

SITRANS LR260 Model: 7ML5427 FCC ID: NJA-LR260 IC: 267P-LR260

Applicant:

Siemens Canada Ltd. - Siemens Milltronics Process Instruments 1954 Technology Drive Peterborough, ON Canada K9J 6X7

In Accordance With

Federal Communications Commission (FCC) Part 15, Subpart C, Section 15.256 And **RS-211 - Level Probing Radar Equipment**

UltraTech's File No.: SIEM-059F15C256

This Test report is Issued under the Authority of Tri M. Luu Vice President of Engineering UltraTech Group of Labs

Date: May 28, 2019

Report Prepared by: Santhosh Fernandez

Tested by: Nimisha Desai

Issued Date: May 28, 2019

Test Dates: April 2-5, 2019

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by any agency of the US Government.

This test report shall not be reproduced, except in full, without a written approval from UltraTech.

Jltra Tech

3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

TABLE OF CONTENTS

EXHIBI	Г1.	INTRODUCTION	1
1.1.	SCOP	PE	1
1.2. 1.3.	RELA NORM	TED SUBMITTAL(S)/GRANT(S) /ATIVE REFERENCES	1 1
EXHIBI	Г 2.	PERFORMANCE ASSESSMENT	2
2.1.	CLIEN	IT INFORMATION	2
2.2.	EQUI	PMENT UNDER TEST (EUT) INFORMATION	2
2.3.	EUT'S	S TECHNICAL SPECIFICATIONS	3
2.4. 2.5	ASSU	ICIATED ANTENNA DESCRIPTIONS	ა ვ
2.6.	ANCIL	LARY EQUIPMENT	3
2.7.	GENE	RAL TEST SETUP	4
EXHIBI	Г 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	5
3.1.	CLIMA	ATE TEST CONDITIONS	5
3.2.	OPEP	PERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	5
EXHIBI	Г 4.	SUMMARY OF TEST RESULTS	6
4.1.	LOCA	TION OF TESTS	6
4.2.	APPL	ICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	6
4.3.	MODI	FICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	6
EXHIBI	Г 5.	TEST DATA	7
5.1. ICES-	RADI/	ATED EMISSION FROM UNINTENTIONAL RADIATORS (DIGITAL CIRCUITRY) [47 CFR §15.20	9] 7
5.2.	FUND	AMENTAL EMISSION BANDWIDTH [47 CFR §15.256(F)] [RSS-211 §5.1]	8
5.3.	RADIA	ATED FUNDAMENTAL EMISSIONS [47 CFR 15.256(G)][RSS-211§ 5.2(B)]	10
5.4.	RADIA	ATED UNWANTED EMISSIONS [47 CFR 15.256(Η)] [RSS-211§ 5.1 (D)]	11
EXHIBI	Γ6.	TEST BLOCK DIAGRAMS AND EQUIPMENT LIST 1	2
6.1.	Funda	MENTAL EMISSIONS BANDWIDTH	12
6.2.	FUNDA	MENTAL EMISSIONS LIMITS	13
6.3.	UNWA	NTED EMISSIONS	4
EXHIBI	Γ7.	MEASUREMENT UNCERTAINTY 1	15
7.1.	LINE	CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	15
7.2.	RADIA	ATED EMISSION MEASUREMENT UNCERTAINTY	15

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Sec. 15.256 - Operation of level probing radars within the bands 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz. RS- 211 - Level Probing Radar Equipment
Title:	Code of Federal Regulations (CFR), Title 47 Telecommunication, Part 15, Subpart C - Intentional Radiators RS- 211 - Level Probing Radar Equipment
Purpose of Test:	To gain permissive change FCC/ISED Equipment Authorization for FCC Part 15.256 and RS- 211 - Level Probing Radar Equipment
Test Procedures:	ANSI C63.4, ANSI C63.10 and KDB 890966 D01 Meas Level Probing Radars v01
Environmental Classification:	Commercial, industrial or business environment

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

1.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC 47 CFR 15	2018	Code of Federal Regulations (CFR), Title 47 – Telecommunication, Part 15 Radio Frequency Devices
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
KDB 890966 D01 Meas Level Probing Radars v01	2014	Measurement Procedure for Level Probing Radars
RSS-211	2015	Level Probing Radar Equipment

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

Applicant		
Name:	Siemens Canada Ltd Siemens Milltronics Process Instruments	
Address:	1954 Technology Drive Peterborough, ON Canada K9J 6X7	
Contact Person:	Thoai Bui Phone #: 705-740-7005 Fax #: 705-741-0466 Email Address: Thoai.bui@siemens,com	

Manufacturer		
Name:	Siemens Canada Ltd Siemens Milltronics Process Instruments	
Address:	1954 Technology Drive Peterborough, ON Canada K9J 6X7	
Contact Person:	Thoai Bui Phone #: 705-740-7005 Fax #: 705-741-0466 Email Address: Thoai.bui@siemens,com	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

Brand Name:	Siemens
Product Name:	SITRANS LR260
Model Name or Number:	7ML5427
Serial Number:	Test sample
Type of Equipment:	Level Probing Radar
Input Power Supply Type:	24V DC
Primary User Functions of EUT:	Level probing radars operate in open-air and inside an enclosure containing the substance being measured

2.3. EUT'S TECHNICAL SPECIFICATIONS

Transmitter		
Equipment Type:	Fixed	
Intended Operating Environment:	Commercial, light industry & heavy industry	
Power Supply Requirement:	24 V DC	
Field Strength:	107.11 dBµV/m Peak at 3 m	
Operating Frequency Range:	25.1 GHz	
RF Output Impedance:	50 Ω	
10 dB Bandwidth:	1490.98 MHz	
Modulation Type:	Pulse radar	
Oscillator Frequencies:	25 GHz	
Antenna Connector Type:	Integral	

2.4. ASSOCIATED ANTENNA DESCRIPTIONS

The EUT is equipped with the following antenna; the unit with highest gain antenna will be used for compliance testing.

Additional antenna list:	#1	#2	#3
	connection	with hanged norm	with aimer hanged horn
Manufacture:	SIEMENS	SIEMENS	SIEMENS
Туре:	3" Aluminum Horn Antenna	3" Aluminum Horn Antenna	3" Aluminum Horn Antenna
Model (Configuration):	7ML5427-0HRX0-XXXX 7ML5427-0JRX0-XXXX	7ML5427-0KRX0-XXXX 7ML5427-0LRX0-XXXX 7ML5427-0MRX0-XXXX	7ML5427-0NRX0-XXXX 7ML5427-0PRX0-XXXX 7ML5427-0QRX0-XXXX
Frequency range:	24.05-29.00 GHz	24.05-29.00 GHz	24.05-29.00 GHz
Impedance:	Waveguide input	Waveguide input	Waveguide input
Gain (dBi):	22.9 dBi	24.6 dBi	23.5 dBi

2.5. LIST OF EUT'S PORTS

Port	EUT's Port Description	Number of	Connector	Cable Type
Number		Identical Ports	Type	(Shielded/Non-shielded)
1	Loop power (Hart, Profibus PA and Foundation Fieldbus)	1	Terminal block	Non-shielded, >3m

2.6. ANCILLARY EQUIPMENT

None.

2.7. GENERAL TEST SETUP

2.7.1. Fundamental Emissions, Unwanted Emissions and Emissions Bandwidth Test Setup

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	24 VDC

3.2. OPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

Operating Modes:	The EUT was configured for continuous transmission for the duration	
	of testing.	
Special Test Software:	N/A	
Special Hardware Used:	N/A	
Transmitter Test Antenna:	The EUT was tested with the antenna fitted in a manner typical of	
	normal intended use as integral antenna equipment.	

Transmitter Test Signals:			
Frequency Band(s):	25.1 GHz		
Test Frequency(ies):	25.1 GHz		
Transmitter Wanted Output Test Signals:			
 RF Power Output (measured maximum output power): 	107.11 dBµV/m Peak at 3 m		
 Normal Test Modulation: 	Pulse radar		
 Modulating signal source: 	Internal		

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with ANAB File No.: AT-1945.

4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC Regulations & RSS-Gen/211	Test Requirements	Compliance (Yes/No)
15.203, 15.204 & 15.256(b) RSS-211 §5.1	The transmitter shall utilize a dedicated or integrated transmit antenna and installation requirement of LPR	Yes*
15.209 RSS-Gen	Emissions from Digital Circuitry	Yes
15.256(f) RSS-211 §5.1 (a)	Fundamental Emission Bandwidth	Yes
15.215(c) & 15.256(f)(2) RSS-Gen	Frequency Stability	N/A**
15.256(g) RSS-211 5.2 (b)	Fundamental Emission	Yes
15.256(h) RSS-211 5.1 (b)- (d)	Unwanted Emissions	Yes

* The EUT complies with the requirements; it employs integral antenna and is in compliance with the installation requirement.

** Not applicable for this C2PC

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES None.

EXHIBIT 5. TEST DATA

5.1. RADIATED EMISSION FROM UNINTENTIONAL RADIATORS (DIGITAL CIRCUITRY) [47 CFR §15.209] [ICES-003]

5.1.1. Limit(s)

The equipment shall meet the limits of the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3
	·	· · ·

§15.209(a) Radiated emission limits; general requirements

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.

5.1.2. Method of Measurements

Refer to Ultratech Test Procedures ULTR-P001-2004 & ANSI C63.4 for method of measurements. The spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency specified in §15.33(a).

5.1.3. Test Data

Remark(s):					
 All spurious e 	missions that are	in excess of 20 dB b	elow the specifie	d limit shall be recor	ded.
Frequency (MHz)	RF Level (dBµV/m)	Detector Used (Peak/QP/Avg)	Antenna Plane (H/V)	Limit at 3 m (dBµV/m)	Margin (dB)
No significant emissions were found					

5.2. FUNDAMENTAL EMISSION BANDWIDTH [47 CFR §15.256(f)] [RSS-211 §5.1]

5.2.1. Limit(s)

§15.256(f)The fundamental bandwidth of an LPR emission is defined as the width of the signal between two points, one below and one above the center frequency, outside of which all emissions are attenuated by at least 10 dB relative to the maximum transmitter output power when measured in an equivalent resolution bandwidth.

§15.256(f)(1) The minimum fundamental emission bandwidth shall be 50 MHz for LPR operation under the provisions of this section.

5.2.2. Method of Measurements

890966 D01 Meas Level Probing Radars v01, Clause D.

5.2.3. Test Data

Test Frequency (GHz)	Antenna Polarization	10 dB Bandwidth (MHz)	Minimum Limit (MHz)
25.1	V	1490.98	50
25.1	Н	1418.83	50

Plot 5.2.3.1. 10 dB Bandwidth, Fc: 25.1 GHz- Vertical

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: SIEM-059F15C256 May 28, 2019

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Plot 5.2.3.2. 10 dB Bandwidth, Fc: 25.1 GHz - Horizontal

5.3. RADIATED FUNDAMENTAL EMISSIONS [47 CFR 15.256(g)] [RSS-211§ 5.2(b)]

5.3.1. Limits

15.256(g)(3) The EIRP limits for LPR operations in the bands authorized by this rule section are provided in Table 1. The emission limits in Table 1 are based on boresight measurements (*i.e.*, measurements performed within the main beam of an LPR antenna).

Frequency band of operation (GHz)	Average emission limit (EIRP in dBm measured in 1 MHz)	Peak emission limit (EIRP in dBm measure in 50 MHz)
5.925 - 7.250	-33	7
24.05 - 29.00	-14	26
75 - 85	-3	34

15.256(g)(3) - Table 1 LPR EIRP Emission Limits

5.3.2. Method of Measurements

FCC KDB Publication No. 890966 D01 Meas Level Probing Radars v01

5.3.3. Test Data

5.3.3.1. Radiated Fundamental Emissions, Average EIRP in 1 MHz

Frequency (GHz)	Antenna Plane (H/V)	Average Emissions Measured in 1 MHz (dBµV/m)	¹ EIRP Average Emissions Measured in 1 MHz (dBm)	Limit (dBm)	Margin (dB)	
25.1	V	60.47	-34.79	-14	-20.79	
25.1	Н	62.79	-32.47	-14	-18.47	
¹ EIRP is calculated by applying the radiated emission measurements equation, EIRP (dBm) = E (dB μ V/m) – 104.8 + 20 Log D, where D = 3						

5.3.3.2. Radiated Fundamental Emissions, Peak EIRP in 50 MHz

Frequency (GHz)	Antenna Plane (H/V)	Peak Emissions Measured in 10 MHz (dBμV/m)	¹ Peak Emissions Calculated in 50 MHz (dBμV/m)	² Peak EIRP Emissions Calculated in 50 MHz (dBm)	Limit (dBm)	Margin (dB)	
25.1	V	90.52	104.5	9.24	26	-16.76	
25.1	Н	93.13	107.11	11.85	26	-14.15	
¹ Convert measurement in 10 MHz to 50 MHz by adding the correction factor $20*\log(50/10) = 13.98 \text{ dB}$ ² EIRP is calculated by applying the radiated emission measurements equation, EIRP (dBm) = E (dBµV/m) – 104.8 + 20 Log D, where D = 3							

5.4. RADIATED UNWANTED EMISSIONS [47 CFR 15.256(h)] [RSS-211§ 5.1 (d)]

5.4.1. Limits

Unwanted emissions from LPR devices shall not exceed the general emission limit in §15.209.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

§15.209(a) Radiated emission limits; general requirements

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.

5.4.2. Method of Measurements

ANSI C63.10

5.4.3. Test Data

5.4.3.1. Field Strength of Emissions Outside the Permitted Band 30 MHz-40GHz at 3 m, 40 GHz-140 GHz @10 to 30 cm

Frequency (MHz)	Measured Field Strength @ 3 m (dBµV/m)	Detector Used (Peak/QP/Avg)	Antenna Plane (H/V)	§ 15.209 Field Strength Limits (dBμV/m)	Margin (dB)	
30 - 140000	*	Peak	V/H	*	*	
* No unwanted emission detected that are in excess of 20 dB below the specified limit.						

EXHIBIT 6. TEST BLOCK DIAGRAMS AND EQUIPMENT LIST

6.1. Fundamental Emissions Bandwidth

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Calibration Due Date
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz	30 Nov 2020
RF Amplifier	Spacek Labs	SLKKa-30-6	6D26	18 – 40 GHz	Cal on use
Horn Antenna	ETS Lindgren	3160-09	118385	18 – 26.5 GHz	27 Oct 2020
Power Supply	Tenma	72-7295	490300297	1-40V, DC 5A	
Multimeter	Tenma	72-6202	02080027		14 Dec 2019

6.2. Fundamental Emissions Limits

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Calibration Due Date
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz	30 Nov 2020
RF Amplifier	Spacek Labs	SLKKa-30-6	6D26	18 – 40 GHz	Cal on use
Horn Antenna	ETS Lindgren	3160-09	118385	18 – 26.5 GHz	27 Oct 2020
Power Supply	Tenma	72-7295	490300297	1-40V, DC 5A	
Multimeter	Tenma	72-6202	02080027		14 Dec 2019

6.3. Unwanted Emissions

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range	Calibration Due Date
Spectrum Analyzer	Rohde & Schwarz	FSEK30	100077	20 Hz – 40 GHz	30 Nov 2020
RF Amplifier	Spacek Labs	SLKKa-30-6	6D26	18 – 40 GHz	Cal on use
Horn Antenna	ETS Lindgren	3160-09	118385	18 – 26.5 GHz	27 Oct 2020
Horn Antenna	ETS Lindgren	3160-10	102686	26.5-40 GHz	27 Oct 2020
Horn Antenna	OML	M19HWD	U30625-1	40 – 60 GHz	Note 1
Horn Antenna	OML	M12HWD	E30625-1	60 – 90 GHz	Note 1
Horn Antenna	OML	M08HWD	F30625-1	90 – 140 GHz	Note 1
Power Supply	Tenma	72-7295	490300297	1-40V, DC 5A	
Multimeter	Tenma	72-6202	02080027		14 Dec 2019

Note 1: Dimensions Verified on use

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

	Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):	Measured	Limit
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 1.44	<u>+</u> 1.8
U	Expanded uncertainty U: U = $2u_c(y)$	<u>+</u> 2.89	<u>+</u> 3.6

7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.79	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}}u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured (dB)	Limit (dB)
u _c	Combine <u>d standa</u> rd uncertainty: $u_c(y) = \sqrt{\underset{l=1}{\overset{m}{\sum}} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration