NJIAL200 EXHIBIT 7 "Users Manual"

This exhibit is submitted to comply in part with FCC 47CFR section 2.1033 part b item 3:

"A copy of the installation and operating instructions to be furnished the user. A draft copy of the instructions may be submitted if the actual document is not available. The actual document shall be furnished when it becomes available."

This exhibit is submitted to comply with FCC 47CFR section 2.1033 part c item 3:

"A copy of the installation and operating instruction to be furnished the user. A draft copy of the instructions may be submitted if the actual document is not available. The actual document shall be furnished to the FCC when it becomes available."

Submission examination in detail on FCC 47CFR section 2.1033 part b item 3:

Whereas the "Installation and Operating Instructions" is shown below, and the reference in section 2.1033 for the same document is the "installation and operation instructions", and the Form 731 equivalent reference is the "User Manual", the "Installation and Operating Instructions" document is used as a submission for this requirement and is evidenced.

Submission examination on FCC 47CFR section 2.1033 part c item 3:

Whereas the "Installation and Operating Instructions" is shown below, and the reference in section 2.1033 for the same document is the "installation and operation instructions", and the Form 731 equivalent reference is the "User Manual", the "Installation and Operating Instructions" document is used as a submission for this requirement and is evidenced.

CSI-Wireless Wireless-Link

AssetLink 200 Installation and Operating Instructions

Document: AssetLink 200 Installation and Operating Instructions

Date: January 2, 2002

Issue: Rev. 1.0

Author: Russ Braathen copyright 2001 CSI-Wireless Inc.

TABLE OF CONTENTS

υ	EFINI	11UN5	3
1	INT	TRODUCTION	4
	1.1	OPERATIONAL OVERVIEW	4
	1.2	OPERATING MODES	
2	ASS	SETLINK 200 INTERNAL COMPONENTS	
	2.1	TWELVE CHANNEL GPS RECEIVER.	4
	2.1.	1 GPS Position/Velocity Fix	4
	2.1.	2 Geo-fences	5
	2.1.	3 Distance and Home Origin	5
	2.2	SYSTEM TIMING	5
	2.3	EXTERNAL I/O	6
	2.4	EVENT MONITOR AND EXCEPTION HANDLER	
	2.5	ON BOARD DIAGNOSTICS	6
	2.6	POWER CONSUMPTION PROFILE	7
3	PE	RFORMANCE SPECIFICATIONS	7
	3.1	CELLULAR TRANSCEIVER	7
	3.2	GPS RECEIVER	7
	3.3	ASSETLINK 200 ANTENNA SPECIFICATIONS	8
	3.3	.1 Warning on use of cellular antennas	8
	3.3.	2 Cellular Antenna Specifications	8
	3.3.		
	3.4	ENVIRONMENTAL REQUIREMENTS	9
	3.4.	1 Temperature and Humidity	9
	3.4.	2 Vibration	9
	3.5	I/O LINES	9
	3.5.	1 Serial Data Port	9
	3.5.	2 Analogue & Digital I/O Lines	9
	3.5.	3 External Connector Pin Assignments	10
	3.5.	4 Power Lead Assignments	10
4	ME	CHANICAL AND PHYSICAL	11
	4.1	HOUSING	11

Acronyms and Abbreviations

bps Bits per Second

AMPS American Mobile Phone System
Cellular Section Cellular Data Modem for AMPS
DAC Digital to Analog Converter

DGPS Differential Global Positioning System

DSP Digital Signal Processor

EEPROM Electronic Erasable Programmable Read Only Memory

ESD Electrostatic Discharge
ESN Electronic Serial Number
FCP Function Control Processor
GPS Global Positioning System

ID Identification (Numeric or alpha value)

I/O Inputs and/or outputs

MIN Mobile Identification Number NCC Network Control Center

PPM Parts per Million

RAM Random Access Memory

RF Radio Frequency

RSSI Received Signal Strength Indicator

RTC Real Time Clock
RX Receiver or Receive
SAT Supervisory Audio Tone

SID System Identification Number (Cellular switch identifier)

ST Signaling Tone

TX Transmitter or Transmit
UTC Universal Time Coordinated
VSWR Voltage Standing Wave Ratio

Definitions

Action A programmed response to an exception.
Aeris Company that invented MicroBurst

Almanac A subset of orbital parameters from the GPS satellite ephemeris used

to calculate approximate satellite positions and velocities.

Baud A unit of measurement specifying the signaling rate (Signals/Sec).

Control Channel A specific cellular communications channel designated for use by the

cellular system to set up a voice telephone call between the PSTN and

a cellular user

Ephemeris A set of GPS satellite parameters used to calculate precise satellite

positions and velocities.

Exception A predefined event or condition that causes a programmed response

(Action).

Immobilizer Type of vehicle security alarm that has the capability to immobilize

the vehicle by interrupting the fuel line or ignition

MicroBurst Data communications specification using telephone signaling protocol

of the Analog Cellular Telephone system

Page The event of receiving a cellular telephone call. Also known as an

incoming call or cellular page.

1 Introduction

1.1 Operational Overview

The AssetLink 200 vehicle unit provides a specific set of features for vehicle security and vehicle tracking through the integration of Cellular Control Channel data communications, Cellular Voice Channel data communications, Global Positioning System (GPS) technology, and an intelligent power management.

System Features

The AssetLink 200 unit incorporates the following major features:

- Integrated Microburst radio,
- Integrated Cellular Audio Modem
- GPS receiver
- Power management modules.
- Real Time Clock for scheduling and power management.
- Low power mode.
- Event schedules & triggers
- Protected automotive power supply.

1.2 Operating Modes

The AssetLink 200 unit offers three operating modes.

- Power Off Mode
- Armed Mode
- Active Mode

2 AssetLink 200 Internal Components

2.1 Twelve Channel GPS Receiver.

The AssetLink 200 unit incorporates an integrated twelve-channel GPS receiver.

2.1.1 GPS Position/Velocity Fix.

The GPS receiver establishes a position fix as shown in Table 1.

Time for Fix	Certainty	Conditions	
< 1min.	90%	GPS receiver powered on 6 –24 hrs. without a current	
		almanac, satellite ephemeris, initial position or	
		time.	
< 30 sec.	90%	"Warm Start", GPS receiver powered on 1 – 6 hrs. with	
		a current almanac, satellite ephemeris, initial	
		position and time.	
< 10 sec.	90%	"Hot Start", GPS receiver powered off for less than 60	
		minutes with a valid almanac, satellite	
		ephemeris, position and time.	

Table 1 - Establishment of Position Fix

The GPS almanac is updated continuously as pages of the almanac are received during Active Mode state. During the Active Mode the GPS receiver is always powered on and attempting position fixes.

The GPS receiver can be configured during the Armed Mode to specify the "maximum time to fix" interval allowed for the GPS receiver to get a fix before powering off the GPS. This mode is necessary in situations where the GPS antenna is completely hidden from the sky and cannot get an updated position fix during its Armed Mode 'wake-up/status check' cycle.

During the Armed mode the GPS receiver is immediately powered off after getting a valid fix and determining that the vehicle has not moved. However, the cellular transceiver will remain on for the duration of the 'wake-up/status check' cycle to listen for messages from the NCC.

2.1.2 Geo-fences

At the time of the installation the AssetLink 200 may be factory programmed with 3 Geo-fences, and defaulted to the first 0-25 mile fence as follows:

- 1. ID # 1, 0 to 1 miles radius
- 2. ID # 2, 0 to 25 miles radius
- 3. ID # 3, 0 to 50 miles radius

Users can change these by contacting the NCC where commands can be sent to the device to change the geo-fence. Alternatively they can execute these commands via the web page interface. A geo-fence defines a boundary or a geographic area calculated as a radius from a central point. Only one geo-fence can be enabled at a time. The AssetLink 200 will send a Status message to the NCC in the event that the vehicle crosses outside the fence selected.

Each Geo-fence is defined by the following parameters:

- ID (1-3) used to identify a particular constraint region. This value is created and stored by the host, not by the AssetLink 200.
- Type (out of only)
- Boundary circle with radius. Center of circle is Home Origin.
- Trigger The AssetLink 200 will generate an exception, when it has a valid GPS fix, based on:
 - 1. The vehicle crossing the geo-fence,
 - 2. When the unit powers up outside a geo-fence.

2.1.3 Distance and Home Origin

One Latitude-Longitude position, referred to as Home Origin, can be kept in the FCP EEPROM configuration memory. This data point is used to calculate the radii of the selected geo-fence, and subsequently the distance from the center of the circle. In the event that the vehicle exits this circle a trigger can be generated and sent to the NCC.

2.2 System Timing

The AssetLink 200 maintains accurate system time necessary to support the Armed Mode of operation. When the GPS receiver is active and can see at least one GPS satellite the AssetLink 200 system time is synchronized to the GPS time.

2.3 External I/O

The seven I/O connections of the AssetLink 200 are configured as follows:

Line #	Designation	Type	Function	Signal Chracterics
1	Output	Relay Driver	Doors Unlock Relay	Pulse active low, 1
				second maximum
2	Output	Relay Driver	Starter Enable/disable	Level, stays high
			Relay	or low as
				determined by
				MIN3 / MIN4
3	Input	Digital	Crash Sensor, Low Impact	Active low,
				minimum 1
				second. Rise time
				less than 150
				microseconds
4	Input	Digital	Crash Sensor, High	Active low,
			Impact	minimum 1
				second. Rise time
				less than 150
				microseconds
5	Output	Digital	Future Assignment	
6	Output	Digital	Future Assignment	
7	Input	Analogue	Future Assignment	

Table 3 – I/O Port Configuration

2.4 Event Monitor and Exception Handler

The AssetLink 200 unit is programmed to recognize a number of events as exceptions and use these events to trigger action(s). Some examples of events are:

- Excessive speed.
- Door lock open/close
- Geo-fence violation
- The GPS antenna disconnected.
- Vehicle alarm violated

2.5 On Board Diagnostics

The AssetLink 200 incorporates on board diagnostics and troubleshooting support that is accessible by connection to the asynchronous communications port. The following will be displayed in the Asset Vision Link test software, connected to the AssetLink 200 via the RS232 serial port.

- GPS fix attained (Yes/No)
- Antenna Status (Connected/disconnected)
- Cellular RSSI
- Asset voltage
- Asset ID
- Internal phone number (MIN)

Revision 1.0 Page 6 1/2/2002

- System Identification (SID)
- ESN

2.6 Power Consumption Profile

The AssetLink 200 unit has three major operating modes:

Power Off This is the lowest consumption mode to maintain the RTC,

relay outputd digital outputs and monitor external digital inputs. The current draw from the supply lines in this mode is

less than 30 microamperes at 12 volts.

Armed In this mode the unit checks for scheduled events), external

analog and digital inputs. Any unused modules are powered down. When processing is not required the unit runs in the power off state. The current draw from the supply lines in

this mode is nominally 150 milliamperes at 12 volts.

This is the full operating mode with both the GPS and the Cellular Section powered on continuously. The unit monitors exceptions, receives GPS position fixes and the Cellular Section is in the standby mode ready to receive any messages. The Cellular Section transmitter is turned on as required. The current draw from the supply lines in this mode is nominally 150 milliamperes with periods at 600 milliamperes at 12 volts

when the cellular unit is in full power transmit.

3 Performance Specifications

3.1 Cellular Transceiver

Active

Parameter	Specification	Units
Frequency Range (Tx)	824.010 - 848.970	MHz
Frequency Range (Rx)	869.010 - 893.970	MHz
Channel Spacing	30	KHz
Deviation	± 12	KHz Max.
Number of Channels	832	
Antenna Impedance	50	Ohms
Receiver Sensitivity	-116	dBm typical
Transmitter Power Output	0.6	Watts nominal
Peak Deviation	+/- 8	KHz
Frequency Stability	+/- 2.5	ppm maximum
Carrier Switching Time	2	ms
Channel Switching Time	40	ms maximum

Table 6– Cellular Transceiver Performance Characteristics

3.2 GPS Receiver

Parameter	Specification
Receiver	L1, C/A code
Channels	12
Max Solution Update rate	1/second
Satellite Reacquisition Time	100 ms
Snap Start	< 2 seconds
Hot Start	< 8 seconds

Warm Start	< 38 seconds
Cold Start	< 45 seconds
Minimum Signal Tracked	-175 dBW
Maximum Velocity	< 1,000 knots
Consumption	150 mA
Voltage	3.15 to 5.5 VDC
Protocols	NMEA v2.2, SiRF Binary
Position Accuracy	100 meter 2d RMS
	SA On 10 meter 2d RMS

Table 7 – GPS Receiver Specifications

3.3 AssetLink 200 Antenna Specifications

The AssetLink 200 unit requires two separate antennas, Cellular and GPS.

3.3.1 Warning on use of cellular antennas

The cellular antenna supplied with this unit must be used for installation and operation. Substitution of other antennas must be approved by the manufacturer for compliance to radiation safety limits.

The mounting of this unit and antenna must be done by professional installers to ensure that the user or nearby persons will maintain at least 20 cm from the cellular antenna in normal use.

3.3.2 Cellular Antenna Specifications

Parameter	Specification	
Frequency	824 – 894 MHz	
Gain	3dBd maximum	
VSWR	Max 2:1 over range	
Max Power	2 watts	
Nominal Impedance	50 Ohms	
Connector	TNC	
Cable	15 feet maximum 50 ohm low loss	

Table 8 – Cellular Antenna Specification

3.3.3 GPS Antenna Specifications

Parameter	Specification	
Type	Low Noise with Active Amplifier	
Frequency	1,575.42 MHz, ±2 MHz	
Gain	5 dBiC typical antenna, 24 dB active amp	
Noise Figure	1.5 dB Max	
Operating Temp	-30 to + 60 C	
Nominal Impedance	50 ohms	
Amplifier Bias Voltage	3.3 VDC, ±10%	
Connector	SMA	
Cable	15 feet maximum 50 ohm low loss	
Antenna current supplied	20 mA max	
by AssetLink 200		

Table 9 – GPS Antenna Specification

3.4 Environmental Requirements

3.4.1 Temperature and Humidity

Parameter	Minimum	Maximum
Operating Temperature Range	-30 °C	+60 °C
Storage Temperature Range	-50 °C	+80 °C
Operating Humidity @ -30°C to +60 °C,	0 %	90 %
%RH non condensing		

Table 10 – Temperature & Humidity Specification

3.4.2 Vibration

The AssetLink 200 is designed for mounting in the passenger compartment, which is a non-frame area of a car or truck.

3.5 I/O LINES

3.5.1 Serial Data Port

The AssetLink 200 unit has 1 serial data port for general-purpose use, unit configuration and diagnostics. It is a 9600-baud ASCII, full duplex, 8 bits, no parity, asynchronous serial interface. The electrical characteristics are:

Parameter	Min	Max
Input Voltage High	3.5V	5.5V
Input Voltage Low	-0.6V	1.0V
Output Voltage High	4.0 V	5.5V
Output Voltage Low	-0.6V	0.6V
Input Impedance	40 KOhm	75 KOhm
Output Impedance	1.5 KOhm	4.0 KOhm

Table 12 – Serial Data Port Specifications

3.5.2 Analogue & Digital I/O Lines

The AssetLink 200 has 7 I/O Lines, 2 digital inputs, 2 digital outputs, 1 analogue input and 2 relay driver outputs. The electrical characteristics are:

Parameter	Min	Max
GENERAL:		
Input Impedance	40 KOhm	75 KOhm
Output Impedance	1.5 KOhm	4.0 KOhm
DIGITAL:		
Input Logic High	3.5V	5.5V
Input Logic Low	-0.6V	0.6V
Output Logic High	4.0 V	5.5V
Output Logic Low	-0.6V	0.6V
ANALOGUE:		
Input Impedance	20 KOhm	40 KOhm
Input High Voltage	6.5V	7.5V
Input Low Voltage	-0.3V	-0.6V

RELAY DRIVER:		
Output Impedance	0 ohm	3 ohm
Input High Voltage for less	0V	32V
than 1 mA draw		
Reverse Voltage at 1 mA draw	0V	-2V

Table 13 – Analogue & Digital Lines Specifications

3.5.3 External Connector Pin Assignments

Connector on AssetLink 200: Molex 53259-1310 or equivalent Mating connector, for customer-supplied cable harness: Molex 51067-1300 or equivalent

The external I/O connector pin assignments are as follows:

	the external 1/0 connector pin assignments are as follows.			
Pin	Description	Notes		
1	Relay Driver 1	Connects relay coil to ground, other side of relay coil goes to supply positive.		
2	Relay Driver 2	Connects relay coil to ground, other side of relay coil goes to supply positive.		
3	Digital Output 1	0 and 5 volt logic signal with 2 KOhm series impedance driven from		
		AssetLink 200		
4	Digital Output 2	0 and 5 volt logic signal with 2 KOhm series impedance driven from		
		AssetLink 200		
5	Digital Input 1	0 and 5 volt logic signal with 300 KOhm to ground as input to AssetLink 200		
6	Digital Input 2	0 and 5 volt logic signal with 300 KOhm to ground as input to AssetLink 200		
7	Analog Input	Input for measurement, 0 to 38 volts		
8	Ground	Connects to chassis of AssetLink 200		
9	Serial Output	Signal from AssetLink 200 to Computer		
10	Serial Input	Signal from Computer to AssetLink 200		
11	Reserved	Reserved for factory use		
12	5 Volt Reference	5 volts with 2 KOhm series impedance, for reference use		
13	Battery Voltage	For measurement only, 0 to 38 volts range.		

Table 14 - External Signal Connector

Pin 1 is next to larger connector (TNC)

3.5.4 Power Lead Assignments

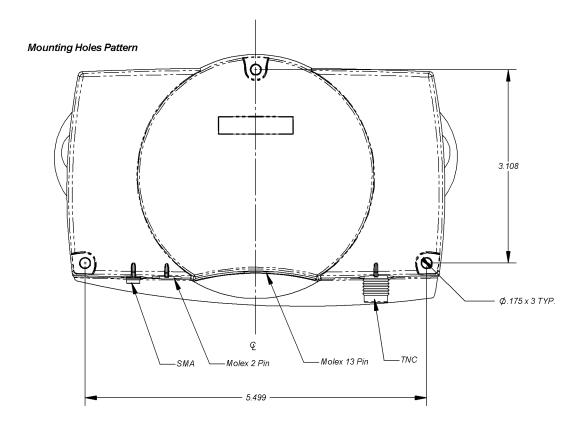
Pin 13 is next to 2 pin connector

Power Connector on AssetLink 200: Molex 53259-0210 or equivalent Mating connector, for customer-supplied cable harness: Molex 51067-0200 or equivalent The AssetLink 200 power lead assignments are as follows:

1	Supply Battery	Power input to AssetLink 200, 8
	Voltage Positive	to 36 volts, 2 amp fused
		externally,
		internally protected.
2	Supply Battery	Power input to AssetLink 200,
2	Supply Battery Voltage Negative	Power input to AssetLink 200, battery negative with protection
2		

Table 15 - Power Supply Lead Use.

Pin 1 is next to 13 pin connector


Pin 2 is next to smaller connector (SMA).

4 Mechanical and Physical

4.1 Housing

The AssetLink 200 consists of a PCB contained inside a housing. The approximate size of the AssetLink 200 is 156 mm (L) x 100 mm (W) x 25.4 mm (H).

- 1. The housing is cast aluminium,
- 2. Three mounting tabs will allow for use of a size 6 pan head screw,
- 3. The outside color of the housing is black.

AssetLink 200 mounting dimensions

Revision 1.0 Page 11 1/2/2002