

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com Feb. 17, 2006

TIMCO ENGINEERING INC. P.O. Box 370 849 N.W. State Road 45

Newberry, Florida USA 32669

Subject: FCC Certification Authorization Application under FCC PART 15, Subpart C, Sec. 15.209 - Low Power Transmitters operating in the frequency band 24.2 - 25.2 GHz.

Product:	SITRANS LR 460
Model No.:	7ML5426
FCC ID:	NJA-LR460

Dear Sir/Madam

As appointed agent for Siemens Milltronics Process Instruments Inc., we would like to submit the application for certification of the above product. Please review all required documents uploaded to your E-Filing web site.

If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

Siemens Milltronics Process Instruments Inc. 1954 Technology Drive, P.O. Box 4225 Peterborough, Ontario Canada, K9L 7B1

Attn.: Mr. Enzo De Simone

Subject: FCC Certification Application Testing under FCC PART 15, Subpart C, Sec. 15.209 – Low Power Transmitters operating in the frequency band 24.2 - 25.2 GHz.

Product:	SITRANS LR 460
Model No.:	7ML5426
FCC ID:	NJA-LR460

Dear Mr. De Simone,

The product sample, as provided by you, has been tested and found to comply with FCC PART 15, Subpart C, Sec. 15.209 - Low Power Transmitters operating in the frequency band 24.2 - 25.2 GHz.

Enclosed you will find copies of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

FC 31040/SIT

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com

Engineering test report

SITRANS LR 460 Model No.: 7ML5426

FCC ID: NJA-LR460

Applicant: Siemens Milltronics Process Instruments Inc.

1954 Technology Drive, P.O. Box 4225 Peterborough, Ontario Canada, K9L 7B1

In Accordance With

FEDERAL COMMUNICATIONS COMMISSION (FCC) PART 15, SUBPART C, SEC. 15.209 Low Power Transmitters Operating in the frequency band 24.2 - 25.2 GHz

UltraTech's File No.: MIL-345FCC15C-FEB1706

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: Feb. 17, 2006

Report Prepared by: Tri Luu

Issued Date: Feb. 17, 2006

Tested by: Hung Trinh

Test Dates: Oct. 18 - Nov. 02, 2005

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: <u>www.ultratech-labs.com</u> Email: <u>vic@ultratech-labs.com</u>, Email: <u>tri.luu@sympatico.ca</u>

FC 31040/SIT

VC-1376

Canadã 46390-2049

(VL)

ζ

_

ζ

TABLE OF CONTENTS

EXHIBI	T 1.	INTRODUCTION	3
1.1.	SCOP	Е	3
1.2.		ED SUBMITAL(S)/GRANT(S)	
1.3.		IATIVE REFERENCES	
EXHIBI	T 1.	PERFORMANCE ASSESSMENT	. 4
1.1.	CLIEN	r INFORMATION	4
1.2.		MENT UNDER TEST (EUT) INFORMATION	
1.3.	EUT'S	STECHNICAL SPECIFICATIONS	5
1.4.		F EUT'S Ports	
1.5.	ANCIL	LARY EQUIPMENT	5
EXHIBI	T 2.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	6
2.1.	CLIMA	TE TEST CONDITIONS	6
2.2.	OPERA	TIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	6
EXHIBI	T 3.	SUMMARY OF TEST RESULTS	.7
3.1.	LOCA	TION OF TESTS	.7
3.2.		ICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	
3.3.	MODIF	ICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	7
EXHIBI	T 4.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	8
4.1.	TEST F	PROCEDURES	8
4.2.	MEASU	JREMENT UNCERTAINTIES	8
4.3.		JREMENT EQUIPMENT USED:	
4.4.		ERLINE CONDUCTED EMISSIONS @ FCC PART 15, SUBPARTS B & C, PARA.15.107(A) & 15.207.	
4.4.		imits	
4.4. 4.4.		lethod of Measurements	
4.4. 4.4.		est Equipment List hotographs of Test Setup	
4.4.		est DATA	
4.5.		SMITTER SPURIOUS EMISSIONS (RADIATED @ 3 METERS), FCC CFR 47, PARA. 15.209 & 15.205	
4.5.		imits	
4.5.		lethod of Measurements	
4.5.	3. T	est Equipment List	16
4.5.		hotographs of Test Setup	
4.5.		est Data	
		OCCUPIED BANDWIDTH @ FCC 15.215(C)	
4.6.		imits	
4.6.		lethod of Measurements	
4.6. 4.6.		est Equipment List	
EXHIBI		MEASUREMENT UNCERTAINTY 1	
5.1.		Conducted Emission Measurement Uncertainty	
5.2.	Radia	TED EMISSION MEASUREMENT UNCERTAINTY	20

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.209		
Title	Telecommunication - Code of Federal Regulations, CFR 47, Part 15		
Purpose of Test:	To gain FCC Certification Authorization for Low Power Transmitters operating in the		
	Frequency Band 24.2 - 25.2 GHz .		
Test Procedures	Both conducted and radiated emissions measurements were conducted in accordance		
	with American National Standards Institute ANSI C63.4 - American National Standard		
	for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical		
	and Electronic Equipment in the Range of 9 kHz to 40 GHz.		
Environmental	Commercial, light industry & heavy industry		
Classification:			

1.2. RELATED SUBMITAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	YEAR	Title
FCC CFR Parts 0-19	2005	Code of Federal Regulations – Telecommunication
ANSI C63.4	2004	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22	2003-04-10	Limits and Methods of Measurements of Radio Disturbance Characteristics of
+A1	2004-10-14	Information Technology Equipment
EN 55022	2003	
CISPR 16-1-1	2003	Specification for radio disturbance and immunity measuring apparatus and methods.
		Part 1-1: Measuring Apparatus
CISPR 16-2-1	2003	Specification for radio disturbance and immunity measuring apparatus and methods.
		Part 2-1: Conducted disturbance measurement
CISPR 16-2-3	2003	Specification for radio disturbance and immunity measuring apparatus and methods.
		Part 2-3: Radiated disturbance measurement

EXHIBIT 1. PERFORMANCE ASSESSMENT

CLIENT INFORMATION 1.1.

APPLICANT:	
Name:	Siemens Milltronics Process Instruments Inc.
Address:	1954 Technology Drive, P.O. Box 4225
	Peterborough, Ontario
	Canada, K9L 7B1
Contact Person:	Mr. Enzo De Simone
	Phone #: 705 740 7009
	Email Address: enzo.desimone@siemens.com

MANUFACTURER:]
Name:	Siemens Milltronics Process Instruments Inc.
Address:	1954 Technology Drive, P.O. Box 4225
	Peterborough, Ontario
	Canada, K9L 7B1
Contact Person:	Mr. Enzo De Simone
	Phone #: 705 740 7009
	Email Address: enzo.desimone@siemens.com

EQUIPMENT UNDER TEST (EUT) INFORMATION 1.2.

Brand Name	Siemens Milltronics Process Instruments Inc.	
Product Name	SITRANS LR 460	
Model Name or Number	7ML5426	
Serial Number		
Type of Equipment	Tank Level Probing Radar (TLPR)	
Input Power Supply Type	AC: 85 V – 265 V (47 Hz – 63 Hz) or DC: 20.4 V – 30.0 V	
Primary User Functions of EUT:	Tank Level Probing Radar (fixed use in metal or concrete tanks)	

1.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER					
Equipment Type: Tank level Probing	Base station (fixed use in metal or concrete tanks)				
Radar					
Intended Operating Environment:	Commercial, light industry & heavy industry				
Power Supply Requirement:	AC: 85 V – 265 V (47 Hz – 63 Hz) or DC: 20.4 V – 30.0 V				
RF Output Power Rating:	No RF signal shall be outside of the metal or concrete tank				
Operating Frequency Range:	24.2 GHz – 25.2 GHz (Centre Frequency: 24.7 GHz)				
Modulation Types (please describe all	Interrupted FMCW radar operation; (On time: 82.5 ms RF				
types of modulation)	sweeptime, sweep interval: variable between 0.15 s and 10 s)				
Duty Cycle	0.8% to 35.4%				
Modulation Designation:	1G04F3N				
20 dB Occupied Bandwidth	1.038 GHz				
Antennas:	Flanged process connection (2", 3", 4" or 6" flange) with 2", 3" or				
	4" horn antenna with 100 mm, 200mm, 500 mm and 1000 mm				
	waveguide extension options:				
	• 2" horn antenna gain: 18.1 dBi				
	• 3" horn antenna gain: 21.3 dBi				
	• 4" horn antenna gain: 22.7 dBi				

RECEIVER			
Operating Frequency Range:	Operating Frequency Range: 24.2 GHz – 25.2 GHz		

1.4. LIST OF EUT'S PORTS

Index Number	Parts Description	Parts Number/ Model Number	Serial Number	FCC/IC/CE Compliance (FCC, IC &/ CE)
1	Flanged process connection (2", 3", 4" or 6" flange) with 2", 3" or 4" horn antenna with 100 mm, 200mm, 500 mm and 1000 mm waveguide extension options	N/A	N/A	N/A

1.5. ANCILLARY EQUIPMENT

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non- shielded)	Is cable length restricted to be < 3 meters?
1	Power: AC: 85 V – 265 V (47 Hz – 63 Hz) or DC: 20.4 V – 30.0 V	1	Connector terminal block	Non-shielded cable	no
2	Level: HART or Profibus	1	Connector terminal block	Non-shielded cable	no

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: MIL-345FCC15C-FEB1706 Feb. 17, 2006

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

EXHIBIT 2. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

2.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	AC: 85 V – 265 V (47 Hz – 63 Hz) or
	DC: 20.4 V – 30.0 V

2.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

SITRANS LR 460 is a Frequency Modulated Continuous Wave (FMCW) radar device. It is used for industrial level monitoring of liquids and solids in a "continuous unmonitored operation". It operates by transmitting microwave signals from the antenna to the surface of the measuring material and the frequency of these microwave signals is continuously modulated. A receiver registers the reflection from the surface of material and links it with the simultaneously transmitted signal, the difference between the received and transmitted frequency is then analyzed and calculated to determine the distance or level of material

EXHIBIT 3. SUMMARY OF TEST RESULTS

3.1. LOCATION OF TESTS

- Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Test Configuration #1 Metal tank: Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-• Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site has been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049-1). Last Date of Site Calibration: June. 20, 2005.
- Test Configuration #2 Concrete tank: Radiated Emissions were performed at St. Marry's Cement plant located in • Ontario, Canada

FCC PARAGRAPH. **TEST REQUIREMENTS** COMPLIANCE (YES/NO) 15.203 Antenna Requirement Yes. Permanently attached antenna. Transmitter Radiated Emissions - Fundamental, Harmonic and Yes 15.209 & 15.205 Spurious 15.115(c) 20 dB Bandwidth Yes 15.107(a) & Power Line Conducted Emissions Measurements (Transmit & Yes 15.207(a) Receive)

3.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices, the associated Radio Receiver operating in 24.2 - 25.2 GHz is exempted from FCCs authorization . The engineering test report can be provided upon FCC requests.

MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES 3.3.

None

EXHIBIT 4. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

4.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4 and ULTR-P001-2004.

4.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 5 for Measurement Uncertainties.

4.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

4.4. POWERLINE CONDUCTED EMISSIONS @ FCC PART 15, SUBPARTS B & C, PARA.15.107(A) & 15.207

4.4.1. Limits

The equipment shall meet the limits of the following table:

	CLASS	B LIMITS	
Test Frequency Range (MHz)	Quasi-Peak (dBµV)	Average* (dBµV)	Measuring Bandwidth
0.15 to 0.5	66 to 56*	56 to 46*	$\begin{array}{l} \text{RBW} = 9 \text{ kHz} \\ \text{VBW} \geq 9 \text{ kHz for QP} \\ \text{VBW} = 1 \text{ Hz for Average} \end{array}$
0.5 to 5	56	46	RBW = 9 kHz VBW $\geq 9 \text{ kHz}$ for QP VBW = 1 Hz for Average
5 to 30	60	50	$\begin{array}{l} \text{RBW} = 9 \text{ kHz} \\ \text{VBW} \geq 9 \text{ kHz for QP} \\ \text{VBW} = 1 \text{ Hz for Average} \end{array}$

* Decreasing linearly with logarithm of frequency

4.4.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

4.4.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver System/Spectrum Analyzer with built-in Amplifier	Hewlett Packard	HP 8546A	3520A00248	9KHz-5.6GHz, 50 Ohms
Transient Limiter	Hewlett Packard	11947A	310701998	9 kHz – 200 MHz 10 dB attenuation
L.I.S.N.	EMCO	3825/2	89071531	9 kHz – 200 MHz 50 Ohms / 50 μH
12'x16'x12' RF Shielded Chamber	RF Shielding	N/A	N/A	N/A

4.4.4. Photographs of Test Setup

Refer to the Photographs #1 & 2 in Annex 1 for setup and arrangement of equipment under tests and its ancillary equipment.

4.4.5. Test DATA

Test Sample: SITRANS 460, Model 7ML5426 with 4" horn antenna (maximum gain: 22.7 dBi) •

Test Configuration #1: LR 460 with AC 120V 60 Hz input voltage

The emissions were scanned from 150 kHz to 30 MHz at AC Mains Ports via a LISN, and all emissions less than 20 dB below the limits were recorded. Please refer to Plots #1 and #2 for details of test data.								
FREQUENCY (MHz)	RF LEVEL (dBuV)	RECEIVER DETECTOR (P/QP/AVG)	QP LIMIT (dBuV)	AVG LIMIT (dBuV)	MARGIN (dB)	PASS/ FAIL	LINE TESTED (L1/L2)	
0.15	56.0	QP	65.9	55.9	-9.9	PASS	L1	
0.15	30.8	AVG	65.9	55.9	-25.1	PASS	L1	
0.16	55.0	QP	65.5	55.5	-10.5	PASS	L1	
0.16	28.4	AVG	65.5	55.5	-27.1	PASS	L1	
0.15	56.3	QP	65.8	55.8	-9.5	PASS	L2	
0.15	31.4	AVG	65.8	55.8	-24.4	PASS	L2	
0.17	53.9	QP	65.0	55.0	-11.1	PASS	L2	
0.17	26.7	AVG	65.0	55.0	-28.3	PASS	L2	

Test Configuration #2: LR 460 with DC 24V input voltage

The emissions were scanned from 150 kHz to 30 MHz at DC Input Ports via a LISN, and all emissions less than 30 dB below the limits were recorded. Places refer to Plate #2 and #4 for details of text data								
below the limits were recorded. Please refer to Plots #3 and #4 for details of test data								
	RF	RECEIVER	QP	AVG			LINE	
FREQUENCY	LEVEL	DETECTOR	LIMIT	LIMIT	MARGIN	PASS/	TESTED	
(MHz)	(dBuV)	(P/QP/AVG)	(dBuV)	(dBuV)	(dB)	FAIL	(L1/L2)	
0.19	PASS	L1						
0.19	35.6	AVG	64.2	54.2	-18.6	PASS	L1	
0.46	33.6	QP	56.7	46.7	-23.1	PASS	L1	
0.46	31.4	AVG	56.7	46.7	-15.3	PASS	L1	
8.77	37.6	QP	60.0	50.0	-22.4	PASS	L1	
8.77	34.5	AVG	60.0	50.0	-15.5	PASS	L1	
0.19	37.3	QP	64.2	54.2	-26.9	PASS	L2	
0.19	35.9	AVG	64.2	54.2	-18.3	PASS	L2	
0.28	35.3	QP	60.8	50.8	-25.5	PASS	L2	
0.28	31.9	AVG	60.8	50.8	-18.9	PASS	L2	
8.77	36.9	QP	60.0	50.0	-23.1	PASS	L2	
8.77	38.5	AVG	60.0	50.0	-11.5	PASS	L2	

UltraTech Group of Labs

Applicant:

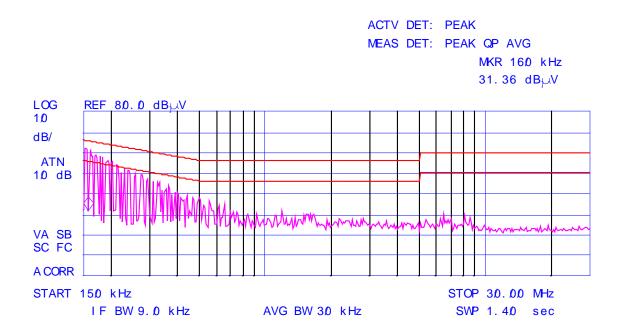
Product:

Serial #:

Siemens Milltronic Inc.

Sitrans LR 460

Profibus AC


DP1-36

Plot #1: AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT

Detector:[X]PE	AK [X]QUASI-PEAK [X]A	Temp: 23 °C	Humidity: %		
Line Tested: 1	Line Voltage: 120 V, 60Hz	Test Tech:	Toan Truong	Test Date: Nov. 21, 2005	
Standard: FCC15	В				

1	
Π	7

Si gnal	Freq (MHz)	PK Amp	QP Amp	AV Amp	QP∆L1
	Ø. 151900				
2	D . 159638	61.3	55.Ø	28.4	- 1Ø. 5

ULTRATECH GROUP OF LABS File #: MIL-345FCC15C-FEB1706 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Applicant:

Product:

Serial #:

Siemens Milltronic Inc.

Sitrans LR 460

Profibus AC

DP1-36

Plot # 2: AC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT

Detector:[X] PEAK	K [X]QUASI-PEAK [X]	Temp: 23 °C	Humidity: %		
Line Tested: 2	Line Voltage: 120 V, 60Hz	Test Tech:	Toan Truong	Test Date: Nov. 21, 2005	
Standard: FCC15B					

	Si gnal 1				QP Amp 56.3						
	2				5 53. 9						
	START 150 ki					ACTV	DET: F	PEAK PEAK	QP AVC MKR 17/	-	7
									29.54		
LOG	REF 80.	0 dB _J _V		1 1 1							
1.0 dB/											
ATN	Alexandra						_				
1 <i>1</i> 0 dB		MAN	+++								
VA SB			uh hi zahk	Mump	what	mpm mm	-m/hm	Mm	mmm	hhm	m
SC FC											
A CORR											
START	150 kHz	9.0 kHz							30.00		
		S.D KHZ		AVC	6 BW 3/0 k			301	1.40	sec	

ULTRATECH GROUP OF LABS File #: MIL-345FCC15C-FEB1706 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

UltraTech Group of Labs	

Profibus DC DP1-36

Siemens Milltronic Inc. SITRANS LR 460

Applicant:

Product:

Serial #:

Plot #3: DC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT

Detector:[X]PEAK	[X]QUASI-PEAK [X]A	VERAGE	Temp: 23 °C	Humidity: 20%	
Line Tested: 1	Line Voltage: 24 Vdc	Test Tech	Quan	Test Date: Nov. 22, 2005	
Standard: FCC15B					

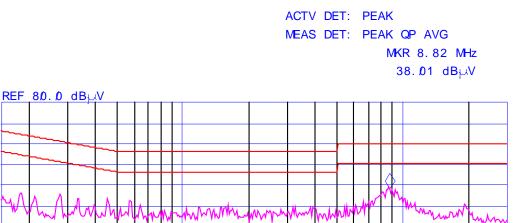
STOP 30.00 MHz

SWP 1.40 sec

	1	
7	7/	7

LOG

ATN 10 dB


VA SB SC FC A CORR

START 150 kHz

IF BW 9.0 kHz

10 dB/

Si gnal	Freq (MHz)	PK Amp	QP Amp	AV Amp	AV∆L2
1	D. 18624D	39. D	36.9	35.6	- 18. 6
2	D. 46207D	36.6	33.6	31.4	- 15. 4
3	8.7684 00	41.2	37.6	34.5	- 15. 5

ULTRATECH GROUP OF LABS File #: MIL-345FCC15C-FEB1706 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

AVG BW 30 kHz

UltraTech Group of Labs

Applicant:

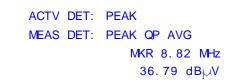
Product:

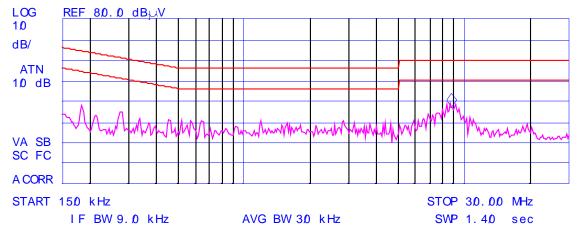
Serial #:

Siemens Milltronic Inc.

SITRANS LR 460

Profibus DC


DP1-36


Plot #4: DC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT

Detector:[X] PEAK [X] QUASI-PEAK [X] AVERAGE Temp: 23 °C Humidity: 20%						
	Line Tested: 2 Line Voltage: 24 Vdc		Test Tech: Quan		Test Date: Nov. 22, 2005	
	Standard: FCC15B					

1	
- 117	
192	

Si gnal	Freq (MHz)	PK Amp	QP Amp	AV Amp	AV∆L2
1	D. 18715D	39.8	37.3	35.9	- 18. 3
2	0.210000				
3	8.771375	40.4	36.9	38.5	- 11. 6

4.5. TRANSMITTER SPURIOUS EMISSIONS (RADIATED @ 3 METERS), FCC CFR 47, PARA. 15.209 & 15.205

4.5.1. Limits

The fundamental frequency shall not fall within any restricted frequency band specified in 15.205 All rf other emissions shall not exceed the general radiated emission limits specified in @ 15.209(a).

MHz	MHz	MHz	GHz
0.090 - 0.110	162.0125 - 167.17	2310 - 2390	9.3 - 9.5
0.49 - 0.51	167.72 - 173.2	2483.5 - 2500	10.6 - 12.7
2.1735 - 2.1905	240 - 285	2655 - 2900	13.25 - 13.4
8.362 - 8.366	322 - 335.4	3260 - 3267	14.47 - 14.5
13.36 - 13.41	399.9 - 410	3332 - 3339	14.35 - 16.2
25.5 - 25.67	608 - 614	3345.8 - 3358	17.7 - 21.4
37.5 - 38.25	960 - 1240	3600 - 4400	22.01 - 23.12
73 - 75.4	1300 - 1427	4500 - 5250	23.6 - 24.0
108 - 121.94	1435 - 1626.5	5350 - 5460	31.2 - 31.8
123 – 138	1660 - 1710	7250 - 7750	36.43 - 36.5
149.9 - 150.05	1718.8 - 1722.2	8025 - 8500	Above 38.6
156.7 – 156.9	2200 - 2300	9000 - 9200	

FCC CFR 47, Part 15, Subpart C, Para. 15.205(a) - Restricted Frequency Bands

FCC CFR 47, Part 15, Subpart C, Para. 15.209(a)

	· Field Strength	I imits within	Restricted	Frequency	Rande	
_	· rielu Strengtii	Linnis within	Restricted	rrequency	Danus	_

FREQUENCY (MHz)	FIELD STRENGTH LIMITS (microvolts/m)	DISTANCE (Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

4.5.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

The following measurement procedures were also applied:

- Applies to harmonics/spurious that fall in the restricted bands listed in Section 15.205. the maximum permitted • average field strength is listed in Section 15.209. A Pre-Amp and highpass filter are used for this measurement.
- For 9 kHz \leq frequencies \leq 150 kHz: RBW = 1 KHz, VBW \geq 1 KHz, SWEEP=AUTO.
- For 150 MHz \leq frequencies \leq 30 MHz: RBW = 10 KHz, VBW \geq 10 KHz, SWEEP=AUTO.
- For 30 MHz \leq frequencies \leq 1 GHz: RBW = 100 KHz, VBW \geq 100 KHz, SWEEP=AUTO.
- For frequencies ≥ 1 GHz: RBW = 1 MHz, VBW = 1 MHz (Peak) & VBW = 10 Hz (Average), SWEEP=AUTO.
- If the emission is pulsed, modified the unit for continuous operation, then use the settings above for measurements, then correct the reading by subtracting the peak-average correction factor derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Rohde &	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz
EMI Receiver	Schawrz			with external mixer
Microwave Amplifier	Hewlett Packard	HP 83051A	3332A00471	1 GHz to 50 GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3160-09	1007	18 GHz – 26.5 GHz
Horn Antenna	EMCO	3160-10	1001	26.5 GHz – 40 GHz
Waveguide	CMT	RA42-K_F-5B-C	910074-004	18 GHz – 26.5 GHz
Waveguide	CMT	RA28-K_F-4B-C	920311-001	26.5 GHz – 40 GHz
Horn Antenna & Mixer	OML	WR-19	U30625-1	40–60 GHz
Horn Antenna & Mixer	OML	E-Band	E30625-1	60 – 90 GHz
Horn Antenna & Mixer	OML	WR-08	F30625-1	90 –140 GHz

4.5.3. Test Equipment List

4.5.4. Photographs of Test Setup

Refer to the Photographs #3, #4 & #5 in Annex 1 for setup and arrangement of equipment under tests and its ancillary equipment.

Feb. 17, 2006

4.5.5. Test Data

Test Sample: SITRANS 460, Model 7ML5426 with 4" horn antenna (maximum gain: 22.7 dBi)

Test Configuration #1: The LR 460 was mounted on top of a Metal Tank and secured to this metal tank using metal screws and nuts as instructed by the manufacturer.

	RF	RF	ANTENNA	LIMIT	LIMIT		
FREQUENCY	PEAK LEVEL	AVG LEVEL	PLANE	15.209	MARGIN	PASS/	Distance
	(dBuV/m)	(dBuV/m)	(H / V)	(dBuV/m)	(dB)	FAIL	(m)
30 - 1000 MHz	Note (1)	Note (1)	Note (1)	Note (1)	Note (1)	PASS	3
1 to 100 GHz	Note (2)	Note (2)	H and V	54.00	N/A	PASS	3, 1 & 0.5

Notes:

- The PEAK emissions were scanned from 30-1000 MHz at 3 m distance. No significant emissions were 1. found from the transmitter. Refer to report File # MIL-348-FCC15 and MIL-349-FCC15 for test reports in compliance with FCC Part 15, Subpart B, Class B with AC and DC input voltages respectively.
- 2. The PEAK emissions were scanned from 1 GHz to 100 GHz at 3, 1 and 0.5 meters. No rf signal was found when the E-Field was search at the separation distance of 3m, 1m and 0.5 meters from the device under test and receiving antenna.
- 3. Refer to Photographs #3 and #4 for test setup in Semi-Anechoic Chamber

Test Configuration #2: The LR 460 was mounted on top of the Cement Concrete Tank located in St Mary Cement Plant in Ontario, Canada. It was secured to this concrete tank metal cover using metal screws and nuts as instructed by the manufacturer.

FREQUENCY	RF PEAK LEVEL (dBuV/m)	RF AVG LEVEL (dBuV/m)	ANTENNA PLANE (H/V)	LIMIT 15.209 (dBuV/m)	LIMIT MARGIN (dB)	PASS/ FAIL	Distance (m)
30 – 1000 MH	z Note (1)	Note (1)	Note (1)	Note (1)	Note (1)	PASS	3
1 to 100 GHz	Note (2)	Note (2)	H and V	54.00	N/A	PASS	0.5
found comp 2. The F E-Fie	EAK emissions we from the transmitte liance with FCC Pa EAK emissions we ld was search at the ring antenna.	er. Refer to rep art 15, Subpart 1 ere scanned from	ort File # MIL B, Class B wit m 1 GHz to 10	-348-FCC15 a h AC and DC 0 GHz at 0.5 r	nd MIL-349-F input voltages neters. No rf si	CC15 for test respectively. gnal was foun	reports in d when the

Refer to Photograph #5 for test setup at St. Mary Cement Plant 3.

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST) •

4.6. 20 DB OCCUPIED BANDWIDTH @ FCC 15.215(C)

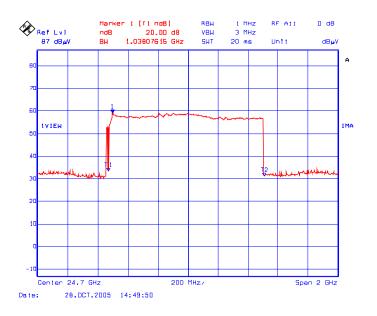
4.6.1. Limits

The rf spectrum shall not stay in the restricted band specified in FCC 15.205

4.6.2. Method of Measurements

Refer to Exhibit 8, Sec. 8.4 & ANSI C63.4

The transmitter output was loosely coupled to the spectrum analyzer through a receiving antenna and the bandwidth of bandwidth of the fundamental frequency was measured with the spectrum analyzer with the resolution bandwidth of the spectrum analyzer set per ANSI 63.4, Sec. 13.1.6.2


4.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Rohde &	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz
EMI Receiver	Schawrz			with external mixer

4.6.4. Test Data

• Test Sample: SITRANS 460, Model 7ML5426 with 4" horn antenna (maximum gain: 22.7 dBi)

CHANNEL FREQUENCY	20 dB BANDWIDTH	MAXIMUM LIMIT	PASS/FAIL
(GHz)	(GHz)	(kHz)	
24.7	1.038	N/A	N/A

ULTRATECH GROUP OF LABS File 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: MIL-345FCC15C-FEB1706 Feb. 17, 2006

EXHIBIT 5. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and LAB 34

5.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)	
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$ Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05
Repeatability of EUT			
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

 $u_{c}(y) = \sqrt{\sum_{I=1}^{m} \sum u_{i}^{2}(y)} = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$

 $U = 2u_{c}(y) = \pm 2.6 \text{ dB}$

5.2. **RADIATED EMISSION MEASUREMENT UNCERTAINTY**

CONTRIBUTION	PROBABILITY	UNCERTAINTY (<u>+</u> dB)	
(Radiated Emissions)	DISTRIBUTION	3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivity	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp) Uncertainty limits $20Log(1\pm\Gamma_1\Gamma_R)$	U-Shaped	+1.1	<u>+</u> 0.5
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5
Repeatability of EUT		-	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$ And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$