 30 of 46

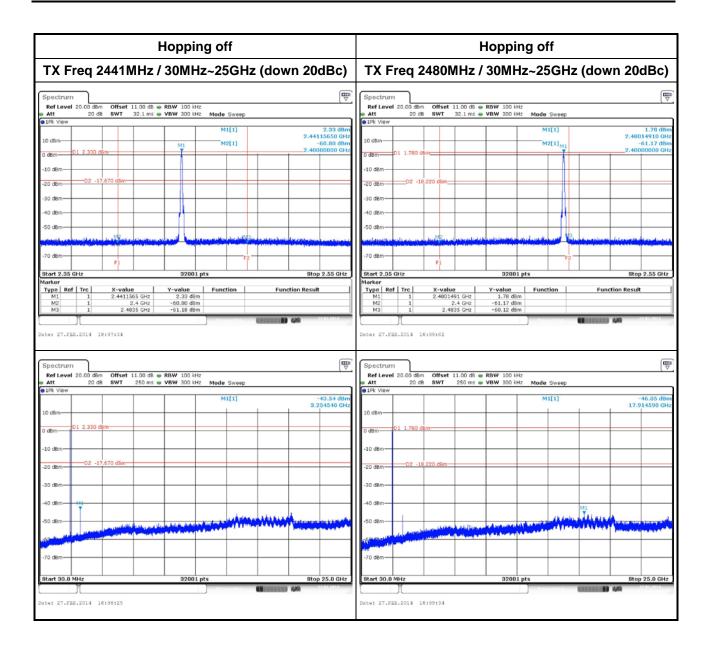

3.3.4 Unwanted Emissions into Non-Restricted Frequency Bands

GFSK

Report No.: FR421807AD Page: 31 of 46



Report No.: FR421807AD Page: 32 of 46



8DPSK

Report No.: FR421807AD Page: 33 of 46

Report No.: FR421807AD Page: 34 of 46

3.4 Conducted Output Power

3.4.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

1 Watt For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.
0.125 Watt For all other frequency hopping systems in the 2400–2483.5 MHz band.
0.125 Watt For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.4.2 Test Procedures

- A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.4.3 Test Setup

Report No.: FR421807AD Page: 35 of 46

3.4.4 Test Result of Conducted Output Power

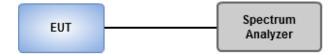
Modulation Mode	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (mW)
GFSK	2402	2.44	3.88	125
GFSK	2441	2.48	3.95	125
GFSK	2480	2.18	3.38	125
8DPSK	2402	3.57	5.53	125
8DPSK	2441	3.64	5.61	125
8DPSK	2480	3.33	5.23	125

Modulation Mode	Freq. (MHz)	AV Output Power (mW)	AV Output Power (dBm)
GFSK	2402	2.32	3.65
GFSK	2441	2.29	3.60
GFSK	2480	2.07	3.15
8DPSK	2402	1.80	2.55
8DPSK	2441	1.83	2.63
8DPSK	2480	1.67	2.22

Note: Average power is for reference only

Report No.: FR421807AD Page: 36 of 46

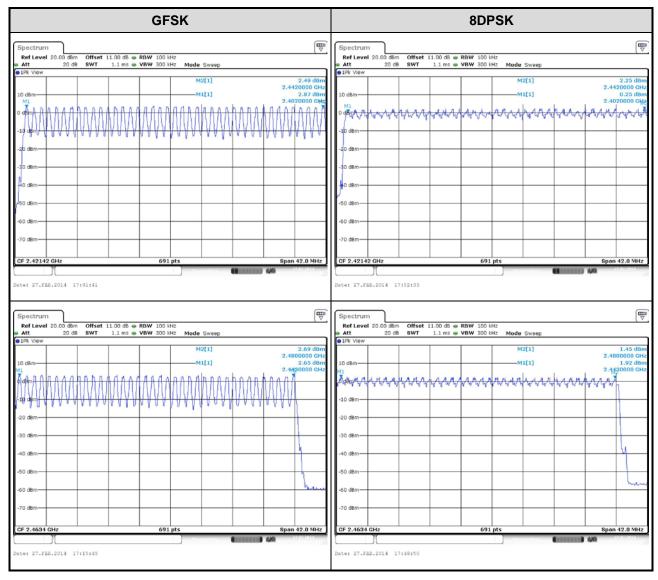
3.5 Number of Hopping Frequency


3.5.1 Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

3.5.2 Test Procedures

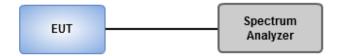
- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.


3.5.3 Test Setup

Report No.: FR421807AD Page: 37 of 46

3.5.4 Test Result of Number of Hopping Frequency

Report No.: FR421807AD Page: 38 of 46

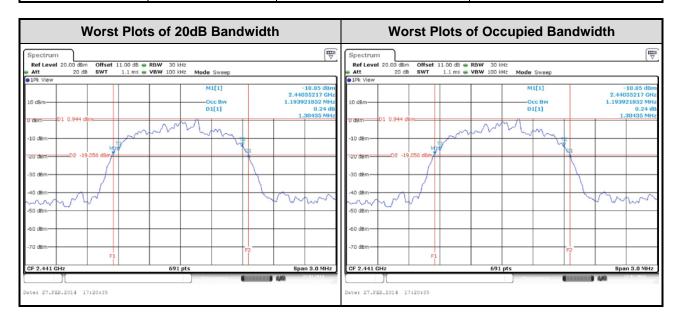


3.6 20dB and Occupied Bandwidth

3.6.1 Test Procedures

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use N dB function of spectrum analyzer to measuring 20 dB bandwidth
- 4. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

3.6.2 Test Setup



Report No.: FR421807AD Page: 39 of 46

3.6.3 Test result of 20dB and Occupied Bandwidth

Modulation Mode	Freq. (MHz)	20dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
GFSK	2402	0.9435	0.8813
GFSK	2441	0.9435	0.8813
GFSK	2480	0.9435	0.8770
8DPSK	2402	1.3000	1.1896
8DPSK	2441	1.3044	1.1939
8DPSK	2480	1.3044	1.1939

Report No.: FR421807AD Page: 40 of 46

3.7 Channel Separation

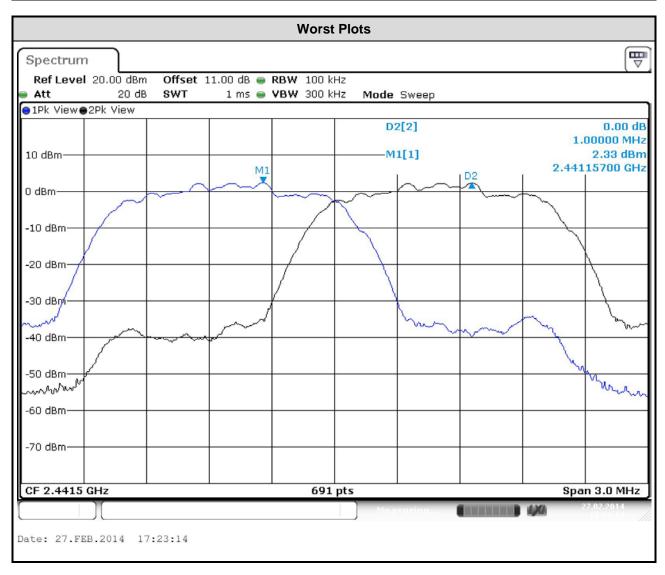
3.7.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.7.2 Test Procedures

- 1. Set RBW=100kHz, VBW=300kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

3.7.3 Test Setup



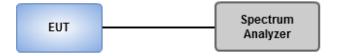
Report No.: FR421807AD Page: 41 of 46

3.7.4 Test result of Channel Separation

Modulation Mode	Freq. (MHz)	Channel Separation (MHz)	20dB Bandwidth (MHz)	Minimum Limit (MHz)
GFSK	2402	1.000	0.9435	0.629
GFSK	2441	1.000	0.9435	0.629
GFSK	2480	1.000	0.9435	0.629
8DPSK	2402	1.000	1.3000	0.867
8DPSK	2441	1.000	1.3044	0.870
8DPSK	2480	1.000	1.3044	0.870

Report No.: FR421807AD Page: 42 of 46

3.8 Number of Dwell Time

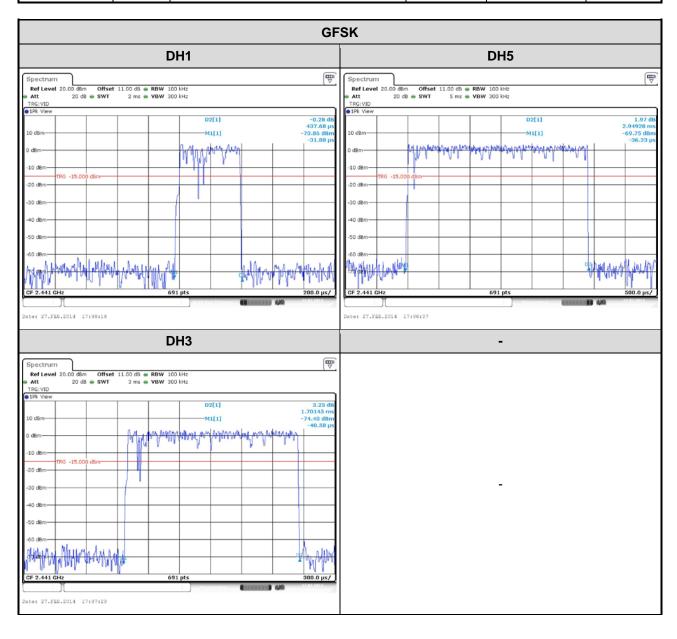

3.8.1 Limit of Dwell time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

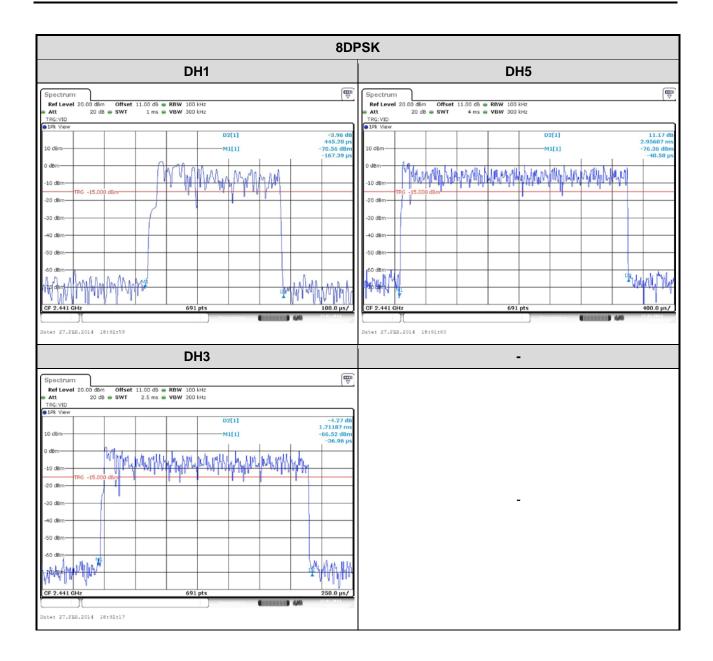
3.8.2 Test Procedures

- Set RBW=100kHz,VBW=300kHz,Sweep time = 500us(DH1),2ms(DH3),4ms(DH5), Detector=Peak, Span=0Hz,Trace max hold
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.
- 3. The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- 4. The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 3/1600 seconds, or 1.875ms. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds

3.8.3 Test Setup



Report No.: FR421807AD Page: 43 of 46


3.8.4 Test Result of Dwell Time

Modulation Mode	Freq. (MHz)	No. of Pulse in a 31.6 (79Hopping*0.4)	Length of Pulse Time (msec)	Result (sec)	Limit (msec)
GFSK	2402	320	0.43768	0.140	400
GFSK	2441	160	1.70145	0.272	400
GFSK	2480	106.6	2.94928	0.314	400
8DPSK	2402	320	0.44520	0.142	400
8DPSK	2441	160	1.71187	0.274	400
8DPSK	2480	106.6	2.95607	0.315	400

Report No.: FR421807AD Page: 44 of 46

Report No.: FR421807AD Page: 45 of 46

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou Kwei Shan

Tel: 886-2-2601-1640 Tel: 886-3-271-8666

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei
City, Taiwan, R.O.C.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan
Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR421807AD Page: 46 of 46