

3000 Bristol Circle Oakville, Ontario, Canada L6H 6G4

Telephone(905) 829-1570Facsimile(905) 829-8050

Aug. 10, 2001

SIEMENS MILLTRONICS PROCESS INSTRUMENTS INC. P.O. Box 4225, 1954 Technology Drive Peterborough, Ontario Canada, K9J 7B1

Attn.: Mr. Craig Merchant

Subject: FCC Certification Application Testing under FCC PART 15, Subpart C, Sec. 15.209 – Low Power Licence-Exempt RadioCommunication Devices totally enclosed in Metal and Concrete Containers and swept in the frequency band 24.2 - 25.2 GHz.

Product:	RADAR LEVEL GAUGE (25 GHZ)
Model No.:	SITRANS LR 400
FCC ID:	NJA-LR400

Dear Mr. Merchant,

The product sample, as provided by you, has been tested and found to comply with FCC PART 15, Subpart C, Sec. 15.209 - Low Power Transmitters operating in the frequency band 24.2 - 25.2 GHz.

Enclosed you will find copies of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

RADAR LEVEL GAUGE (25 GHZ) (for use with Metal and Concrete Tanks/Vessels without ventilation) Model No.: SITRANS LR 400

FCC ID: NJA-LR400

Applicant:

ant: SIEMENS MILLTRONICS PROCESS INSTRUMENTS INC.

P.O. Box 4225, 1954 Technology Drive Peterborough, Ontario Canada, K9J 7B1

In Accordance With

FEDERAL COMMUNICATIONS COMMISSION (FCC) PART 15, SUBPART C, SEC. 15.209 Low Power Licence-Exempt RadioCommunication Devices totally enclosed in Metal and Concrete Containers and swept in the frequency band 24.2 - 25.2 GHz.

UltraTech's File No.: MIL-243F15C

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs	The state of the s
Date: Aug. 10, 2001	
Report Prepared by: Tri M. Luu, P.Eng.	Tested by: Hung Trinh, EMI/RFI Technician
Issued Date: Aug. 10, 2001	Test Dates: July 05 - Aug. 10, 2001

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

᠋᠘ᡣ᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕᠕

UltraTech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Telephone (905) 829-1570 Facsimile (905) 829-8050 Website: <u>www.ultrat4ech-labs.com</u> Email: vhk.ultratech@sympatico.ca

File #: MIL-243F15C

Aug. 10, 2001

TABLE OF CONTENTS

EXHIBIT	Г 1.	SUBMITTAL CHECK LIST	4
EXHIBIT	Г 1.	INTRODUCTION	5
1.1.	SCOP	Е	5
1.2.		ED SUBMITAL(S)/GRANT(S)	
1.3.		IATIVE REFERENCES	
EXHIBIT		PERFORMANCE ASSESSMENT	
2.1.	CI IEN	T INFORMATION	6
2.1.		MENT UNDER TEST (EUT) INFORMATION	
2.3.	-	TECHNICAL SPECIFICATIONS	
2.4.		F EUT'S PORTS	
2.5.	ANCIL	LARY EQUIPMENT	8
EXHIBIT	Г З.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	9
3.1.	CLIMA	ATE TEST CONDITIONS	9
3.2.		ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST S	
3.3.		RAL TEST SETUP	
3.3.		est Configuration #1: Metal Tank with no ventilation	
3.3.2		<u>est Configuration #2</u> : Concrete Tank with ventilation	
EXHIBIT		SUMMARY OF TEST RESULTS	
4.1.	LOCA	TION OF TESTS	11
4.2.		CABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	
EXHIBIT	ſ 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	12
5.1.	TEST I	PROCEDURES	12
5.2.	MEASU	UREMENT UNCERTAINTIES	12
5.3.		UREMENT EQUIPMENT USED:	
5.4.		VTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER:	
5.5.		WERLINE CONDUCTED EMISSIONS @ FCC PART 15, SUBPART B, PARA.15.107(A)	
5.5.		imits	
5.5.2		Aethod of Measurements	
5.5.		est Equipment List	
5.5.4 5.5.1		lots hotographs of Test Setup	
5.5.0		rolographs of Test Setup est Data	
5.6.		SMITTER SPURIOUS EMISSIONS (RADIATED @ 3 METERS), FCC CFR 47, PARA. 15.209 & 15.205	
5.6.		imits	
5.6.2		Iethod of Measurements	
5.6.		est Arrangement	
5.6.4		est Equipment List	
5.6.		lots	
5.6.0		hotographs of Test Setup	
5.6.2	7. T	lest Data	16
5.6.0	<u>8. T</u>	<u>Sest Configuration #1</u> : Metal Tank with no ventilation	16
5.6.	<u>9. T</u>	<u>Sest Configuration #2</u> : Concrete Tank with ventilation	16

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

EXHIBIT	Г 6. MEASUREMENT UNCERTAINTY	17
6.1.	LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	17
6.2.	RADIATED EMISSION MEASUREMENT UNCERTAINTY	18
EXHIBIT	Γ 7. MEASUREMENT METHODS	19
7.1.	GENERAL TEST CONDITIONS	19
	1. Normal temperature and humidity	
	2. Normal power source	
7.1.	3. Operating Condition of Equipment under Test	19
7.2.	METHOD OF MEASUREMENTS - AC MAINS CONDUCTED EMISSIONS	20
7.3.	SPURIOUS EMISSIONS	21

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com File #: MIL-243F15C Aug. 10, 2001

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA) Recognized/Listed by FCC (USA)

EXHIBIT 1. SUBMITTAL CHECK LIST

Annex No.	Exhibit Type	Description of Contents	Quality Check (OK)	
	Test Report	 Exhibit 1: Submittal check lists Exhibit 2: Introduction Exhibit 3: Performance Assessment Exhibit 4: EUT Operation and Configuration during Tests Exhibit 5: Summary of test Results Exhibit 6: Measurement Data Exhibit 7: Measurement Uncertainty Exhibit 8: Measurement Methods 	OK	
1	Test Report - Plots of Measurement Data	Plots # 1 to 4	ОК	
2	Test Setup Photos	Photos # 1 to 6	OK	
3	External Photos of EUT	Photos # 1 to 2	OK	
4	Internal Photos of EUT	Photos of 1 to 11	OK	
5	Cover Letters	 Letter from Ultratech for Certification Request Letter from the Applicant to appoint Ultratech to act as an agent Letter from the Applicant to request for Confidentiality Filing 	ОК ОК ОК	
6	ID Label/Location Info	ID LabelLocation of ID Label		
7	Block Diagrams	Block diagrams # 1 of 1	OK	
8	Schematic Diagrams	 Schematic diagrams # 1 of 1 Drawings Antenna assembly 		
9	Parts List/Tune Up Info	•	None	
10	Operational Description	Operation Description and Advertising literature	ОК	
11	RF Exposure Info	N/A for antenna which is enclosed in a tank	None	
12	Users Manual	• OK		

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: MIL-243F15C Aug. 10, 2001

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.209:1998		
Title	Telecommunication - Code of Federal Regulations, CFR 47, Part 15		
Purpose of Test:	To gain FCC Certification Authorization for Low Power Transmitters operating in the		
	Frequency Band 24.2 - 25.2 GHz.		
Test Procedures	Both conducted and radiated emissions measurements were conducted in accordance		
	with American National Standards Institute ANSI C63.4 - American National Standard for		
	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and		
	Electronic Equipment in the Range of 9 kHz to 40 GHz.		
Environmental	• Industry		
Classification:			

1.2. **RELATED SUBMITAL(S)/GRANT(S)**

None

1.3. NORMATIVE REFERENCES

Publication	YEAR	Title
FCC CFR Parts	1999	Code of Federal Regulations – Telecommunication
0-19		
ANSI C63.4	1992	American National Standard for Methods of Measurement of Radio-Noise Emissions
		from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
CISPR 22 &	1997	Limits and Methods of Measurements of Radio Disturbance Characteristics of
EN 55022	1998	Information Technology Equipment
CISPR 16-1		Specification for Radio Disturbance and Immunity measuring apparatus and methods
FCC Public	2000	Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems
Notice DA 00-		
705		
FCC Public	2000	Part 15 Unlicensed Modular Transmitter Approval
Notice DA 00-		
1407		

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: MIL-243F15C Aug. 10, 2001

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT:				
Name:	SIEMENS MILLTRONICS PROCESS INSTRUMENTS INC.			
Address:	P.O. Box 4225, 1954 Technology Drive			
	Peterborough, Ontario			
	Canada, K9J 7B1			
Contact Person:	Mr. Craig Merchant			
	Phone #: 705-745-2431			
	Fax #: 705-741-0466			
	Email Address: craigme@milltronics.com			

MANUFACTURER:				
Name:	SIEMENS MILLTRONICS PROCESS INSTRUMENTS INC.			
Address:	P.O. Box 4225, 1954 Technology Drive			
	Peterborough, Ontario			
	Canada, K9J 7B1			
Contact Person:	Mr. Craig Merchant			
	Phone #: 705-745-2431			
	Fax #: 705-741-0466			
	Email Address: craigme@milltronics.com			

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name	SIEMENS MILLTRONICS PROCESS INSTRUMENTS INC.		
Product Name	RADAR LEVEL GAUGE (25 GHZ)		
Model Name or Number	SITRANS LR 400		
Serial Number	Pre-production sample		
Type of Equipment	Low Power Licence-Exempt RadioCommunication Devices totally		
	enclosed in Metal and Concrete Containers and swept in the		
	frequency band 24.2 - 25.2 GHz.		
Input Power Supply Type	AC Mains or		
	External DC Sources		

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: MIL-243F15C Aug. 10, 2001

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com
 Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRAand APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

2.3. EUT'S TECHNICAL SPECIFICATIONS

1. Introduction

Siemens Milltronics Sitrans LR 400 is intended for use in process industries for the determination of material level in tanks and other process vessels. The principle used is Frequency Modulated Continuous Wave (FMCW). A microwave frequency is generated whose frequency varies with time. This signal is directed towards the target. The signal is reflected by the target and received by the antenna. The time of flight of the pulse, τ is calculated by comparing the transmitted and received frequencies for a given sweep rate.

2. Technical Description

The sweep frequency is obtained by mixing the output of the 2.4 GHz Voltage Controlled Oscillator (VCO) with the 22.4 GHz Local Oscillator (LO). VCO is also applied directly to a saw-wave reference (OFW) to obtain the reference signal REF which can be used to maintain the accuracy of the device over temperature. The sweep (frequency sum of LO and VCO) is applied to the antenna via a splitter. The received signal is then mixed with the transmitted signal to obtain the measured signal MESS (difference frequency). Since in a real measuring system multiple targets exist, the measurement signal will not be a single frequency but will be a combination of many frequencies representing the different targets. Digital Signal Processing techniques are used to extract the frequencies present in the measured signal and to reject false targets to select the correct target and calculate the target distance.

TRANSMITTER				
Equipment Type:	Base station (fixed use)			
Intended Operating Environment:	Residential			
	 Commercial, light industry & heavy industry 			
Power Supply Requirement:	AC 120V 60 Hz / DC 24 V (with regulated DC voltage input			
	to the radio transmitter)			
RF Output Power Rating:	0.0 Watts EIRP			
Operating Frequency Range:	24.2 - 25.2 GHz			
Duty Cycle in 100 mS:	24%			
	Time on $= 2 \text{ mS} + 22 \text{mS} = 24 \text{ mS}$			
	pulse train = Time on +Time off = 135 mS			
RF Output Impedance:	50 Ohms			
Bandwidth:	940 MHz			
Modulation Type:	Frequency Modulated Continuous Wave (FMCW)			
Emission Designation:	1G0F0X			
Oscillator Frequencies:	22.4 GHz (lo)			
Antenna Connector Type:	• Integral, permanently attached			
Antenna Description:	Manufacturer: Siemens Milltronics			
	Type: Horn			
	In/Out Impedance: 50 Ohms			

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non-shielded)
1	3 Prong AC Mains or 2 Conductor-DC Mains	1		Non-shielded
2	RS-232 Port	1		Shielded

2.5. ANCILLARY EQUIPMENT

None

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com File #: MIL-243F15C Aug. 10, 2001

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	AC 120V 60 Hz

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	Normal continuous transmission		
Special Test Software:	None		
Special Hardware Used:	None		
Transmitter Test Antenna:	The EUT is tested with the antenna fitted in a manner typical of		
	normal intended use as an integral antenna equipment.		

3.3. GENERAL TEST SETUP

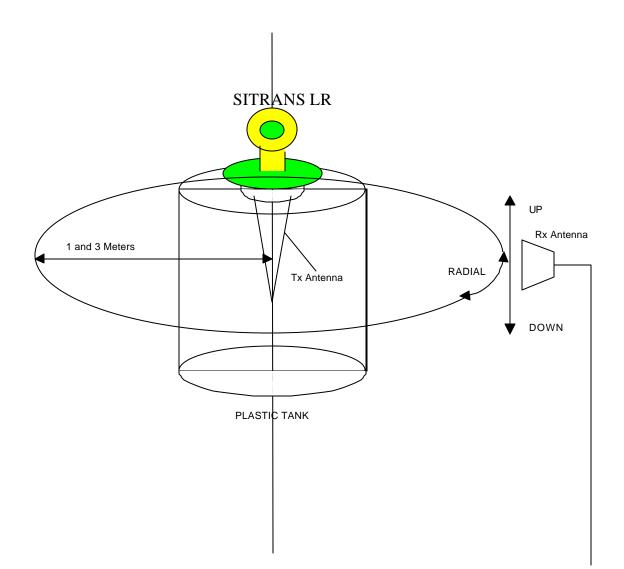
3.3.1. <u>Test Configuration #1</u>: Metal Tank with no ventilation

The SITRANS LR 400 is mounted on top of the metal tank with no ventilation, which contains water. The fundamental and spurious/harmonic emissions were scanned at distances of 0.5 meters, 1 meters and 3 meters

3.3.2. <u>Test Configuration #2</u>: Concrete Tank with ventilation

The SITRANS LR 400 is mounted on top of the concrete vessel with ventilation, which contains cement in a cement plant. The fundamental and spurious/harmonic emissions were scanned at distances of 0.5 meters, 1 meters and 3 meters

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

ULTRATECH GROUP OF LABS

File #: MIL-243F15C Aug. 10, 2001

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan) Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).
- Radiated Emissions were performed at the Ultratech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario.

The above sites have been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville Open Field Test Site has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049). Last Date of Site Calibration: Aug. 08, 2001.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

TEST REQUIREMENTS	COMPLIANCE (YES/NO)
AC Power Line Conducted Emissions Measurements (Transmit & Receive)	Yes
Average Output Power	N/A
RF Exposure Limit	N/A
Transmitter Radiated Emissions	Yes
	AC Power Line Conducted Emissions Measurements (Transmit & Receive) Average Output Power RF Exposure Limit

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class A Digital Devices, the associated Radio Receiver operating in 24.2 - 25.2 GHz is exempted from FCC's authorization . The engineering test report can be provided upon FCC requests.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Aug. Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in Exhibit 8 of this report, ANSI C63-4:1992 and FCC Public Notice @ DA 00-705 (March 30, 2000) – Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document NIS 81 with a confidence level of 95%. Please refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C64-3:1992, FCC 15.209 and CISPR 16-1.

5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUACTURER:

The essential function of the EUT is to correctly communicate data to and from radios over RF link.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

5.5. AC POWERLINE CONDUCTED EMISSIONS @ FCC PART 15, SUBPART B, PARA.15.107(A)

5.5.1. Limits

The equipment shall meet the limits of the following table:

Test Frequency Range	Test Limits	EMI Detector Used	Measuring Bandwidth
0.45 to 30 MHz	48 dBµV	Quasi-Peak (Narrow band)	B = 10 kHz
	51 dBµV	Quasi-Peak (Broad band)	B = 10 kHz

5.5.2. Method of Measurements

Refer to Exhibit 8, Sec. 8.2 of this test report & ANSI C63-4:1992

5.5.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Hewlett	HP 8593EM	3412A00103	9 kHz – 26.5 GHz
EMI Receiver	Packard			
Transient Limiter	Hewlett	11947A	310701998	9 kHz – 200 MHz
	Packard			10 dB attenuation
L.I.S.N.	EMCO	3825/2	89071531	9 kHz – 200 MHz
				50 Ohms / 50 µH
12'x16'x12' RF Shielded	RF Shielding			
Chamber				

5.5.4. Plots

The following plots graphically represent the test results recorded in the above Test Data Table.

Refer to Plots #1 & 2 in Annex 1 for actual measurement plots

5.5.5. Photographs of Test Setup

Refer to the Photographs #1 & #2 in Annex 2 for setup and arrangement of equipment under tests and its ancillary equipment.

5.5.6. Test Data

	RF	RECEIVER	QP/NB	QP/BB			LINE
FREQUENCY	LEVEL	DETECTOR	LIMIT	LIMIT	MARGIN	PASS/	TESTED
(MHz)	(dBuV)	(P/QP/AVG)	(dBuV)	(dBuV)	(dB)	FAIL	(L1/L2)
2.371	35.3	QP	48.0	61.0	-12.7	PASS	L1
14.063	42.5	QP	48.0	61.0	-5.5	PASS	L1
2.466	32.5	QP	48.0	61.0	-15.5	PASS	L2
14.064	41.3	QP	48.0	61.0	-6.7	PASS	L2

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vhk.ultratech@sympatico.ca, Website: http://www.ultratech-labs.com

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.6. TRANSMITTER SPURIOUS EMISSIONS (RADIATED @ 3 METERS), FCC CFR 47, PARA. 15.209 & 15.205

5.6.1. Limits

The fundamental frequency shall not fall within any restricted frequency band specified in 15.205 All rf other emissions shall not exceed the general radiated emission limits specified in @ 15.209(a).

MHz	MHz	MHz	GHz
0.090 - 0.110	162.0125 - 167.17	2310 - 2390	9.3 - 9.5
0.49 - 0.51	167.72 - 173.2	2483.5 - 2500	10.6 - 12.7
2.1735 - 2.1905	240 - 285	2655 - 2900	13.25 - 13.4
8.362 - 8.366	322 - 335.4	3260 - 3267	14.47 - 14.5
13.36 - 13.41	399.9 - 410	3332 - 3339	14.35 - 16.2
25.5 - 25.67	608 - 614	3345.8 - 3358	17.7 - 21.4
37.5 - 38.25	960 - 1240	3600 - 4400	22.01 - 23.12
73 - 75.4	1300 - 1427	4500 - 5250	23.6 - 24.0
108 - 121.94	1435 - 1626.5	5350 - 5460	31.2 - 31.8
123 – 138	1660 - 1710	7250 - 7750	36.43 - 36.5
149.9 - 150.05	1718.8 - 1722.2	8025 - 8500	Above 38.6
156.7 – 156.9	2200 - 2300	9000 - 9200	

FCC CFR 47, Part 15, Subpart C, Para. 15.205(a) - Restricted Frequency Bands

FCC CFR 47, Part 15, Subpart C, Para. 15.209(a) -- Field Strength Limits within Restricted Frequency Bands --

FREQUENCY	FIELD STRENGTH LIMITS	DISTANCE
(MHz)	(microvolts/m)	(Meters)
0.009 - 0.490	2,400 / F (KHz)	300
0.490 - 1.705	24,000 / F (KHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: MIL-243F15C Aug. 10, 2001

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

5.6.2. Method of Measurements

Refer to Exhibit 8, Sec. 8.2 of this test report and ANSI 63.4-1992, Para. 8 for detailed radiated emissions measurement procedures.

The following measurement procedures were also applied:

- Applies to harmonics/spurious that fall in the restricted bands listed in Section 15.205. the maximum permitted average field strength is listed in Section 15.209. A Pre-Amp and highpass filter are used for this measurement.
- For measurement below 1 GHz, set RBW = 100 KHz, VBW $\geq 100 \text{ KHz}$, SWEEP=AUTO.
- For measurement above 1 GHz, set RBW = 1 MHz, VBW = 1 MHz (Peak) & VBW = 10 Hz (Average), SWEEP=AUTO.
- If the emission is pulsed, modified the unit for continuous operation, then use the settings above for measurements, then correct the reading by subtracting the peak-average correction factor derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

5.6.3. Test Arrangement

Please refer to Test Arrangement in Sec. 5.5.3 for details of test setup for emission measurements.

5.6.4. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Advantest	R3271	15050203	100 Hz to 32 GHz with
EMI Receiver				external mixer for
				frequency above 32 GHz
Microwave Amplifier	Hewlett	HP 83017A		1 GHz to 26.5 GHz
	Packard			
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3160-09		18 GHz – 26.5 GHz
Horn Antenna	EMCO	3160-10		26.5 GHz - 40 GHz
Mixer	Tektronix	118-0098-00		18 GHz – 26.5 GHz
Mixer	Tektronix	119-0098-00		26.5 GHz - 40 GHz

5.6.5. Plots

Please refer to plots # 3 and # 4 in Annex 1 for information of the signal characteristics.

5.6.6. Photographs of Test Setup

Refer to the Photographs #3 & #6 in Annex 2 for setup and arrangement of equipment under tests and its ancillary equipment.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: MIL-243F15C Aug. 10, 2001

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

5.6.7. Test Data

5.6.8. <u>Test Configuration #1</u>: Metal Tank with no ventilation

The SITRANS LR 400 is mounted on top of the metal tank with no ventilation, which contains water. The fundamental and spurious/harmonic emissions were scanned at distances of 0.5 meters, 1 meters and 3 meters.

	RF PEAK LEVEL	ANTENNA						
FREQUENCY	READING (E) @3m	PLANE	LIMIT	MARGIN	PASS/			
(GHz)	(dBuV/m)	(H/V)	(dBuV/m)	(dB)	FAIL			
24.2 - 25.2	<<	H & V	54.0	>>	Pass			
0.01 - 40	<<	H & V	Refer to 15.209	>>	Pass			
<< No emissions ventilation.	<< No emissions were found when the SITRANS LR 400 was installed on top of the metal tank which has							

5.6.9. <u>Test Configuration #2</u>: Concrete Tank with ventilation

The SITRANS LR 400 is mounted on top of the concrete vessel with ventilation, which contains cement in a cement plant. The fundamental and spurious/harmonic emissions were scanned at distances of 0.5 meters, 1 meters and 3 meters.

	RF PEAK LEVEL	ANTENNA			D \ CG \
FREQUENCY	READING (E) @3m	PLANE	LIMIT	MARGIN	PASS/
(GHz)	(dBuV/m)	(H/V)	(dBuV/m)	(dB)	FAIL
24.2 - 25.2	<<	H & V	54.0	>>	Pass
0.01 - 40	<<	H & V	Refer to 15.209	>>	Pass
<< No emissions	were found when the	SITRANS LR 400	was installed on top	of the concrete tank	

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: MIL-243F15C Aug. 10, 2001

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

EXHIBIT 6. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and NIS 81 (1994)

6.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)		
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$ Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3	
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05	
Repeatability of EUT				
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30	
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60	

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

 $u_{c}(y) = \sqrt[4]{m} \sum_{I=1} u_{i}^{2}(y) = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$ $U = 2u_{c}(y) = \pm 2.6 \text{ dB}$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

File #: MIL-243F15C Aug. 10, 2001

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com
 Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRAand APEC/Canada MRA)

Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

6.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (± dB)	
(Radiated Emissions)	DISTRIBUTION	3 m	10 m
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5
Antenna Directivit	Rectangular	+0.5	+0.5
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0
Mismatch: Receiver VRC $\Gamma_1 = 0.2$ Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp) Uncertainty limits $20Log(1\pm\Gamma_1\Gamma_R)$	U-Shaped	+1.1	<u>+</u> 0.5
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5
Repeatability of EUT		_	-
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48/-3.44

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \text{ dB}$ And $U = 2u_c(y) = 2x(-2.21) = -4.42 \text{ dB}$

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com File #: MIL-243F15C Aug. 10, 2001

Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)

Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)

Recognized/Listed by FCC (USA)

EXHIBIT 7. MEASUREMENT METHODS

7.1. GENERAL TEST CONDITIONS

The following test conditions shall be applied throughout the tests covered in this report.

7.1.1. Normal temperature and humidity

- Normal temperature: +15°C to +35°C
- Relative Humidity: +20% to 75%

The actual values during tests shall be recorded in the test report.

7.1.2. Normal power source

7.1.2.1. Mains Voltage

The nominal test voltage of the equipment to be connected to mains shall be the nominal mains voltage which is the declared voltage or any of the declared voltages for which the equipment was designed.

The frequency of test power source corresponding to the AC mains shall be between 59 Hz and 61 Hz.

7.1.2.2. Battery Power Source.

For operation from battery power sources, the nominal test voltage shall be as declared by the equipment manufacturer. This shall be recorded in the test report.

7.1.3. Operating Condition of Equipment under Test

- All tests were carried out while the equipment operated at the following frequencies:
 - The lowest operating frequency,
 - The middle operating frequency and
 - The highest operating frequency
- Modulation were applied using the Test Data sequence
- The transmitter was operated at the highest output power, or in the case the equipment able to operate at more than one power level, at the lowest and highest output powers

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

7.2. METHOD OF MEASUREMENTS - AC MAINS CONDUCTED EMISSIONS

- AC Mains conducted emissions measurements were performed in accordance with the standard against appropriate limits for each detector function.
- The test was performed in the shielded room, 16'(L) by 16'(W) by 12'(H).
- The test was performed were made over the frequency range from 450 kHz to 30 MHz to determine the line-to-ground radio noise voltage which was conducted from the EUT power-input terminals that were directly connected to a public power network.
- The EUT normally received power from another device that connects to the public utility ac power lines, measurements would be made on that device with the EUT in operation to ensure that the device continues to comply with the appropriate limits while providing the EUT with power.
- If the EUT operates only from internal or dedicated batteries, with no provisions for connection to the public utility ac power lines, AC Mains conducted measurements are not required.
- Table-top devices were placed on a platform of nominal size 1 m by 1.5m raised 80 cm above the conducting ground plane.
- The EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the power source. All unused 50-Ohm connectors of the LISN was terminated in 50-ohm when not connected to the measuring instruments.
- The line cord of the EUT connected to one LISN which was connected to the measuring instrument. Those power cords for the units of devices not under measurement were connected to a separate multiple ac outlet. Drawings and photographs of typically conducted emission test setups were shown in the Test Report. Each current-carrying conductor of the EUT shall be individually tested.
- The EUT was normally operated with a ground (safety) connection, the EUT was connected to the ground at the LISN through a conductor provided in the lead from the ac power mains to the LISN.
- The excess length of the power cord was folded back and forth in an 8-shape on a wooden strip with a vertical prong located on the top of the LISN case.
- The EUT was set-up in its typical configuration and operated in its various modes as described in 3.2 of the test report.
- A preliminary scan was made by using spectrum analyzer system with the detector function set to PEAK mode (9 <u>KHz RBW, VBW > RBW</u>), frequency span 450 kHz to 30 MHz.
- The maximum conducted emission for a given mode of operation was found by using the following step-by-step procedure:
 - Step1. Monitor the frequency range of interest at a fixed EUT azimuth.
 - Step2. Manipulate the system cables and peripheral devices to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
 - Step3. The effects of various modes of operation is examined. This is done by varying equipment operation modes as step 2 is being performed.
 - Step4. After completing step 1 through 3, record EUT and peripheral device configuration, mode of operation, cable configuration, signal levels and frequencies for final test.
- Each highest signal level at the maximized test configuration was zoomed in a small frequency span on the spectrum analyzer's display (the manipulation of cables and peripheral devices and EUT operation modes might have to be repeated to obtain the highest signal level with the spectrum analyzer set to PEAK detector mode 10 KHz RBW and VBW > RBW). The spectrum analyzer was then set to CISPR QUASI-PEAK detector mode (9 KHz RBW, 1 MHz VBW) and AVERAGE detector mode (10 kHz RBW, 1 Hz VBW). The final highest RF signal levels and frequencies were record.

ULTRATECH GROUP OF LABS

- · Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

³⁰⁰⁰ Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

• **Broad-band ac Powerline conducted emissions:**- If the EUT exhibits ac Powerline conducted emissions that exceed the limit with the instrument set to the quasi-peak mode, then measurements should be made in the average mode. If the amplitude measured in the quasi-peak mode is at least 6 dB higher than the amplitude measured in the average mode, the level measured in quasi peak mode may be reduced by 13 dB before comparing it to the limit.

7.3. SPURIOUS EMISSIONS

For both conducted and radiated measurements, the spurious emissions were scanned from the lowest frequency generated by the EUT or 10 MHz whichever is lower to 10^{th} harmonic of the highest frequency generated by the EUT.

- The radiated emission measurements were performed at the UltraTech's 3 Meter Open Field Test Site (OFTS) situated in the Town of Oakville, province of Ontario. The Attenuation Characteristics of OFTS have been filed to FCC, Industry Canada, ACA/Austel, NVLap and ITI.
- Radiated emissions measurements were made using the following test instruments:
 - 1. Calibrated EMCO BiconiLog antenna in the frequency range from 30 MHz to 2000 MHz.
 - 2. Calibrated Emco Horn antennas in the frequency range above 1000 MHz (1GHz 40 GHz).
 - 3. The test is required for any spurious emission or modulation product that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:
 - RBW = 100 kHz for f < 1GHz and RBW = 1 MHz for $f \ge 1$ GHz
 - \succ VBW = RBW
 - Sweep = auto
 - Detector function = peak
 - $\succ \qquad \text{Trace} = \max \text{ hold}$
 - Follows the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc.. A pre-amp and highpass filter are required for this test, in order to provide the measuring system with sufficient sensitivity.
 - Allow the trace to stabilize.
 - The peak reading of the emission, after being corrected by the antenna correction factor, cable loss, preamp gain, etc... is the peak field strength which comply with the limit specified in Section 15.35(b)

Calculation of Field Strength:

The field strength is calculated by adding the calibrated antenna factor and cable factor, and subtracting the Amplifier gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

- FS = Field Strength RA = Receiver/Analyzer Reading
 - AF = Antenna Factor
 - CF = Cable Attenuation Factor
 - AG = Amplifier Gain

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com

- Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)
- All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Example: If a receiver reading of 60.0 dBuV is obtained, the antenna factor of 7.0 dB/m and cable factor of 1.0 dB are added, and the amplifier gain of 30 dB is subtracted. The actual field strength will be: Field Level = 60 + 7.0 + 1.0 - 30 = 38.0 dBuV/m. Field Level = 10(38/20) = 79.43 uV/m.

- Submit this test data
- Now set the VBW to 10Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100ms, then the reading obtained may be further adjusted by a "duty cycle correction factor", derived from 10log(dwell time/100mS) in an effort to demonstrate compliance with the 15.209.
- Submit test data

Maximizing The Radiated Emissions :

- The frequencies of emissions was first detected. Then the amplitude of the emissions was measured at the specified measurement distance using required antenna height, polarization, and detector characteristics.
- During this process, cables and peripheral devices were manipulated within the range of likely configuration.
- For each mode of operation required to be tested, the frequency spectrum was monitored. Variations in antenna heights (from 1 meter to 4 meters above the ground plane), antenna polarization (horizontal plane and vertical plane), cable placement and peripheral placement were explored to produce the highest amplitude signal relative to the limit.

The maximum radiated emission for a given mode of operation was found by using the following step-by-step procedure:

- Step1: Monitor the frequency range of interest at a fixed antenna height and EUT azimuth.
- Step2: Manipulate the system cables to produce highest amplitude signal relative to the limit. Note the amplitude and frequency of the suspect signal.
- Step3: Rotate the EUT 360 degrees to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, go back to the azimuth and repeat Step 2. Otherwise, orient the EUT azimuth to repeat the highest amplitude observation and proceed.
- Step4: Move the antenna over its full allowable range of travel (1 to 4 meters) to maximize the suspected highest amplitude signal. If the signal or another at a different frequency is observed to exceed the previously noted highest amplitude signal by 1 dB or more, return to Step 2 with the highest amplitude observation and proceed.
- Step5: Change the polarization of the antenna and repeat Step 2 through 4. Compare the resulting suspected highest amplitude signal with that found for the other polarization. Select and note the higher of the two signals. This signal is termed the highest observed signal with respect to the limit for this EUT operational mode.
- Step6: The effects of various modes of operation is examined. This is done by varying the equipment modes as steps 2 through 5 are being performed.
- Step7: After completing steps 1 through 6, record the final highest emission level, frequency, antenna polarization and detector mode of the measuring instrument.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

- Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vhk.ultratech@sympatico.ca</u>, Website: http://www.ultratech-labs.com
 Assessed by ITI (UK) Competent Body, NVLAP (USA) Accreditation Body & ACA/AUSTEL (Australia), VCCI (Japan)
- Accredited by Industry Canada (Canada) under ACC-LAB (Europe/Canada MRA and APEC/Canada MRA)
- Recognized/Listed by FCC (USA)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)