

Ultratech's Accreditations:

Canada 46390-2049

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com Dec. 11, 2006

TIMCO ENGINEERING INC.

P.O. Box 370 849 N.W. State Road 45 Newberry, Florida USA 32669

Subject: FCC Certification Authorization Application under FCC PART 15, Subpart C, Sec. 15.209 - Low Power Transmitters operating in the frequency band 24.1 - 26.0 GHz.

Product:	SITRANS LR 250
Model No.:	7ML5431
FCC ID:	NJA-LR250

Dear Sir/Madam

As appointed agent for Siemens Milltronics Process Instruments Inc., we would like to submit the application for certification of the above product. Please review all required documents uploaded to your E-Filing web site.

If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

Ultratech's Accreditations:

0685

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel.: (905) 829-1570 Fax.: (905) 829-8050

Website: www.ultratech-labs.com Email: vic@ultratech-labs.com Dec. 11, 2006

Siemens Milltronics Process Instruments Inc. 1954 Technology Drive, P.O. Box 4225 Peterborough, Ontario Canada, K9L 7B1

Attn.: Mr. Enzo De Simone

Subject: FCC Certification Application Testing under FCC PART 15, Subpart C, Sec. 15.209 – Low Power Transmitters operating in the frequency band 24.1 - 26.0 GHz.

Product:	SITRANS LR 250
Model No.:	7ML5431
FCC ID:	NJA-LR250

Dear Mr. De Simone,

The product sample, as provided by you, has been tested and found to comply with FCC PART 15, Subpart C, Sec. 15.209 - Low Power Transmitters operating in the frequency band 24.2 - 26.0 GHz.

Enclosed you will find copies of the engineering report. If you have any queries, please do not hesitate to contact us.

Yours truly,

Tri Minh Luu, P. Eng., V.P., Engineering

Encl

Engineering test report

SITRANS LR 250 Model No.: 7ML5431

FCC ID: NJA-LR250

Applicant: Siemens Milltronics Process Instruments Inc.

עעעע

1954 Technology Drive, P.O. Box 4225 Peterborough, Ontario Canada, K9L 7B1

In Accordance With

FEDERAL COMMUNICATIONS COMMISSION (FCC) PART 15, SUBPART C, SEC. 15.209 Low Power Transmitters Operating in the frequency band 24.1 - 26.0 GHz

UltraTech's File No.: MIL-344FCC15C

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs Date: Dec. 11, 2006 Report Prepared by: Tri Luu Tested by: Hung Trinh Issued Date: Dec. 11, 2006 Test Dates: Mar. 28 - Apr.03, 2006 The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government. UltraTech 3000 Bristol Circle, Oakville, Ontario, Canada, L6H 6G4 Tel.: (905) 829-1570 Fax.: (905) 829-8050 Email: vic@ultratech-labs.com, Email: tri.luu@sympatico.ca Website: www.ultratech-labs.com Canada ANSI VEI C-1376 0685 31040/SIT 200093-0 46390-2049 SL2-IN-E-1119R

File #: MIL-344FCC15C

Dec. 11, 2006

TABLE OF CONTENTS

EXHIBI	T 1.	INTRODUCTION	.3
1.1.	SCOP	Е	. 3
1.2.	RELAT	– ED SUBMITAL(S)/GRANT(S)	.3
1.3.	NORM	MATIVE REFERENCES	. 3
EXHIBI	T 1.	PERFORMANCE ASSESSMENT	.4
1.1.	CLIEN	T INFORMATION	. 4
1.2.	EQUIP	MENT UNDER TEST (EUT) INFORMATION	.4
1.3.	EUT'S	S TECHNICAL SPECIFICATIONS	. 5
1.4.	LIST O	F EUT'S ACCESSORIES LIST OF EUT'S PORTS	. 5
1.5.	LIST O	F EUT'S Ports	. 5
EXHIBI	Т 2.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	.6
2.1.	CLIMA	ATE TEST CONDITIONS	. 6
2.2.	O PERA	ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS	. 6
EXHIBI	Т 3.	SUMMARY OF TEST RESULTS	.7
3.1		ATION OF TESTS	7
3.2	APPL	ICABILITY & Summary of EMC Emission Test Results	. 7
3.3.	MODIF	TCATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	.7
EXHIBI	Т 4.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	. 8
4.1.	TEST F	PROCEDURES	. 8
4.2.	MEASU	JREMENT UNCERTAINTIES	. 8
4.3.	MEASU	JREMENT EQUIPMENT USED:	. 8
4.4.	POWE	ERLINE CONDUCTED EMISSIONS @ FCC PART 15, SUBPARTS B & C, PARA.15.107(A) & 15.207	. 9
4.4.	1. L	imits	. 9
4.4.	2. N	Iethod of Measurements	. 9
4.4.	3. T	est Equipment List	. 9
4.4.	4. P	Photographs of Test Setup	. 9
4.4.	5. T	est DATA	10
4.5.		ISMITTER SPURIOUS EMISSIONS (RADIATED @ 3 METERS), FCC CFR 47, PARA. 15.209 & 15.205	12
4.5.	I. L	Imits	12
4.5.	2. IV. 2 T	Ternoa of Measurements	13
4.J 4.5	5. I 1 P	esi Equipmeni Lisi	13 13
4.5	т . 1 5 Т	Post Data	14
4.5	5. I 6 P	Unte	14
4.6	20 DB	OCCUPIED BANDWIDTH @ FCC 15.215(C)	16
4.6.	1. L	imits	16
4.6.	2. N	Iethod of Measurements	16
4.6.	3. T	est Equipment List	16
4.6.	4. T	est Data	16
EXHIBI	Т 5.	MEASUREMENT UNCERTAINTY	18
5.1.	LINE (CONDUCTED EMISSION MEASUREMENT UNCERTAINTY	18
5.2.	RADIA	TED EMISSION MEASUREMENT UNCERTAINTY	19

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

• All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Part 15, Subpart C, Section 15.209	
Title	Telecommunication - Code of Federal Regulations, CFR 47, Part 15	
Purpose of Test:	To gain FCC Certification Authorization for Low Power Transmitters operating in the	
	Frequency Band 24.1 - 26.0 GHz.	
Test Procedures	Both conducted and radiated emissions measurements were conducted in accordance	
	with American National Standards Institute ANSI C63.4 - American National Standard	
	for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical	
	and Electronic Equipment in the Range of 9 kHz to 40 GHz.	
Environmental	Commercial, light industry & heavy industry	
Classification:		

1.2. RELATED SUBMITAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	YEAR	Title
FCC CFR Parts	2005	Code of Federal Regulations – Telecommunication
0-19		
ANSI C63.4	2004	American National Standard for Methods of Measurement of Radio-Noise
		Emissions from Low-Voltage Electrical and Electronic Equipment in the Range
		of 9 kHz to 40 GHz
CISPR 22	2003-04-10	Limits and Methods of Measurements of Radio Disturbance Characteristics of
+A1	2004-10-14	Information Technology Equipment
EN 55022	2003	
CISPR 16-1-1	2003	Specification for radio disturbance and immunity measuring apparatus and
		methods.
		Part 1-1: Measuring Apparatus
CISPR 16-2-1	2003	Specification for radio disturbance and immunity measuring apparatus and
		methods.
		Part 2-1: Conducted disturbance measurement
CISPR 16-2-3	2003	Specification for radio disturbance and immunity measuring apparatus and
		methods.
		Part 2-3: Radiated disturbance measurement

EXHIBIT 1. PERFORMANCE ASSESSMENT

1.1. CLIENT INFORMATION

APPLICANT:	
Name:	Siemens Milltronics Process Instruments Inc.
Address:	1954 Technology Drive, P.O. Box 4225
	Peterborough, Ontario
	Canada, K9L 7B1
Contact Person:	Mr. Enzo De Simone
	Phone #: 705 740 7009
	Email Address: enzo.desimone@siemens.com

MANUFACTURER:			
Name:	Siemens Milltronics Process Instruments Inc.		
Address:	1954 Technology Drive, P.O. Box 4225		
	Peterborough, Ontario		
	Canada, K9L 7B1		
Contact Person:	Mr. Enzo De Simone		
	Phone #: 705 740 7009		
	Email Address: enzo.desimone@siemens.com		

1.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

Brand Name	Siemens Milltronics Process Instruments Inc.
Product Name	SITRANS LR 250
Model Name or Number	7ML5431
Serial Number	N/A
Type of Equipment	Tank Level Probing Radar (TLPR)
Input Power Supply Type	19 – 30 Vdc Profibus (PA) or Loop power (4 mA – 20 mA) HART
Primary User Functions of EUT:	Tank Level Probing Radar (fixed use in metal or concrete tanks)

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

1.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER					
Equipment Type: Tank level Probing	Base station (fixed use in metal or concrete tanks)				
Radar					
Intended Operating Environment:	Commercial, light industry & heavy industry				
Power Supply Requirement:	19 – 30 Vdc Profibus (PA) or Loop power (4 mA – 20 mA) HART				
RF Output Power Rating:	No RF signal shall be outside of the metal or concrete tank				
Operating Frequency Range:	24.1 - 26.0 GHz (Centre Frequency: 25.1 GHz)				
Modulation Types (please describe all	Pulse radar operation; (1.1 nano second wide RF pulses)				
types of modulation)					
Duty Cycle:	0.055%				
	See note 1 below for calculation of the duty cycle				
Occupied Bandwidth	1.82 GHz				
	{ BW = $2/(\text{pulse width}) = 2/1.1 \text{ nS}$ }				
Modulation Designation:	1G82P0N				
Antennas:	Options:				
	• 1.5" horn antenna gain: 16.9 dBi				
	• 2" horn antenna gain: 19.3 dBi				
	• 3" horn antenna gain: 21.4 dBi				
	• 4" horn antenna gain: 22.3 dBi				

RECEIVER		
Operating Frequency Range:	24.1 - 26.0 GHz	

Note 1: $T_on/(T_on + T_off) = T_pulse/T_pulse_interval = 1.1$ nanosecond/ 2 microsecond = 0.00055.

1.4. LIST OF EUT'S ACCESSORIES LIST OF EUT'S PORTS

Index Number	Parts Description	Parts Number/ Model Number	Serial Number	FCC/CE Compliance (FCC & CE)
1	1.5" threaded process connection with 1.5" horn antenna with 100 mm waveguide extension option	N/A	N/A	FCC Logo & CE
2	2" threaded process connection with 2" horn antenna with 100 mm waveguide extension option	N/A	N/A	FCC Logo & CE
3	Flanged process connection (2", 3" or 4" flange) with 2", 3" or 4" horn antenna with 100 mm waveguide extension option	N/A	N/A	FCC Logo & CE

1.5. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Cable Type (Shielded/Non- shielded)	Is cable length restricted to be < 3 meters?
1	Profibus (PA) or Loop power (4mA - 20mA) HART	1	Connector terminal	Non-shielded cable	no

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com File #: MIL-344FCC15C Dec. 11, 2006

• All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 2. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

2.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C
Humidity:	51%
Pressure:	102 kPa
Power input source:	24 Vdc nominal

2.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

The SIRANS LR 250 operates with it's normal operation, transmitting and receiving continuously during tests.

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 3. SUMMARY OF TEST RESULTS 3.1. LOCATION OF TESTS

• Powerline Conducted Emissions were performed in UltraTech's shielded room, 16'(L) by 12'(W) by 12'(H).

- Test Configuration #1 Metal tank: Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site has been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 31040/SIT 1300B3) and Industry Canada office (Industry Canada File No.: IC2049-1). Last Date of Site Calibration: June. 20, 2005.
- Test Configuration #2 Concrete tank: Radiated Emissions were performed at St. Marys Cement plant located in Ontario, Canada

FCC PARAGRAPH. **TEST REQUIREMENTS** COMPLIANCE (YES/NO) 15.203 Antenna Requirement Yes. Permanently attached antenna. Transmitter Radiated Emissions - Fundamental, Harmonic and 15.209 & 15.205 Yes Spurious 20 dB Bandwidth Yes 15.115(c) 15.107(a) & Power Line Conducted Emissions Measurements (Transmit & Yes 15.207(a) Receive)

3.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices, the associated Radio Receiver operating in 24.1 - 26.0 GHz is exempted from FCCs authorization. The engineering test report can be provided upon FCC requests.

3.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES None

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 4. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

4.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in ANSI C63.4 and ULTR-P001-2004.

4.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with requirements of UKAS Document LAB 34 with a confidence level of 95%. Please refer to Exhibit 5 for Measurement Uncertainties.

4.3. MEASUREMENT EQUIPMENT USED:

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.4. **POWERLINE CONDUCTED EMISSIONS @ FCC PART 15, SUBPARTS B & C,** PARA.15.107(A) & 15.207

4.4.1. Limits

The equipment shall meet the limits of the following table:

	CLASS I	B LIMITS	
Test Frequency Range	Quasi-Peak	Average*	Measuring Bandwidth
(MHz)	(dBµV)	(dBµV)	
0.15 to 0.5	66 to 56*	56 to 46*	RBW = 9 kHz
			$VBW \ge 9 \text{ kHz for } QP$
			VBW = 1 Hz for Average
0.5 to 5	56	46	RBW = 9 kHz
			$VBW \ge 9 \text{ kHz for } QP$
			VBW = 1 Hz for Average
5 to 30	60	50	RBW = 9 kHz
			$VBW \ge 9 \text{ kHz}$ for QP
			VBW = 1 Hz for Average
* Decreasing linearly wit	h logarithm of frequenc	W.	

Decreasing linearly with logarithm of frequency

4.4.2. **Method of Measurements**

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

4.4.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
EMI Receiver	Hewlett Packard	HP 8546A	3520A00248	9KHz-5.6GHz,
System/Spectrum Analyzer				50 Ohms
with built-in Amplifier				
Transient Limiter	Hewlett Packard	11947A	310701998	9 kHz – 200 MHz
				10 dB attenuation
L.I.S.N.	EMCO	3825/2	89071531	9 kHz – 200 MHz
				50 Ohms / 50 μH
12'x16'x12' RF Shielded	RF Shielding	N/A	N/A	N/A
Chamber				

4.4.4. Photographs of Test Setup

Refer to the Photographs #1 & 2 in Annex 1 for setup and arrangement of equipment under tests and its ancillary equipment.

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST) •

4.4.5. Test DATA

The conducted emissions at DC Input Pots comply with FCC 15.207. Please refer to Plots # 1 and 2 below:

UltraTech	Group of Labs	of Labs Plot #1: DC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT				UREMENT PLOT
Applicant:	Siemens Milltronic Inc.	Detector:[X] PEAK	[X]QUASI-PEAK [X]A	VERAGE	Temp: 23 °C	Humidity: 20%
Product:	SITRANS LR 250	Line Tested: 1	Line Voltage: 24 Vdc	Test Tec	h: Sumeet	Test Date: 3 rd April, 2006

```
17:01:48 APR 03, 2006
```

 Signal Freq (MHz)
 PK Amp
 QP Amp
 AV Amp
 QP△L1

 1
 0.190375
 35.4
 36.0
 28.0
 -28.0

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: MIL-344FCC15C Dec. 11, 2006

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

UltraTech	Group of Labs	Plot #2: DC POWER LINE CONDUCTED EMISSIONS MEASUREMENT PLOT			UREMENT PLOT	
Applicant:	Siemens Milltronic Inc.	Detector:[X] PEAK	[X]QUASI-PEAK [X]A	VERAGE	Temp: 23 °C	Humidity: 20%
Product:	SITRANS LR 250	Line Tested: 2	Line Voltage: 24 Vdc Test Tech: Sumeet		Test Date: 3 rd April, 2006	

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.5. TRANSMITTER SPURIOUS EMISSIONS (RADIATED @ 3 METERS), FCC CFR 47, PARA. 15.209 & 15.205

4.5.1. Limits

The fundamental frequency shall not fall within any restricted frequency band specified in 15.205 All rf other emissions shall not exceed the general radiated emission limits specified in @ 15.209(a).

FCC CFR	47, Part 15, Subpart C, Para.	. 15.205(a) - Restricted Freque	ency Bands
-			-

MHz	MHz	MHz	GHz
0.090 - 0.110	162.0125 - 167.17	2310 - 2390	9.3 - 9.5
0.49 - 0.51	167.72 - 173.2	2483.5 - 2500	10.6 - 12.7
2.1735 - 2.1905	240 - 285	2655 - 2900	13.25 - 13.4
8.362 - 8.366	322 - 335.4	3260 - 3267	14.47 - 14.5
13.36 - 13.41	399.9 - 410	3332 - 3339	14.35 - 16.2
25.5 - 25.67	608 - 614	3345.8 - 3358	17.7 - 21.4
37.5 - 38.25	960 - 1240	3600 - 4400	22.01 - 23.12
73 - 75.4	1300 - 1427	4500 - 5250	23.6 - 24.0
108 - 121.94	1435 - 1626.5	5350 - 5460	31.2 - 31.8
123 – 138	1660 - 1710	7250 - 7750	36.43 - 36.5
149.9 - 150.05	1718.8 - 1722.2	8025 - 8500	Above 38.6
156.7 – 156.9	2200 - 2300	9000 - 9200	

FCC CFR 47, Part 15, Subpart C, Para. 15.209(a) -- Field Strength Limits within Restricted Frequency Bands --

i icha Strength Emints within Restricted i requency Danas							
FREQUENCY	FIELD STRENGTH LIMITS	DISTANCE					
(MHz)	(microvolts/m)	(Meters)					
0.009 - 0.490	2,400 / F (KHz)	300					
0.490 - 1.705	24,000 / F (KHz)	30					
1.705 - 30.0	30	30					
30 - 88	100	3					
88 - 216	150	3					
216 - 960	200	3					
Above 960	500	3					

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.5.2. Method of Measurements

Refer to Ultratech Test Procedures, File # ULTR P001-2004 and ANSI C63.4 for measurement methods

The following measurement procedures were also applied:

- Applies to harmonics/spurious that fall in the restricted bands listed in Section 15.205. the maximum permitted average field strength is listed in Section 15.209. A Pre-Amp and highpass filter are used for this measurement.
- For 9 kHz \leq frequencies \leq 150 kHz: RBW = 1 KHz, VBW \geq 1 KHz, SWEEP=AUTO.
- For 150 MHz \leq frequencies \leq 30 MHz: RBW = 10 KHz, VBW \geq 10 KHz, SWEEP=AUTO.
- For 30 MHz \leq frequencies \leq 1 GHz: RBW = 100 KHz, VBW \geq 100 KHz, SWEEP=AUTO.
- For frequencies ≥ 1 GHz: RBW = 1 MHz, VBW = 1 MHz (Peak) & VBW = 10 Hz (Average), SWEEP=AUTO.
- If the emission is pulsed, modified the unit for continuous operation, then use the settings above for measurements, then correct the reading by subtracting the peak-average correction factor derived from the appropriate duty cycle calculation. See Section 15.35(b) and (c).

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Rohde &	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz
EMI Receiver	Schawrz			with external mixer
Microwave Amplifier	Hewlett Packard	HP 83051A	3332A00471	1 GHz to 50 GHz
Biconilog Antenna	EMCO	3143	1029	20 MHz to 2 GHz
Horn Antenna	EMCO	3155	9701-5061	1 GHz – 18 GHz
Horn Antenna	EMCO	3160-09	1007	18 GHz – 26.5 GHz
Horn Antenna	EMCO	3160-10	1001	26.5 GHz – 40 GHz
Waveguide	CMT	RA42-K_F-5B-C	910074-004	18 GHz – 26.5 GHz
Waveguide	CMT	RA28-K_F-4B-C	920311-001	26.5 GHz – 40 GHz
Horn Antenna & Mixer	OML	WR-19	U30625-1	40–60 GHz
Horn Antenna & Mixer	OML	E-Band	E30625-1	60 – 90 GHz
Horn Antenna & Mixer	OML	WR-08	F30625-1	90–140 GHz

4.5.3. Test Equipment List

4.5.4. Photographs of Test Setup

Refer to the Photographs #3 to #7 in Annex 1 for setup and arrangement of equipment under tests and its ancillary equipment.

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

4.5.5. Test Data

Note: SITRANS LR 250, Model 7ML5431 with 4" horn antenna (maximum gain: 22.3 dBi)

4.5.5.1. Radiated Emissions for frequency below 1 GHz in 3m TDK 10m Semi-Anechoic Chamber (test without no container for worst case)

The emissions were scanned from 30 MHz to 1 GHz at 10 Meters distance and all emissions less than 20 dB below the						
limits were reco	rded. Refer to Pho	otos #3 & #4 in A	nnex 1.			
	RF	DETECTOR	ANTENNA	FCC		
FREQUENCY	LEVEL @ 10m	USED	PLANE	LIMIT @ 10m	MARGIN	PASS/
(MHz)	(dBuV/m)	(PEAK/QP)	(H/V)	(dBuV/m)	(dB)	FAIL
36.0	20.3	PEAK	V	29.5	-9.2	PASS
66.3	21.2	PEAK	V	29.5	-8.3	PASS
72.3	19.1	PEAK	V	29.5	-10.4	PASS
72.3	17.5	PEAK	Н	29.5	-12.0	PASS
90.8	20.2	PEAK	V	33.0	-12.8	PASS
108.0	20.2	PEAK	V	33.0	-12.8	PASS
126.0	22.4	PEAK	V	33.0	-10.6	PASS

4.5.6. Plots

The following plots graphically represent the test results recorded in the above Test Data Table.

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

File #: MIL-344FCC15C Dec. 11, 2006

4.5.6.1.	Test Configuration #1: The LR 250 was mounted on top of a Metal Tank and secured to
	this metal tank using metal screws and nuts as instructed by the manufacturer.

	RF	RF	ANTENNA	LIMIT	LIMIT			
FREQUENCY	PEAK LEVEL	AVG LEVEL	PLANE	15.209	MARGIN	PASS/	Distance	
	(dBuV/m)	(dBuV/m)	(H / V)	(dBuV/m)	(dB)	FAIL	(m)	
30 – 1000 MHz	Note (1)	Note (1)	Note (1)	Note (1)	Note (1)	PASS	3	
1 to 100 GHz	Note (2)	Note (2)	H and V	54.00	N/A	PASS	3, 1 & 0.5	
Notes: 1. The PEAK emissions were scanned from 1 GHz to 100 GHz at 3, 1 and 0.5 meters. No rf signal was found								

1. The PEAK emissions were scanned from 1 GHz to 100 GHz at 3, 1 and 0.5 meters. No rf signal was found when the E-Field was search at the separation distance of 3m, 1m and 0.5 meters from the device under test and receiving antenna.

2. Refer to Photographs #5 and #6 for test setup in Semi-Anechoic Chamber

4.5.6.2. <u>Test Configuration #2</u>: The LR 250 was mounted on top of the Cement Concrete Tank located in St Mary Cement Plant in Ontario, Canada. It was secured to this concrete tank metal cover using metal screws and nuts as instructed by the manufacturer.

	RF	RF	ANTENNA	LIMIT	LIMIT		
FREQUENCY	PEAK LEVEL	AVG LEVEL	PLANE	15.209	MARGIN	PASS/	Distance
	(dBuV/m)	(dBuV/m)	(H / V)	(dBuV/m)	(dB)	FAIL	(m)
30 – 1000 MHz	Note (1)	Note (1)	Note (1)	Note (1)	Note (1)	PASS	3
1 to 100 GHz	Note (2)	Note (2)	H and V	54.00	N/A	PASS	0.5

Notes:

1. The PEAK emissions were scanned from 1 GHz to 100 GHz at 0.5 meters. No rf signal was found when the E-Field was search at the separation distance of 3m, 1m and 0.5 meters from the device under test and receiving antenna.

2. Refer to Photograph #7 for test setup at St. Mary Cement Plant

4.6. 20 DB OCCUPIED BANDWIDTH @ FCC 15.215(C)

4.6.1. Limits

The rf spectrum shall not stay in the restricted band specified in FCC 15.205

4.6.2. Method of Measurements

Refer to Exhibit 8, Sec. 8.4 & ANSI C63.4

The transmitter output was loosely coupled to the spectrum analyzer through a receiving antenna and the bandwidth of bandwidth of the fundamental frequency was measured with the spectrum analyzer with the resolution bandwidth of the spectrum analyzer set per ANSI 63.4, Sec. 13.1.6.2

4.6.3. Test Equipment List

Test Instruments	Manufacturer	Model No.	Serial No.	Frequency Range
Spectrum Analyzer/	Rohde &	FSEK20/B4/B21	834157/005	9 kHz – 40 GHz
EMI Receiver	Schawrz			with external mixer

4.6.4. Test Data

• Test Sample: SITRANS LR 250, Model 7ML5431 with 4" horn antenna (maximum gain: 22.3 dBi)

CHANNEL FREQUENCY 20 dB BANDWIDTH (GHz) (GHz)		MAXIMUM LIMIT (kHz)	PASS/FAIL	
25.1	4.57	N/A	N/A	

Note: The above measurement is only to full fill the FCC's requirements. The actual bandwidth for pulse desensitizing signal is calculated as below:

BW = 2/(pulse width) = 2/1.1 nS = 1.82 GHz

Plot # 4: 20 dB Bandwidth

ULTRATECH GROUP OF LABS 3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: http://www.ultratech-labs.com

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

EXHIBIT 5. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 and LAB 34

5.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (dB)		
(Line Conducted)	DISTRIBUTION	9-150 kHz	0.15-30 MHz	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
LISN coupling specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Cable and Input Transient Limiter calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
Mismatch: Receiver VRC $\Gamma_1 = 0.03$ LISN VRC $\Gamma_R = 0.8(9 \text{ kHz}) 0.2 (30 \text{ MHz})$ Uncertainty limits $20\text{Log}(1\pm\Gamma_1\Gamma_R)$	U-Shaped	<u>+</u> 0.2	<u>+</u> 0.3	
System repeatability	Std. deviation	<u>+</u> 0.2	<u>+</u> 0.05	
Repeatability of EUT				
Combined standard uncertainty	Normal	<u>+</u> 1.25	<u>+</u> 1.30	
Expanded uncertainty U	Normal (k=2)	<u>+</u> 2.50	<u>+</u> 2.60	

Sample Calculation for Measurement Accuracy in 450 kHz to 30 MHz Band:

 $u_{c}(y) = \sqrt{\frac{m}{1}\sum_{i=1}} u_{i}^{2}(y) = \pm \sqrt{(1.5^{2} + 1.5^{2})/3 + (0.5/2)^{2} + (0.05/2)^{2} + 0.35^{2}} = \pm 1.30 \text{ dB}$ $U = 2u_{c}(y) = \pm 2.6 \text{ dB}$

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

CONTRIBUTION	PROBABILITY	UNCERTAINTY (<u>+</u> dB)		
(Radiated Emissions)	DISTRIBUTION	3 m	10 m	
Antenna Factor Calibration	Normal (k=2)	<u>+</u> 1.0	<u>+</u> 1.0	
Cable Loss Calibration	Normal (k=2)	<u>+</u> 0.3	<u>+</u> 0.5	
EMI Receiver specification	Rectangular	<u>+</u> 1.5	<u>+</u> 1.5	
Antenna Directivity	Rectangular	+0.5	+0.5	
Antenna factor variation with height	Rectangular	<u>+</u> 2.0	<u>+</u> 0.5	
Antenna phase center variation	Rectangular	0.0	<u>+</u> 0.2	
Antenna factor frequency interpolation	Rectangular	<u>+</u> 0.25	<u>+</u> 0.25	
Measurement distance variation	Rectangular	<u>+</u> 0.6	<u>+</u> 0.4	
Site imperfections	Rectangular	<u>+</u> 2.0	<u>+</u> 2.0	
Mismatch: Receiver VRC $\Gamma_1 = 0.2$		+1.1		
Antenna VRC $\Gamma_R = 0.67$ (Bi) 0.3 (Lp)	U-Shaped		<u>+</u> 0.5	
Uncertainty limits $20Log(1 + \Gamma_1 \Gamma_R)$		-1.25		
System repeatability	Std. Deviation	<u>+</u> 0.5	<u>+</u> 0.5	
Repeatability of EUT		-	-	
Combined standard uncertainty	Normal	+2.19 / -2.21	+1.74 / -1.72	
Expanded uncertainty U	Normal (k=2)	+4.38 / -4.42	+3.48 / -3.44	

Calculation for maximum uncertainty when 3m biconical antenna including a factor of k=2 is used:

 $U = 2u_c(y) = 2x(+2.19) = +4.38 \ dB \qquad And \qquad U = 2u_c(y) = 2x(-2.21) = -4.42 \ dB$

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)