

Date: 11" February 1999 Doc ID: SCOR_0V8.DOC

TDMA/AMPS Analog Baseband Interface Target Specification

'Scorpio'

Revision 0.8

lain Butler

This document details the design description and target IC specification of the 'Scorpio' TDMA/AMPS Analog Baseband Interface.

This ASIC component combines a monolithic active filter circuit incorporating circuits for receiving both TDMA and AMPS signals with equivalent transmit filters and two fully programmable if synthesizers. None of the integrated filters will require external tuning.

lain Butler

Telephone Fax

Internal Tel

Email

(831) 461 6240

(831) 438 5576

GNET+438+6240

iain_butler@mitel.com

 1998 Mitel Semiconductor Company Confidential

This is an unpublished work, the copyright in which vests in Mitel Semiconductor. All rights reserved. The information contained herein is the property of Mitel Semiconductor and is supplied without liability for errors or Omissions. No part may be reproduced or used except as authorized by contract or other written permission. The copyright and the forgoing restriction on reproduction and use extended to all media in which the information may be embodied.

Characteristic		Value		Units	Comments
	Min	Тур	Max		THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON NA
Operating Conditions Supply Voltage Temperature	2.7 -30	3.0 \	3.3 85	Volts ° C	
Supply Current Sleep Receive Section (I/Q) Receive Section (FM) Receive Section (RSSI) Receive PLL Transmit Section Transmit PLL	er a	5.5 4 1 1.5	25 6.5 5 1.5 2	μΑ mA mA mA mA mA	ELIMINATE ARMS
Receive - General Frequency Range Input Impedance Output Impedance		10 2	10	MHz kΩ kΩ	Differential Differential
Receive (IQ Mode) Input Signal Gain I/Q Gain Matching Noise Output 1dB Compression	-0.5 3	0.53 56	0.5	mV dB dB μV V p-p	Differential 10 Hz to 100kHz referred to input Differential
Receive (FM Mode)					
Input Signal	30			μV	Output SINAD = 12dB
Audio Output			500	mV	Defined by external components
RSSI Dynamic Range Accuracy Input Signal Input Signal Input Noise RSSI Output Level Attenuator gain Attenuator switch-in level Attenuator switch-out level RSSI Output Impedance	70 -3 0.024 0.024 Vdd/2 - 1.2 -31.5	73 0.024 -32 4.5 2.25	+3 110 20 Vdd/2 +1.2 -32.5	dB dB mV mV V dB mV kΩ	Internal Attenuator enabled Internal Attenuator disabled Input referred Input referred
Receive Filter		-	-		I/O and EM Made
	-	60	-	ld te	I/Q and FM Mode
Centre Frequency 3dB Bandwidth	11.40	60	11.10	kHz	
oup Bandwidth	+/- 16		+/- 18	kHz	

Contents

1.	GENERAL DESCRIPTION	3
1.1		
1.2	TRANSMIT PATH IF SYNTHESIS	3
1.3	IF SYNTHESIS POWER CONTROL	3
1.4	* O HOR CONTROL	
1.5		
1.6	The state of the treat to a Limit 3	3
2.	RECEIVE PATH	=
2.1	SLEEP MODE	
2011	DASSEDAND LOC O MODE (LDMA)	
2.3	IF FM MODE (AMPS)	5
2.5	RSSI FUNCTION	
2	.6.1 DC specification	6
2.	6.5 RSSI AC Specification	12
	The open production of the control o	
3.	TRANSMIT PATH	13
3.1	SLEEP MODE	14
3.3	IF FM MODE (AMPS) TRANSMIT PATH ELECTRICAL SPECIFICATION	
	4.2 & Q Mode AC Specification	
4.	IF SYNTHESIS	16
417	S	18
4.1 3	Synthesizer Prescaler	20
	The state of the s	20
5,	POWER CONTROL SYSTEM	21
6.	SERIAL INTERFACE, CONTROL REGISTERS & REFERENCE CIRCUITS	
	A TOTAL NEEL, CONTROL REGISTERS & REFERENCE CIRCUITS	21
6.2 0	CONTROL REGISTERS	21
6.4 R	GERIAL INTERFACE	22
	CONCERN DESCRIPTION	22
7.]	PACKAGE	23
7.1	PACKAGE TYPE	
7.2	Package Diagram	23
3. I	PIN LISTING	
). ,	APPENDIX A - RSSI SETTLING TIME CALCUATIONS	21
	APPENDIX B - FM DISCRIMINATOR EXTERNAL COMPONENT CALCULATIONS	
1.	APPENDIX C - GENERIC MITEL RADIO SOLUTION USING SCORPIO, SATURN AND MO	ON 23

INTRODUCTION

This details a target specification for the 'Scorpio' IC development. The document is subdivided into 8 sections, section 1 is a general description of the ASIC and sections 2 to 6 cover each of the functional blocks in turn and section 7 & 8 cover package/pinning.

General Description

This ASIC component combines a monolithic active filter circuit incorporating circuits for receiving both AMPS and TDMA signals with equivalent transmit filters and two fully programmable IF synthesizers. None of the integrated filters will require external tuning.

1.1 Receive Path

In the RX path there are two distinct operating modes; The first, baseband I & Q mode, will employ a 60kHz switched capacitor bandpass filter whose output will be down converted and low-pass filtered to remove mixer harmonics, giving a 0-15kHz passband response characteristic for a I and Q baseband channel. This path will be for TDMA.

The second operational mode assumes that FM demodulation is being done in a more traditional fashion and therefore a 60kHz bandpass filter is required. This filter will provide a nominal 49.5dB of in-band gain and 31dB of image rejection, which will be achieved by a 5th order switched capacitor filter with a 3dB bandwidth of +/-15kHz. This FM channel is also supported by an integrated FM analog discriminator and RSSI circuitry, allowing direct Audio/Data and signal strength information at the device boundary.

1.2 Transmit Path

The transmit path will provide a variable 0 to 12dB voltage gain in-band, programmable in 3dB steps via a Serial Interface. A lowpass filter will also be provided to reduced data noise from the baseband DAC's. This will allow Scorpio a generic interface to various differing baseband solutions.

1.3 IF Synthesis

Two fully programmable IF synthesizers, including two high frequency pre-scalers, two separate reference dividers will be included in order to minimize cross talk between the two synthesizers. The output charge-pump current will be programmable and the supply to the charge pump is supplied via an external device pin, allowing a higher VCO control range.

1.4 Power Control

A single dedicated device pin will be assigned to incorporate a "power save" mode within the device. The power save function will be programmable through the Serial Interface path and activated by a multifunction dedicated pin, Power Control Assert (PCA). This will allow the device to be placed in various "sleep" modes and timings defined at a system level.

A dedicated power mode will exist for TDMA which will be dependent upon the state of the PCA pin i.e. PCA high receive path off/transmit path on, PCA low receive path on/transmit path off.

Typical current figures for differing modes are shown below:

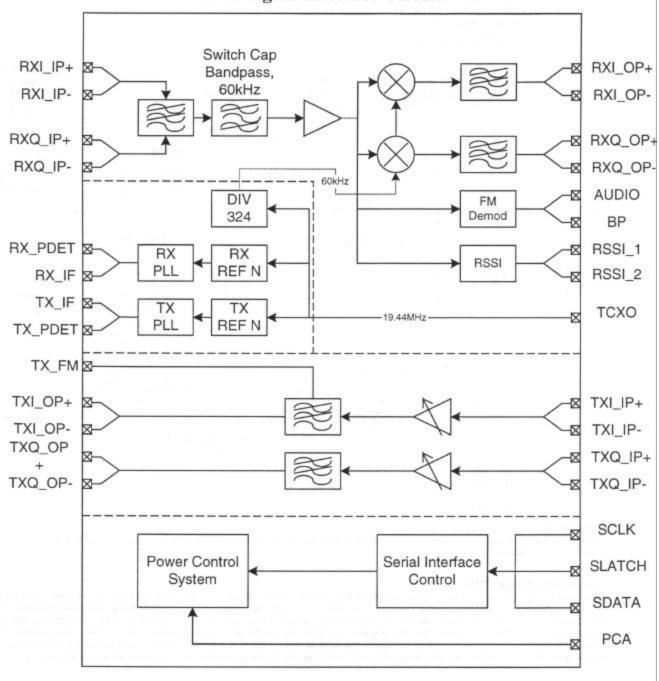
RX Channel TDMA mode, Bandpass Filter, Mixers and Post Filters, RX PLL, RSSI on, typical current 8mA

RX Channel AMPS mode, Bandpass Filter, FM Discriminator, RX PLL, RSSI on, typical current 7.2mA

TX Channel TDMA mode, I/Q Filters, TX PLL, typical current 4mA

TX Channel AMPS mode, FM Filter, TX PLL, typical current 3mA

Misc. circuits, Power-On-Reset, Serial Interface, Clock Comparator, Clock Generator, Bandgap, typical current 550uA.

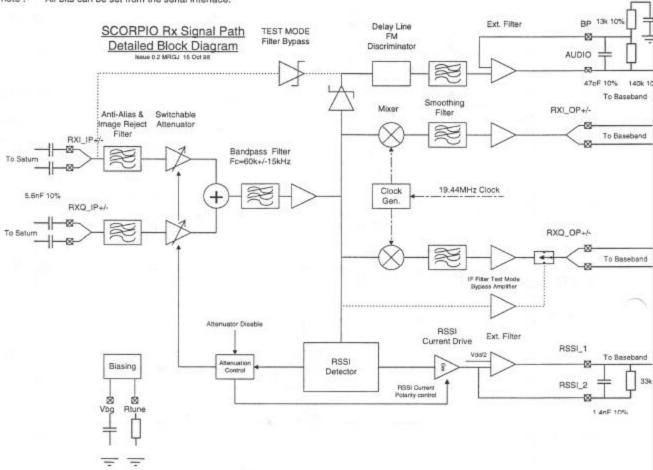

1.5 Serial Control

A three-wire control bus (clock, data and latch) will allow programming of the synthesizers and also allow selection of the various operating/power saving-modes. In addition a reset pin will facilitate testing of the device,

1.6 Absolute Specification Limits

		Limits		
		Max.	Units	Comments
1.	Power Supply VDD to GND	- 0.3 to + 3.9	V	
2.	GND or SUB to GND	-0.3 to 0.3	V	
3.	Digital I/O Pin to DGND	- 0.3 to DVDD+ 0.3	V	
4.	Analog I/O Pin to AGND	- 0.3 to AVDD+ 0.3	V	The state of the s
5.	Storage Temperature Range	- 55 to 150	°C	

SCORPIO Mixed Signal Interface Circuit



2. Receive Path

The receive circuit has several modes of operation, these are defined by control bits in the serial interface registers and the internal initialization circuits as follows:

RX1	Mode
0	Baseband I & Q Mode
1	FM IF Mode

note :- All bits can be set from the serial interface.

2.1 Sleep Mode

In sleep mode all receive circuits are powered down in order to save current, this includes any clocked logic and bias circuits and results in a total current (for the receive circuits) of <25uA.

2.2 Baseband I & Q mode (TDMA)

In Baseband I & Q mode a switched capacitor bandpass filter implementation will be used with a center frequency at 60kHz and will be achieved by a 10° order switch capacitor filter with a 3dB bandwidth of +/-15kHz cascaded with appropriate anti-alias and anti-image filters. The bandpass filter output will then be mixed down to I and Q (0 to 15kHz) by a switching mixer which will then be filtered by a switch capacitor filter to minimize the 2°IF – 15kHz component. This filter will also be used to improve the group delay deviation caused by the bandpass filter. Post filtering of the signal will then be undertaken to provide the required attenuation of the sample spectrum and to partially equalize the RX channels group delay. One of the main advantages of a main switch capacitor/mixer approach is that it will eliminate any tuning circuitry.

2.3 IF FM mode (AMPS)

IF FM mode assumes that the FM demodulation is done using a discriminator acting on the 60kHz IF signal. The channel filtering is done by reusing the switched capacitor bandpass filter and this reuse for both Baseband I & Q and IF FM allows a more compact signal-path, hence reduced noise, die-size and thus cost. The IF FM channel will also be supported by an integrated FM analog discriminator and RSSI circuitry, providing direct Audio/Data and signal strength information at the device boundary.

Issue 0.8

Page 5 Mitel Semiconductor 11' Febraury 1999 COMPANY CONFIDENTIAL 100nF

2.4 FM Discriminator function

The FM Discriminator will be based on a internal limiter followed by a digital delay line whose input and output are EXOR'd together to implement the demodulation scheme. Tuning will be implemented internally to maximize the S/N by controlling the signal propagation through the digital delay line. The demodulated signal is then regenerated, lowpass filtered and finally bandpass filtered. This signal is then passed off chip as a single ended voltage to the baseband device. A feature of the FM Discriminator is that it will have a gain function defined by a small group of discrete passive components and a device pin BP (defines the internal bandpass filter characteristics.), thus allowing good definition of the AUDIO/Data output signal. A bypass mode will also exist such that the IF FM can be accessed at the output pin, AUDIO.

2.5 RSSI function

The RSSI circuit is a fast response input signal power indicator with a dynamic range of over 70dB. It has two modes of operation; one mode with the standard RX path gain and a second mode in which the RX signal path gain is reduced by switching in a 20dB attenuator. This 20dB attenuator is automatically switched in when the input signal is greater than about 4.5mV. The drop in RX gain stops the internal circuits saturating and extends the upper range of the RSSI. The output characteristic of the RSSI will reflect whether the 20dB attenuator has been switched in by toggling the sign bit (MSB) of the external ADC. The RSSI circuit will be calibrated using a two-point calibration scheme with standard gain within the RX path. This calibration information, together with the MSB of the ADC will allow reconstruction of a monotonic RSSI response within the digital domain.

The gain of the RSSI circuitry is directly proportional to an external resistor, which is connected between the pins RSSI_1 and RSSI_2.

2.6 Receive Path Electrical Specification

2.6.1 D	2.6.1 DC specification		Limi	ts		
	42.	Min.	Тур.	Max.	Units	Comments/Conditions
6.	Supply Voltage	2.7	3.0	3.3	V	
7.	Operating temperature	-30	27	+85	°C	
	Current Consumption			100		
8.	IDD, Sleep Mode			0.025	mA	
9.	IDD, I & Q Mode		5.5	6.5	mA	
10.	IDD, IF FM Mode		4	5	mA	
11.	Turn on time Sleep mode to I & Q / IF FM mode, PCA asserted			1.0	ms	Bandgap and misc. circuits to be already powered up and stable
12.	Turn off time I & Q / IF mode to Sleep mode, PCA asserted			1.0	ms	IDD to be <10% of value in RX channel operating modes
	I/O DC Voltages			2		
13.	Common-mode i/p DC Voltages RXI_IP± & RXQ_IP±		Vdd/2		V	
14.	Common-mode o/p DC Voltages RXI_OP± & RXQ_OP±	Vdd-1.6V	Vdd-1.4V	Vdd-1.2V	٧	

2.6.2 Cascaded Bandpass Filter and Anti Alias Filter Specification This specification applies to both IF FM (AMPS) and Baseband I/Q (TDMA) Modes MEASURED AT RXQ_OP± IN 'IF FILTER			L	imits		
	MODE'					
	T-	Min.	Тур.	Max.		Comments/Conditions
45	Frequency Range					
15.	Maximum specified input frequency			10	MHz	
	Voltage gain ¹					ZloadExt=40kΩ min, parallel 5pFmax
16.	Output amplitude balance	-0.25		0.25	dB	RXQ_OP+ to RXQ_OP-
17.	Typical Input Signal Level		0.53		mVrms diff	Typical signal level gives approx. 334mVrms at output
	Power Supply Rejection Ratio					Defined as (Vgain_test(dB) - 'Gain' from Vdd to differential output (dB))
18.	Out of band (Fc+60kHz)		40		dB	Supply ripple = 10mVrms
19.	In-band (Fc+/- <12.5kHz)		30		dB	Supply ripple = 10mVrms
-	Noise					
20.	Input referred maximum integrated noise. (Integrated 10Hz to 100kHz)	17			uVrms.	Source impedance 4kΩ differential. Gain is measured with input signal at Fc=62kHz.
	Inband Compression					Items 17 to 20 all I/o voltages are defined as being measured differentially across I/o
21.	Output 1dB Compression	3.0			Vpk-pk. differential	Input In-band tone at 62kHz, External load is differential: 40kΩ min, parallel 5pF max, each end to ground is 60kΩ min parallel 10pF max
	Out of band Compression Out of band signal at input causing 1dB of in-band compression.					Input in-band tone @62kHz V1dB = max. blocker level
22.	Fc +/-60kHz Blocker All Conditions	125			mVrms.	Input Signal Fc=62kHz in-band tone at 0.53mVrms Blocking signal at Fc +/- 60kHz out of band tone.
23.	Fc+/- 120kHz to 25 MHz Blocker All Conditions	13			mVrms.	Input Signal Fc=62kHz in-band tone and Fc +/- >120kHz out of band tone.
	Intermodulation Input referred intermodulation product					Input Signals Fc=62kHz in-band tone: 0.53mvrms Out of band unmodulated interferers: Fc+/-60kHz: 20mVrms (-wanted+19dB) + 31.5dB Fc+/-120kHz: 20mVrms (- wanted +19dB) + 31.5dB
24.	All Conditions Input referred intermodulation product	19			uVrms.	1.000
	Input referred IP3	0.65	1.0		Vrms	Extrapolate IIP3 assumes a 3" order
	Filter Characteristics				-	response
	Anti-Alias & Bandpass Filter Cascaded Response	,	AA & Bandp In Tes	ass Filter C at Mode	Measured in test mode where bandpass filter outputs are directed directly to RXQ_IP± outputs in "IF Filter Test Mode"	

¹ Gain is measured from the differential Q inputs to the differential Q output when a signal of equal amplitude and in quadrature is applied to the I channel input.

2.6.2 Cascaded Bandpass Filter and

Limits

Anti Alias Filter Specification This specification applies to both IF FM (AMPS) and Baseband I/Q (TDMA) Modes MEASURED AT RXQ_OP± IN 'IF FILTER TEST MODE'				imits		
		Min.	Тур.	Max.		Comments/Conditions
	Filter Types: Anti Alias Filter Bandpass Filter				ed Capacitor	
25.	Bandpass Filter Centre Frequency, Fo		60		KHz	
26.	Bandpass 3dB Passband Edge	Fo ± 16	Fo ± 17	Fo ± 18	kHz	Measured relative to gain With Input signal at Fc=60kHz
27.	Stop band attenuation Input Signal Frequency: 0 to 3kHz 3kHz to 10kHz 10kHz to 22kHz 22kHz 38kHz 82kHz 98kHz 98kHz to 110kHz 110kHz to 117kHz 117kHz to 123kHz 123kHz to 1.36Hz 1.36MHz to 1.52MHz 1.52MHz to 10MHz Image Rejection	67 61 49 50 21 20 49 48 61 68 71 36 71	69 63 51 51 22 21 50 50 63 70 73 48 73		4B 4	Measured relative to gain With Input signal at Fc=60kHz Extrapolate linearly between 22kHz & 38kHz. Extrapolate linearly between 82kHz & 98kHz. (due to aliased response within filter
	Image Rejection (i.e. stop band attenuation for negative frequencies) Input Signal Frequency: OHz to 10kHz -10kHz to -45kHz -45kHz to -45kHz -45kHz to -57kHz -57kHz to -63kHz -63kHz to -70kHz -70kHz to -105kHz -70kHz to -1.36MHz -1.36MHz to -1.52MHz -1.52MHz to -10MHz	61 40 30 31.5 30 40 61 36 61	37 39 37		dB dB dB dB dB dB dB	This performance assumes that RXI_IP± / RXQ_IP± input signals have a worst case relative gain accuracy of 0.5dB and a worst case Quadrature phase accuracy of 2deg (due to aliased response within filter
29.	Attenuation of Aliased responses	36	48		dB	Alias in 30kHz BW around Fclk+/- 60kHz Fclk=1.44MHz
30.	Group delay Deviation		16	18 ²	μs pk-pk.	Frequency range Fo±12.5kHz ie 47.5kHz to 72.5kHz Measured at RXI_OP± & RXQ_OP:
31.	In-band Gain Ripple (Max. sig-min. sig)		1.0	1.5	dB pk-pk	Frequency range Fo±12.5kHz i.e. 47.5kHz to 72.5kHz, Measured at RXI_OP± & RXQ_OP:
	Input Impedance					
32.	Differential IP impedance		10.0		kΩ	Balanced @ 60kHz
33.	RXI_IP± and RXQ_IP± SE ip impedance to ground RXI_IP± and RXQ_IP±		5		kΩ	Low impedance is desired to minimize the DC transient at power- up.

² In TDMA mode the I & Q smoothing filters improve the group delay deviation by approximately 2us over that of the stand-alone bandpass filter.

2.6.2	Cascaded Bandpass Filter and Anti Alias Filter Specification		L	imits		
This	specification applies to both IF FM (AMPS) and Baseband I/Q (TDMA) Modes					
	SURED AT RXQ_OP± IN 'IF FILTER 'MODE'					
		Min.	Тур.	Max.		Comments/Conditions
	Output Impedance					
34.	RXI_OP±		1.0 2.0		kΩ kΩ	Single ended. Differential

Specific	Paseband I & Q (TDMA) & IQ FM Mode AC cation			imits		
		Min.	Тур.	Max.	Units	Comments/Conditions
	Frequency Range		200.07			
35.	Maximum specified input frequency			10	MHz	
	Voltage gain ³					ZloadExt=40kΩ min, parallel 5pFma:
36.	I and Q Voltage gain ⁴	54	56	58	dB	Vgain
37.	I and Q Gain imbalance	-0.5		0.5	dB	Defined as Gain I - Gain Q
38.	Output amplitude balance	-0.25		0.25	dB	RXQ_OP+ to RXQ_OP- (Also I)
39.	Typical Input Signal Level At sensitivity + 3dB, TDMA At sensitivity + 3dB, IQ FM At large signal, TDMA At large signal, IQ FM		0.53 0.12 0.53 0.53		mVrms diff mVrms diff mVrms diff mVrms diff	AGC active AGC fixed value AGC active AGC active
40.	Average Phase balance (I and Q)		3	5	Deg	Average taken from 0Hz to 12.5kHz. Measured at RXI_OP± & RXO_OP± 0.5 dB ampl and 3 degree phase produce 28dBc residual sideband
	Power Supply Rejection Ratio					Defined as (Vgain(dB) (taking into account mixing action) - 'Gain' from Vdd to differential output (dB))
41.	Out of band 0 to 30kHz 90kHz to 1MHz		40		dB	Supply ripple = 10mVrms
42.	In-band (Fc+/- <12.5kHz)		30		dB	Supply ripple = 10mVrms
	Noise					
43.	I & Q channel input referred maximum integrated noise. (10Hz to 5MHz)	17			uVrms.	Source impedance 4kΩ differential, Gain is measured with input signal at Fc=61kHz. Output signal at 1kHz.
	Inband Compression					Items 39-41 all i/o voltages are defined as being measured differentially across i/o
44.	Output 1dB Compression	3.0			Vpk-pk. differential	Input In-band tone at 61kHz giving an output signal at 1kHz. External load is differential: 40kΩ min, parallel 5pF max, each end to ground is 60kΩ min parallel 10pF max
45.	Out of band Compression Out of band signal at input causing 1dB of in-band compression.	As Band	pass Filter &	AA Filter S	pecification	paramor repr man
46.	Intermodulation Input referred intermodulation product	As Band	pass Filter &	AA Filter S	pecification	Internal of
	Filter Characteristics					
	Combined bandpass SC filter & IQ smoothing and image filters		SC Band er and I/Q	pass Filter,		Characteristic measured from RXI_IP± / RXQ_IP± to RXI_OP± and RXQ_OP±
47.	I/Q bandwidth matching		0.5	2	%	The same filter determines both 3dB BWs. I and Q differences are just due to the smoothing filters
48.	Group delay Deviation		14 (10.5)	16 (12) ⁵	μs pk-pk.	Frequency range 0Hz to 12.5kHz Measured at RXI_OP± & RXQ_OP±

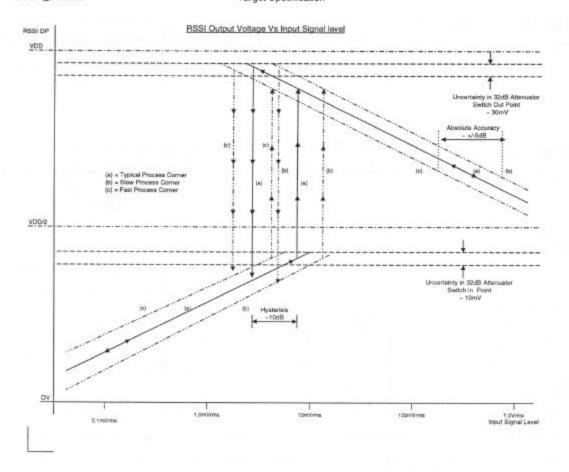
³ Gain is measured from Q input to I or Q output when a signal of equal amplitude and in quadrature is applied to the I channel input

⁴ In IQ FM mode I and Q voltage gain can be set to 56dB (default), 68dB, 71dB and 74 dB by the control register CONT<1:0>

⁵ A second bandpass filter mode has been included which extends the 3dB BW of the filter by approximately 20%. This improves the group delay deviation to 12us at the expense of the attenuation characteristic (due to extended 3dB BW) and inband gain ripple. The bandpass filter

2.6.3 E Specifi	Baseband I & Q (TDMA) & IQ FM Mode AC cation		Li	mits		
		Min.	Тур.	Max.	Units	Comments/Conditions
19.	In-band Gain Ripple (Max. sig-min. sig)		1.5	2.0	dB pk-pk	Frequency range 0Hz to 12.5kHz, Measured at RXI_OP± & RXQ_OP±
50.	Input Referred Attenuation Characteristic	As Band	dpass Filter 8	AA Filter S	pecification	
51.	Attenuation of all unwanted mixing products	50			dB	
52.	LO breakthrough at RXI_OP± & RXQ_OP± Outputs	22	10		mVrms	Sum of LO breakthrough @ 60kHz and its harmonics.
53.	Attenuation of switched capacitor output images around 240kHz clock (Fclk)	40			dB	Relative to in band signal at 60kHz (Fc) at Fclk± Fc, 2Fclk± Fc nFclk+/-Fc
	Input Impedance					
54.	Differential IP impedance RXI_IP± and RXQ_IP±		10.0		kΩ	Balanced @ 60kHz
55.	SE ip impedance to ground RXI_IP± and RXQ_IP±		5		kΩ	Low impedance is desired to minimize the DC transient at power-up.
	Output Impedance					
56.	RXI_OP± and RXQ_OP±		1.0 2.0		kΩ kΩ	Single ended. Differential

2.6.4 1	F FM (AMPS) Mode AC Specification	Limits				
		Min.	Тур.	Max.	Units	Comments/Conditions
	Frequency Range					
57.	Maximum specified input frequency		100	10	MHz	
	Voltage Gain					
58.	Input Signal Level at which signal limits prior to detector	30			uVrms	SINAD 12dB
59.	Typical Input Signal Level FM Sensitivity + 3dB	120			uVrms	AGC fixed value (open loop)
60.	Power Supply Rejection Ratio	As Ban	dpass Filter &	AA Filter Sp	pecification	Measured in IF Filter Test Mode
61.	Noise Input referred maximum integrated noise. (10Hz to 100kHz)	As Ban	dpass Filter &	AA Filter Sp	Measured in IF Filter Test Mode	
62.	Out of band Compression Out of band signal at input causing 1dB of in-band compression.	As Ban	dpass Filter &	AA Filter S	Measured in IF Filter Test Mode	
63.	Intermodulation Input referred intermodulation product	As Ban	dpass Filter &	AA Filter Sp	Measured in IF Filter Test Mode	
	Filter Characteristics					
	Combined Filter Characteristic up to delay line discriminator		Combined Re SC Band	esponse of pass Filter	IN EASTER A. J.	
64.	Input Referred Attenuation Characteristic	As Ban	dpass Filter &	AA Filter Sp	Measured in IF Filter Test Mode	
65.	Group delay Deviation	As Ban	dpass Filter &	AA Filter Sp	pecification	Measured in IF Filter Test Mode
66.	In-band Gain Ripple (Max. sig-min. sig)	As Band	dpass Filter &	AA Filter Sp	Measured in IF Filter Test Mode	
	Input Impedance					
67.	Differential IP impedance RXI_IP± and RXQ_IP±		10.0	3	kΩ	Balanced @ 60kHz


mode is programmable via the serial interface. For example, low group delay ripple mode could be used in TDMA mode where the attenuation characteristic at 30kHz is not critical, and the higher group delay mode used for AMPs.

2.6.4 1	F FM (AMPS) Mode AC Specification		Li	mits		
		Min.	Тур.	Max.	Units	Comments/Conditions
68.	SE ip impedance to ground RXI_IP± and RXQ_IP±		5		kΩ	Low impedance is desired to minimize the DC transient at power- up.

2.6.5 F	RSSI AC Specification		Li	mits		
	400	Min. Typ. Max.			Comments/Conditions	
69.	RSSI Dynamic range	70	73		dB	70dB of dynamic range. Scorpio RSSI noise floor to maximum input signal level.
70.	IDD		1.0	1.5	mA	1
71.	Conformance to log characteristics	-3		+3	dB	
72.	Settling time		150		us	
73.	Input Signal Levels	0.024		110	mVrms	At input to Scorpio Internal 32dB attenuator enabled.
74.		0.024		20	mVrms	At input to Scorpio Internal 32dB attenuator disabled.
75.	Input referred noise		0.024		mVrms	
76.	RSSI output signal level ⁶	Vdd/2 - 1.2		Vdd/2 + 1.2	V	Single ended.
77.	Point at which 32dB attenuator is switched in		4.5		mVrms	Referred to input of Scorpio
78.	Point at which 32dB attenuator is switched out		2.25		mVrms	Referrerd to input of Scorpio
79.	RSSI output impedance		1.0		kΩ	Single ended.
80.	Attenuator gain	-31.5	-32	-32.5	dB	

⁶ Any RSSI output signal greater than Vdd/2 signified that a 20dB attenuator has been switched into the Rx signal path just prior to the filter. The sense of the RSSI output signal is also inverted.

A monotonic RSSI can easily be reconstructed by using 2's complement arithmetic once the signal has been digitized and taking into account that the 20dB attenuator is switched in by monitoring the sign bit. The MSB signifies the sign bit.

2.6.6 F	M Discriminator AC Specification		Lin	nits		
		Min.	Тур.	Max.		Comments/Conditions
81.	Clock frequency		2.77714		MHz	Divided TXCO of 19.44MHz by 7
82.	IDD		0.7	1.0	mA	
83.	Number of delay stages		58			Digital delay line elements
84.	Delay		1.2531			Delay as a ratio to IF period, 1/60kHz
85.	Gain		125.31		uV/Hz	
86.	Input Frequency	45		75	kHz	
87.	Input Signal to Noise Ratio	2.3	4		dB	SINAD 12dB
88.	Audio signal noise floor			-46	dB	Deviation at input
89.	Audi output signal level		36 to 500		mVrms	Defined by external feedback components,
90.	Audio output impedance		1.0		kΩ	Single ended.

note:- SINAD is defined as the ratio of wanted signal to all unwanted output, measured simultaneously with filters.

Transmit Path

The transmit circuit has several modes of operation, these are defined by control bits in the serial interface registers:

TX1	TX2	Mode
0	0	TDMA Mode (diff)
1	0	FM I & Q Mode (diff)
X	1	FM Mode (single ended)

TXG0	TXG1	TXG2	Gain	
1	X	X	0 dB	

Issue 0.8

Page 13 Mitel Semiconductor

11° Febraury 1999 COMPANY CONFIDENTIAL

SCOR	0V8.doc TV Go	T761	Tx62	Gain	Target Specification
	0	0	0	3 dB	
	0	1	0	6dB	
	0	0	1	9 dB	
	0	1	1	12 dB	

Process and temperature variation can cause a filter cut-off variation of up to +/- 46%. The following calibration circuit reduces this to +/- 5%. The calibration circuit for the transmit filter is a master - slave arrangement, using a replica of a section of the filter to form a ring oscillator. Three stages of the filter plus one gain stage make up the oscillator.

A four bit code is used to switch capacitors into / out of the filter / oscillator in order to tune the cut-off of the filter and the frequency of the oscillator. Initially, this code is set to 1000 and then a successive approximation routine begins. A known, fixed clock frequency is fed into an overflow counter, which is pre-loaded with a programmable number. The counter should reach the 'all ones' state at the same time as a set number of periods of the oscillator output. If the counter overflows, the bit being tested of the four bit output code remains set. The sequence is then repeated for the next bit. The whole routine takes about 0.6 ms to complete.

The cut-off of the filter can be tuned to a different value by changing the pre-load number into the counter, giving extra control.

3.1 Sleep Mode

In sleep mode all transmit circuits are powered down in order to save current, this includes any clocked logic and bias circuits and results in a total current (for the transmit circuits) of <25uA.

3.2 Baseband I & Q mode (TDMA)

In baseband I & Q mode a variable gain buffer is used which has a 0 to 12dB range in 3dB increments. A lowpass filter will also be provided to reduced data noise from the baseband DAC's. The transmit channel will be tuned internally for optimum corner frequency in TDMA mode.

3.3 IF FM mode (AMPS)

In IF FM mode just one signal path is used (the I-channel) and all other channels are turned off. IF FM mode has two input paths, one using the I channel in true differential form and a pseudo single-ended input which uses the TXI_IP+ ac coupled with a 27pF capacitor with TXI_-IP N/C. The modes are set via the Serial Interface. The IF FM filter is the same as that used in baseband I & Q mode except that the filter will have a separate single-ended output. TX_FM.

3.4 Transmit Path Electrical Specification

3.4.1 D	C specification		Li	mits		
		Min.	Typ.	Max.	Units	Comments/Conditions
91.	Supply Voltage	2.7	3.0	3.3	V	Vdd
92.	Operating temperature	-30	27	85	°C	Tamb
	Current Consumption					
93.	IDD, Sleep Mode			0.025	mA	Sleep Mode
94.	IDD, I & Q Mode		2.5	3	mA	I & Q signal path 'on'
95.	IDD, FM Mode		1.5	2	mA	FM signal path 'on'
96.	Turn on Time, PCA asserted			500	us	Bandgap and misc. circuits to be already powered up and stable
97.	Turn off time, TX channel operating to Sleep mode, PCA asserted			500	us	IDD to be <10% of value TX channel operating value, see 94 and 95.
98.	Common-mode DC Voltages TX_IP+, TXI_IP-, TXQ_IP+, TXQ_IP-		0,8		V	
99.	Common-mode DC Voltages TX_0P+, TXI_0P-, TXQ_0P+, TXQ_0P-		1.2		V	

3.4.2 1	& Q Mode (TDMA) AC Specification		Li	mits		
		Min.	Тур.	Max.		Comments/Conditions
	Frequency Range					
100.	Maximum specified input frequency			2	MHz	Follows Butterworth chcs. upto 2MHz
	Voltage gain					ZloadExt = 50 kΩ, parallel 5pF
101.	Variable voltage gain	0		12	dB	3dB increments controlled by SI
102.	Output amplitude balance	-0.25		0.25	dB	TXQ_OP+ to TXQ_OP- (Also I)
103.	Output phase balance			0.5	deg	TXQ OP+ to TXQ OP- (Also I)
104.	Input Signal Level		1000		mVpk-pk diff.	Require 2Vpk-pk diff, therefore for 1000mVpk-pk diff typical 6dB of gain required (for 500mVpk-pk diff, 12dB of gain required).
105.	DC Offset, output		+/-20		mV	Inputs shorted to i/p common mode voltage
	Power Supply Rejection					
106.	Out of band (120kHz)	12			dB	Supply ripple = 10mVrms, Max Gain
107.	Inband (12.5kHz)	12			dB	Supply ripple = 10mVrms, Max Gain
	Noise					- Terrorian California
108.	Total noise power from 10Hz to 15kHz			-50	dBc	Measured in dB relative to 1 kHz full scale tone
109.	Noise power in any 300 Hz band in frequency range of > 20 kHz but < 45 kHz			-50	dBc	Measured in dB relative to 1 kHz full scale tone
110.	Noise power in any 300 Hz band in frequency range of > 45 kHz but < 60 kHz			-75	dBc	Measured in dB relative to 1 kHz full scale tone
111.	Noise power in any 300 Hz band in frequency range of > 60 kHz			-85	dBc	Measured in dB relative to 1 kHz full scale tone
112.	Noise power at 45 MHz			-143	dBV/Hz^2	Equivalently -155 dBm/Hz into 15 kOhm or -160 dBm/Hz into 50 kOhm. This level of noise produces 2 dB degradation in Tx noise floor in Rx band.

113.	1dB Compression	2.5			Vpk-pk	
114.	Total Harmonic Distortion			-40 dBc	dBc	Measured with 1 kHz full scale tone
3.4.2 1	& Q Mode (TDMA) AC Specification		Li	mits		and the second second
1000	Filter Characteristics					
115.	Filter Type		3rd Order	Butterworth		
116.	3dB Passband Edge	22	25	28	kHz	Measured relative to gain at Fc.
117.	Stop band attenuation	30			dB	At >=100kHz
118.	Stop band attenuation	40			dB	At >=2MHz including 45 MHz Assumptions: DAC noise in 1 Hz at 45 MHz was measured to be 110 dB below full signal power. Signal -3 dBV, Need noise floor of < -143 dBV DAC noise attenuated to 12 dB below Scorpio noise
119.	Group Delay Deviation		1	10	μs pk-pk.	0Hz-12.5kHz
120.	Inband Gain Ripple (Max. sig-min. sig)			1.0	dB pk-pk	0Hz-12.5kHz
121.	Input Impedance TXI_IP+/TXI_IP- & TXQ_IP+/TXQ_IP-	100			kΩ	Balanced @2kHz, Assumption: BB output impedance may be upto 1.5kOhm depending or what signal level is required. 15kOhm load makes possible a 1 pole filter at BB, if needed.
122.	Output Impedance TX_0P+/TXI_0P- & TXQ_0P+/TXQ_0P-		1.0		kΩ	Single ended. External load is $20k\Omega$ and $20pF$ to ground.

3.4.3 IF	FM (AMPS)Mode AC Specification		Lim	its		
		Min.	Тур.	Max.		Comments/Conditions
170-100	Frequency Range					
123.	Maximum specified input frequency			2	MHz	Follows Butterworth chcs. upto 2MH;
	Voltage gain					ZloadExt = 50 k Ω , parallel 5pF
124.	Voltage gain	0		12	dB	3dB increments controlled by SI
125.	Input Signal Level Differential Input, TXI_IP+/TXI_IP- to Single-ended output, TX_FM	0	1000 diff	1000 single- ended	mVpk-pk	Typical signal level input, gain of 0db, typical signal level output at TX_FM is 1000mVpk-pk single- ended
126.	Input Signal Level Single-Ended Input, TXI_IP+ to Single- Ended Output, TX_FM	0	500 single- ended	500 single- ended	mVpk-pk	Typical signal level input, gain of 0db, typical signal level output at TX_FM is 500mVpk-pk single-ended (Signal ac coupled to TXI_IP+)
	Power Supply Rejection					
127.	Out of band (120kHz)	12			dB	Supply ripple = 10mVrms, Max Gain
128.	Inband (12.5kHz)	12	-		dB	Supply ripple = 10mVrms, Max Gain
	Noise+spurious					Relative to 1kHz single tone input
129.	DC- 20 kHz			-50	dBc	Total integrated noise relative to signal power
130.	> 20 kHz			-80	dBc	Total noise power in 300 Hz band relative to signal power.
	Compression	2.5			Vpk-pk	
131.	Output at 1dB Compression			1.2	Vpk-pk	
132.	Total Harmonic Distortion			-40	dBc	Measured with 1 KHz full scale tone
	Filter Characteristics					
133.	Filter Type	3rd (Order Butterw	orth		
134.	3dB Passband Edge	22	25	28	kHz	Measured relative to gain at Fc.
135.	Stop band attenuation	30			dB	At >=100kHz
136.		40			dB	At >=2MHz
137.	Group Delay Deviation		= = = = = = = = = = = = = = = = = = = =	10	μs pk-pk.	0Hz-12.5kHz
138.	Inband Gain Ripple (Max. sig-min. sig)			1.0	dB pk-pk	0Hz-12.5kHz

(

Target Specification

139.	Input Impedance TXI_IP+/TXI_IP-	100		kΩ	Balanced @2kHz, Assumption: The same input is also used in BB I & Q mode
140.	Output Impedance TX_FM		1.0	kΩ	Single ended. External load is $20k\Omega$ and $20pF$ to ground.

IF Synthesis

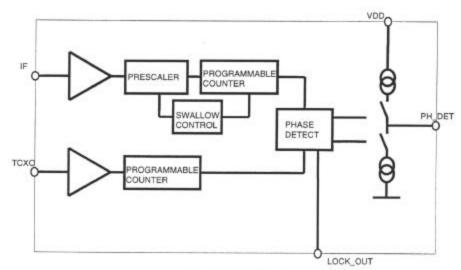


Figure 4 IF Synthesizer

The synthesizers will have several modes of operation, defined by control bits in the serial interface registers and the internal initialization circuits as described in the following tables:

BIT	CONTROLS	ACTION if '0'	ACTION If '1'		
ST<2:0>	LOCK Output(s)	See table (a) below			
ST<4:3>	Receive Charge Pump Current	See table	(b) below		
ST<6:5>	Transmit Charge Pump Current	See table	(b) below		
ST<7>	Receive Charge Pump Tristate	normal	tristate		
ST<8>	Transmit Charge Pump Tristate	normal	tristate		
ST<11:9>	Receive Prescaler Divide Ratio	See table	(c) below		
ST<14:12>	ST<14:12> Transmit Prescaler Divide Ratio		See table (c) below		
ST<15>	Receive Power Control	off	operational		
ST<16>	Transmit Power Control	off operation			
ST<17>	Receive Phase Detector Polarity	normal(+)	reverse(-)		
ST<18>	Transmit Phase Detector Polarity	normal(+)	reverse(-)		
ST<19>	Receive Prescaler Bypass	normal	bypassed		
ST<20> Transmit Prescaler Bypass		normal	bypassed		
ST<21>	ST<21> Receive Lock Detect Invert		inverted		
ST<22>	Transmit Lock Detect Invert	normal inverted			
ST<23>	Reference Dividers Test Bit	normal test			

note :- All bits can only be set from the serial interface

ST<2>	ST<1>	ST<0>	LOCK
0	0	0	RLOCK
0	0	1	RVCO
0	1	0	RREF
0	1	1	CLK_TEST
1	0	0	TLOCK
1	0	1	TVCO
1	1	0	TREF
1	1	1	WOUT

Table (a)

ST<6> / ST<4>	ST<5>/ ST<3>	Charge Pump Output Current			
0	0	496uA			
0	1	176uA			
1	0	96uA			
1	1.	16uA			

Issue 0.8

Page 18 Mitel Semiconductor

11' Febraury 1999 COMPANY CONFIDENTIAL

ST<14> / ST<11>	ST<13> / ST<10>	ST<12>/ ST<9>	Prescaler Divide Ratio		
0	X	X	8/9		
1	0	0	16/17 32/33		
1	0	1			
1	1	0	64/65		
1	1	1	128/129		

Table (c)

The transmit and receive synthesizers will be identical in all respects except for the address of the programming words. As can be see from the diagram (figure 4) the synthesizers will be comprised of:

4.1 Synthesizer Prescaler

With a maximum input frequency of 100MHz the prescaler will be able to be programmed in one of two different modes, firstly as a divide by 16/17 and secondly to divide by 8/9. The modulus control input for the prescaler will be generated by the "swallow counter" (see the next section).

4.2 Main Divider (N Counter)

The N Counter will consists of an 11 bit programmable counter (M counter) and a 7-bit swallow counter (the A counter), the overflow of the A counter will be used to control the modulus of the prescaler (see previous section). The dividends of the counters will then be loaded via the serial interface (see section 6). The output of the M counter will be compared with the reference frequency by the phase detector (see section 4.4).

4.3 Reference Divider

This will be a fully programmable 15 bit counter (the R counter) which will divide the TCXO input by a pre-programmed number between 3 and 32767, where this number will be programmed via the serial interface (see section 6). The output of the R counter will be compared with the output of the main divider by the Phase comparator (see following section).

4.4 Phase Detector & Charge Pump

The phase detector compares the two counter outputs and (depending on the relative phase of the two signals) either provides "UP" or "DOWN" signals to the charge pump and a "lock detect" signal to the output. The charge pump operates by providing current pulses of fixed amplitude and a period equal to the width of the up or down input. The charge pump output current will be accurate (+/-10%) to within 200mV of the supply rails,

4.5 Synthesizer Electrical Specification

			L	imits		
		Min.	Тур.	Max.	Units	Comments/Conditions
141.	Supply Voltage	2.7	3.0	3.3	V	Vdd
142.	Operating temperature	-30	27	85	°C	Tamb
	Current Consumption					
143.	IDD, Sleep Mode			0.025	mA	Sleep Mode (both Synths off)
144.	IDD, RX Synth (locked)		1.5	2	mA	
145.	IDD, TX Synth (locked)		1.5	2	mA	
	VCO Input					
146.	Input Resistance		TBD			
147.	Input Capacitance		TBD			
148.	Input Sensitivity		100		mV	Suggest -15dBm from 50 Ohm source, VCO design dependent
149.	Input Frequency	1MHz		100	MHz	
1101,000,000	Charge Pump Output Current					
150.	Default mode		496		uA	Rset=40kohm
151.	Low current mode		96		uA	Rset=40kohm
152.	Tristate mode			±10	uA	
153.	Output impedance	1			MΩ	
154.	Sink to source current matching		+/- 5		%	Measure at VDD/2
155.	"Off" leakage current	-5	+/- 1	5	nA	
156.	Compliance range	0.2	CH -500, 22 III	vdd-0.2		with current within 10% of value at vdd/2

5. Power Control System

The device current consumption management will be handled by the Power Control System (PCS), which is programmed through the Serial Control Interface and a single dedicated pin, which is called Power Control Assert (PCA). This function will allow Scorpio to be controlled by an accurate system timer rather than through the less accurately timed Baseband microprocessor and Serial Interface control path alone.

The PCS will function as follows. The operating mode that the device is required to be placed in will be loaded through the Serial Interface into the PCS register and not acted upon until the Power Control Assert (PCA) pin is asserted. To change device power control modes the process is repeated.

The table below shows a summary of power-down modes programmable via the Serial Interface:

PCS<0>	PCS<1>	PCS<2>	PCS Mode	Comments/Conditions
0	0	0	Deep Sleep	All circuits powered down except PCS
0	0	1	Sleep	TX and RX channels powered down, but support circuits active i.e. Bandgap
0	1	0	TX channel Active	TX channel powered up
0	1	1	RX Channel Active	RX channel powered up
1	0	0	Both TX and RX Channels Active	Power up both TX and RX channels
1	0	1	Alternate RX/TX	PCA "0" RX on/TX off, PCA "1" RX off/TX or
1	1	0	RSSI Latched Active	RSSI powered up, only when RX Channel or
1	1	1	RSSI Latched in Sleep	RSSI powered down

note :-

All bits can only be set from the serial interface, and the mode will be entered when the PCA pin is asserted active high

note:-

Definition of RX Channels and TX Channels are mode dependent and are as follows (defined with typical currents):

RX Channel TDMA mode, Bandpass Filter, Mixers and Post Filters, RX PLL, RSSI on, typical current 8mA RX Channel AMPS mode, Bandpass Filter, FM Discriminator, RX PLL, RSSI on, typical current 7.2mA

TX Channel TDMA mode, I/Q Filters, TX PLL, typical current 4mA

TX Channel AMPS mode, FM Filter, TX PLL, typical current 3mA

Misc. circuits, Power-On-Reset, Serial Interface, Clock Comparator, Clock Generator, Bandgap, typical current 550uA.

Serial Interface, Control Registers & Reference Circuits

6.1 Control Registers

Scorpio will be controlled via a 3-wire serial Interface (SCLK,SDATA & SLATCH), The Following table shows the address and mnemonic of the various control bits within the interface registers. The action of the control bits is further described in the relevant sections of this document.

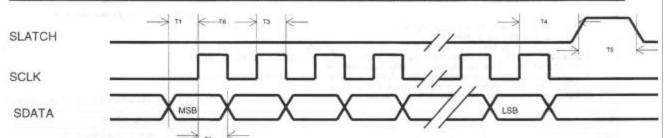
Time Order	first	Love	and the same		tic tic-	V7.54.15															112			last
Bit	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
WORD1	X	X	X								R	XDIV-	:17:0	>								0	0	0
WORD2	X	X	X								T	XDIV-	17:0	>							77.5	0	0	1
WORD3	X	X	X	S	<23:2	1>							REF	RX<1	4:0>							0	1	0
WORD4	X	X	X	S	T<20:1	e8							REF	TX<1	4:0>							0	1	1
WORD5	Х	X	X									ST<1	7:0>									1	0	0
WORD6	X	X	X	X	OSC	<1:0>	-	X		BYP	TX	G<2:0	>	TXC	T	X<2:0	>	1	TC<	3:0>		1	0	1
WORD7	TE	ST<2:	0>	F	MT<2:	0>	P	CS<2	0>	RS	SI<2:0	>	RX-	:1:0>		CONT	<3:0:			X		1	1	0
WORDS	1	CALC	0<7:4:	-		CALC	0<3:0	>			X			-	-	R<3:0:		TST		y		1	1	1

TXDIV<17:0> = TX main divider divide ratio	
TXDIV<17:0> = TX main divider divide ratio	
REFRX<14:0> RX reference divider divide ratio	
REFTX<14:0> TX reference divider divide ratio	
ST<23:0> = Synthesizer control bits (see section 4)	
OSC<1:0> = TX filter oscillator bits	
RADDR<3:0> = Address to select which register of 24 bits is put out serially on WOUT (see table	(woled)
TST = Enables WOUT to be read. WOUT is muxed onto the LOCK_DET pin, when TS	
TXC,TX<2:0> = TX mode control bits	
FMT<2:0> = FMIFSCF filter test bits	
PCS<2:0> Power Control System bits	
RX<2:0> = RX mode control bits	
TXG<2:0> = TX Gain bits	
TC<3:0> = TX Frequency control bits	
RSSI<2:0> = RSSI control bits	
CONT<3:0> = RX Control bits	
Issue 0.8 Page 21 11' Fe	braury 1

Page 21 Mitel Semiconductor 11' Febraury 1999 COMPANY CONFIDENTIAL TEST<2:0> CALCO<7:0> Y RX signal observability test bits Preload value for TX calibrate circuit

		=	Unused	/ internal	use only
-[Read	Address		WORD
ı	3	2	1	0	
-	0	0	0	0	1
ı	0	0	0	1	2
١	0	0	1	0	3
١	0	0	1	1	4
١	0	1	0	0	5
١	0	1	0	1	6
ı	0	1 1	1	0	7
1	0	1	1	1	8

6.2 Reference Circuits


Scorpio will contain a single bandgap reference circuit and precision bias current generator. The bandgap will have a nominal output voltage of 1.22V. For optimal circuit performance the associated pin 'VBG' should be de-coupled to ground using a 100nF capacitor. Both the reference voltage and current will be internally 'slaved' to all circuits requiring their support.

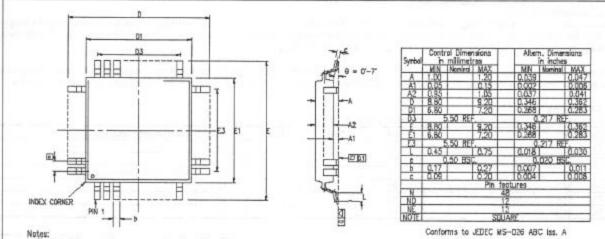
Scorpio requires a precise reference frequency for the synthesizers and the clock of the FM mode switched capacitor filter. This will be provided by an external source which supplies a sinewave or clipped sinewave at 19.44MHz a.c. coupled into the TCXO input by a 480nF capacitor.

6.3 Serial Interface

This operates in accordance with the following table and timing diagram.

Para	meter	MIN	TYP	MAX	Units	Comments/Conditions	
T1	SCLK-SDATA SETUP time	P time 20		ns			
T2	SCLK-SDATA hold time	20		S	ns		
T3	SCLK pulse width	50			ns	Min. Clock Frequency of 20MHz	
T4	SLATCH-SCLK SETUP time	20			ns		
T5	SLATCH pulse width	50			ns		
T6	SCLK period	100			ns		

6.4 Reference Circuits Electrical Specification


			L	mits		
		Min.	Typ.	Max.	Units	Comments
157.	Supply Voltage	2.7	3.0	3.3	V	Vdd
158.	Operating temperature	-30	27	85	°C	Tamb
	Current Consumption					
159.	IDD, Sleep Mode			0.025	m.A	Sleep Mode
160.	IDD, Active	0.44	0.55	0.66	mA	All circuits active
	тсхо					
161.	Input Resistance	10			kΩ	
162.	Input Capacitance	10			pF	
163.	Input Sensitivity	0.5		2	V pk-pk	Sinewave or clipped sinewave
164.	Input Frequency		19.44		MHz	+/-100ppm
	Voltage & Current References					
165.	Bandgap Voltage "VBG"	1.194	1.22	1.258	V	Decouple with a 100nF to gnd
166.	Maximum Change In VBG (-40° to 80°)			20	mV	
167.	Temperature Coefficient (@20°)	-30	13	90	ppm/°C	
168.	External Bias Resistor (RTUNE)		100		kΩ	Ref to gnd, +/-1%, temp +/-100ppm
	Digital I/O					Meets JEDEC Standard
169.	Input high voltage, VIH	0.7*VDD			V	
170.	Input low voltage, VIL			0.3*VDD	V	
171.	Input current, IIH			10	nA	

172.	Input capacitance, CIN,			10	pF	Includes pacaked capacitance
173.	Output high voltage, VOH	0.8*VDD	V		V	
174.	Output low voltage, VOL			0.4	V	-
175.	Output Drive (Sink/Source)		2/2	5/4	mA	
176.	Three-state leakage current,			10	μА	

Package

Package Type

TQFP48 (7x7x1.0 0.5mm pin pitch)

Notes:

1. Pin 1 indicator may be a corner chamfer, dat or bath.

2. Controlling dimensions are in millimeters.

3. The top package body size may be smaller than the bottom package body size by a max. of 0.15 mm.

4. Dimension D1 and E1 do not include mould profusion. Allowable profusion is 0.25 mm per side. D1 and E1 are maximum plastic body size dimensions including mould mismatch.

5. Dimension b does not include dambar profusion. Allowable dambar profusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08 mm.

6. Caplanarity, measured at seating plane G, to be 0.08 mm max.

This drawing supersedes 418/ED/51612/002 (Swindon)

ONIN				ORIGINATING SITE: SWINDON
BUSZI	1			Title: Package Outline Drawing for
ACN	201365	MITCI	SEMICONDUCTOR	48 lds TQFP (TP) (7x7x1.0) mm, Body+2.0 mm
DATE	280CT96	MITEL	SEMICONDUCTOR	Drowing Number
APPROVED				GPD00249

Package Diagram

9. Appendix A - RSSI Settling Time

The ADC information for a generic baseband device is assumed to be as follows,

The DACs and ADCs are 10 bits in 2.5v. Digital input is sampled at 2x symbol rate ie 48.6ksps. Analog input is sampled at either 24 ksps or 40 ksps. On transmit digital iterpolation brings the DAC rate to 388.8 ksps digital and 360 ksps analog.

From the above information, the pseudo LSB for a 5 bit ADC made from the above 10 bit ADC can be calculated as,

$$LSB = \frac{2.461}{2^5} = 76.9 mV$$

The output ripple must be less than 0.5 LSB to avoid periodic LSB switching. As a result the following requirement for output ripple is set:

The output of the RSSI consists of a capacitor across a resistor into which the RSSI output current is driven. The RSSI output voltage is described by the following equation:

$$Vout(s) = \frac{I(s) * \frac{1}{Cs} * R}{R + \frac{1}{Cs}}$$

From this the transresistance can be written as:

$$\left| \frac{1}{g(w)} \right| = \frac{R}{wRC + 1}$$

Now, the action of the rectifiers within the RSSI has the effect of doubling the input frequency from 60KHz to 120KHz. Assuming a maximum RSSI output current of lout_{ma} = 40uA with a maximum ripple of 38.45mV gives a

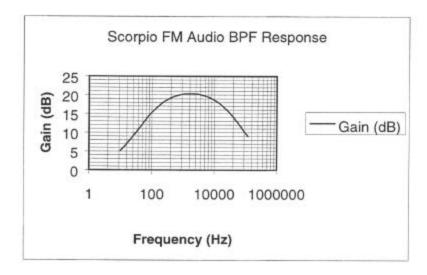
$$\frac{1}{g(120K)} \approx 961$$

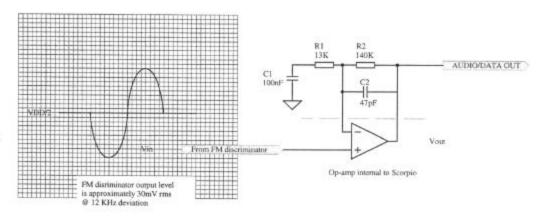
To set the required slope on the RSSI output a resistor of 33K 1% is used (1% is to ensure the absolute slope accuracy). With this resistor value, the above transresistance and a frequency of 120KHz an output ripple of < 38.45mV can be achieved using a C=1.4nF.

If,

$$F_{3dB} = \frac{1}{2\Pi RC} = 3.6kHz$$

The settling time is therefore:


Issue 0.8


Page 25 Mitel Semiconductor

11' Febraury 1999 COMPANY CONFIDENTIAL

$$\tau = \frac{1}{F_{3\text{dB}}} = 278us$$

10. Appendix B - FM Discriminator Component Selection

$$Vout = Vin \left[1 + \frac{Z1}{Z2} \right]$$

$$Z1 = R1 + \frac{1}{2 \prod fC1}$$

$$Z2 = \left(\left(\frac{1}{R2} \right) + 2 \prod fC2 \right)^{-1}$$

Scorpio

April 1999

TDMA / AMPS Baseband Interface

Preliminary Information

Features

- IS136 TDMA/AMPS Compatible
- Channel Filtering (30kHz)
- FM Demodulator
- RSSI Output
- · Dual IF Synthesisers
- Flexible Power Control
- Fully Programmable via serial bus
- Compatible with Mitel receive and transmit products
- 3 Volt operation
- 48 pin TQFP package

Applications

- Dual Mode TDMA/MPS Mobile telephones
- Dual Band (PCS1900/900) TDMA/AMPS Mobile telephones
- PCS 1900 TDMA Mobile Telephones

Description

Scorpio provides channel filtering for IS136 TDMA/AMPS mobile telephones.

Ordering Information

SCORPIO/KG/GP1R

The inputs for the receive path are I and Q signals at an IF of 60kHz. These I and Q signals are filtered by a 60 kHz switched capacitor bandpass filter and are then demodulated to give baseband I and Q signals. Scorpio also provides 56dB of voltage gain so that the baseband outputs can be input directly to an A to D converter.

The internal FM discriminator can be used for demodulating AMPS signals. The receive path also provides RSSI.

Transmit I and Q baseband signals from D to A converters can be input directly to Scorpio which provides reconstruction filters and a variable gain buffer.

The two PLL synthesisers are used for generation of the receive and transmit IF LO signals.

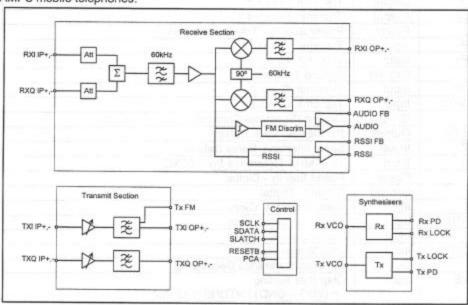


Fig 1 Block diagram

ı	No	Pin Name	Type	Description
I	1	RXQ OP-	Output	Baseband Receive Q Output -
Ī	2	RXQ OP+	Output	Baseband Receive Q Output +
	3	RXI OP-	Output	Baseband Receive I Output -
	4	RXI OP+	Output	Baseband Receive I Output +
	5	GND	Ground	Ground (Substrate Connection)
ľ	6	VDD	Power	Power Supply - RSSI/Demodulator
[7	RSSI	Output	RSSI Output
ĺ	8	GND	Ground	Ground - RSSI/Demodulator
	9	AUDIO	Output	Demodulator Audio/Data Output
	10	AUDIO FB	Input	Demodulator Feedback
	11	RSSI FB	Input	RSSI Feedback
	12	GND	Ground	Ground - Receive Section
	13	RXI IP+	Input	Receive I Input +
ĺ	14	RXI IP-	Input	Receive I Input -
	15	RXQ IP+	Input	Receive Q Input +
	16	RXQ IP-	Input	Receive Q Input -
	17	VDD ₁	Power	Power Supply - Receive Section
	18	RX PD	Output	Rx Phase Detector Output
	19	GND	Ground	Ground (Substrate Connection)
	20	RX VCO	Input	Receive IF PLL Input
	21	GND	Ground	Ground - Synthesizer
	22	TX VCO	Input	Transmit IF PLL Input
	23	VDD (Power	Power Supply - Synthesizer
	24	TX PD	Output	Rx Phase Detector Output
	25	UHF LOCK	O-E-EVE	UHF Synth Lock Input
	26	TXQ OP+	Output	Transmit Q Output +
	27	TXQ OP-	Output	Transmit Q Output -
-	28	TX FM	Output	Transmit FM Output
	29	TXI OP+	Output	Transmit I Output +
-	30	TXI OP-	Output	Transmit I Output -
	31	VDD ₂	Power	Power Supply - Transmit Section
	32	TXI IP-	Input	Transmit I Input -
_	33	TXI IP+	Input	Transmit I Input +
	34	GND	Ground	Ground TX Channel
	35	TXQ IP-	Input	Transmit Q Input -
	36	TXQ IP+	Input	Transmit Q Input +
-	37	GND	Ground	Ground (Substrate Connection)
	38	LOCK DET	Output	Synthesizer Lock Detect
	39	SDAT	Input	Serial Interface, Serial Data In
-	40	TCXO	Input	19.44MHz Reference from TCXO
-	41	VDD A	Power	Power Supply - Digital
	42	GND	Ground	Ground - Digital
_	43	SCLK	Input	Serial Interface, Clock
•	44	SLATCH	Input	Serial Interface, Latch
-	45	PCA	Input	Power Control Assert
-	46	RESETB	Input	Chip Master Reset
•	47	VBG	Output	Bandgap Reference Decoupling
	48	RTUNE	Input	Chip Bias Setting

Electrical Characteristics - Summary