

FCC TEST REPORT

REPORT NO.: RF110106C05

MODEL NO.: RX36 6S

FCC ID: NIYRX366S

RECEIVED: Jan. 06, 2011

TESTED: Jan. 06 ~ Jan. 07, 2011

ISSUED: Jan. 25, 2011

APPLICANT: DEXIN Corporation

ADDRESS: 14F-8, No 258, Lian Cheng Rd., Chung Ho City,

Taipei Hsien, Taiwan, R.O.C

ISSUED BY: Bureau Veritas Consumer Products Services

(H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou

Hsiang, Taipei Hsien 244, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei

Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 31 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product, certification, approval or endorsement by TAF or any government agency. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Table of Contents

RELEA	ASE CONTROL RECORD	3
1.	CERTIFICATION	4
2.	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3.	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	7
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	7
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	8
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	.10
3.4	DESCRIPTION OF SUPPORT UNITS	.10
4.	TEST TYPES AND RESULTS	. 11
4.1	RADIATED EMISSION MEASUREMENT	. 11
4.1.1	LIMITS OF RADIATED EMISSION MEASUREMENT	. 11
4.1.2	TEST INSTRUMENTS	.12
4.1.3	TEST PROCEDURES	.13
4.1.4	DEVIATION FROM TEST STANDARD	.13
4.1.5	TEST SETUP	.14
4.1.6	EUT OPERATING CONDITIONS	.14
4.1.7	TEST RESULTS	
4.2	CONDUCTED EMISSION MEASUREMENT	
4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	.21
4.2.2	TEST INSTRUMENTS	.21
4.2.3	TEST PROCEDURES	.22
4.2.4	DEVIATION FROM TEST STANDARD	.22
4.2.5	TEST SETUP	.23
4.2.6	EUT OPERATING CONDITIONS	.23
4.2.7	TEST RESULTS	
4.3	BAND EDGES MEASUREMENT	
4.3.1	LIMITS OF BAND EDGES MEASUREMENT	.26
	TEST INSTRUMENTS	
4.3.3	TEST PROCEDURE	
4.3.4	DEVIATION FROM TEST STANDARD	
4.3.5	EUT OPERATING CONDITION	
4.3.6	TEST RESULTS	
5.	PHOTOGRAPHS OF THE TEST CONFIGURATION	_
6.	INFORMATION ON THE TESTING LABORATORIES	.30
7.	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES	
	TO THE EUT BY THE LAB	.31

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	NA	Jan. 25, 2011

Report No.: RF110106C05 3 Report Format Version 4.0.0

1. CERTIFICATION

PRODUCT: 2.4GHz Wireless Receiver

MODEL NO.: RX36 6S

BRAND: Dexin

APPLICANT: DEXIN Corporation

TESTED: Jan. 06 ~ Jan. 07, 2011

TEST SAMPLE: ENGINEERING SAMPLE

STANDARDS: FCC Part 15, Subpart C (Section 15.249)

ANSI C63.4-2003 ANSI C63.10-2009

The above equipment (model: RX36_6S) have been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : , DATE : Jan. 25, 2011

Joanna Wang / Senior Specialist

APPROVED BY: Jan. 25, 2011

Gary Chang / Assistant Manager

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C (Section 15.249)						
STANDARD PARAGRAPH TEST TYPE RESULT REMARK						
15.207	5.207 Conducted Emission Test PASS		Meet the requirement of limit. Minimum passing margin is -9.95dB at 0.158MHz.			
15.209 15.249 15.249 (d)	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -12.2dB at 2398.00MHz.			

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	150kHz~30MHz	2.44dB
Radiated emissions	30MHz ~ 200MHz	2.93dB
	200MHz ~1000MHz	2.95dB
	1GHz ~ 18GHz	2.26dB
	18GHz ~ 40GHz	1.94dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

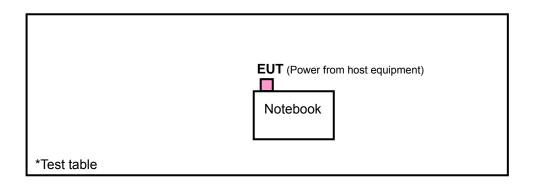
3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	2.4GHz Wireless Receiver
MODEL NO.	RX36_6S
FCC ID	NIYRX366S
POWER SUPPLY	5Vdc (host equipment)
MODULATION TYPE	GFSK
DATA RATE	1M bit/sec.
OPERATING FREQUENCY	2405 ~ 2476MHz
NUMBER OF CHANNEL	64
ANTENNA TYPE	Copper trace antenna with 0.50dBi gain
DATA CABLE	NA
I/O PORT	USB
ACCESSORY DEVICES	NA

NOTE:

- 1. The EUT has transmitter and receiver functions.
- 2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.2 DESCRIPTION OF TEST MODES

64 channels are provided to this EUT:

FREQUENC	Y GROUP 1	FREQUENC	Y GROUP 2
FREQ.	(MHz)	FREQ.	(MHz)
2407	2442	2405	2443
2408	2447	2406	2444
2412	2451	2409	2446
2414	2452	2410	2448
2417	2457	2411	2449
2420	2458	2413	2453
2421	2459	2415	2455
2422	2460	2416	2456
2427	2461	2418	2462
2428	2465	2419	2463
2431	2468	2423	2464
2435	2469	2425	2466
2436	2472	2429	2467
2437	2473	2430	2470
2438	2475	2432	2471
2439	2476	2434	2474

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT CONFIGURE		APPLICABLE TO			DESCRIPTION
MODE	RE≥1G	RE<1G	PLC	ВМ	5200 1111 11011
-	V	V	V	V	-

Where **PLC**: Power Line Conducted Emission

RE<1G: Radiated Emission below 1GHz

RE≥1G: Radiated Emission above 1GHz

BM: Bandedge Measurement

RADIATED EMISSION TEST (ABOVE 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

OPERATING FREQUENCY RANGE (MHz)	TEST FREQUENCY (MHz)	MODULATION TYPE
2405 ~ 2476	2405, 2439, 2476	GFSK

RADIATED EMISSION TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations axis and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

OPERATING FREQUENCY RANGE (MHz)	TEST FREQUENCY (MHz)	MODULATION TYPE
2405 ~ 2476	2405	GFSK

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

OPERATING FREQUENCY RANGE (MHz)	TEST FREQUENCY (MHz)	MODULATION TYPE
2405 ~ 2476	2405	GFSK

BANDEDGE MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

OPERATING FREQUENCY RANGE (MHz)	TEST FREQUENCY (MHz)	MODULATION TYPE
2405 ~ 2476	2405, 2476	GFSK

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
RE≥1G	23deg. C, 60%RH, 1018 hPa	120Vac, 60Hz	David Huang
RE<1G	23deg. C, 60%RH, 1025 hPa	120Vac, 60Hz	David Huang
PLC	25deg. C, 65%RH, 1025 hPa	120Vac, 60Hz	David Huang
ВМ	23deg. C, 60%RH, 1018 hPa	120Vac, 60Hz	David Huang

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (Section 15.249)
ANSI C63.4-2003
ANSI C63.10-2009

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK	DELL	D830	10026042688	FCC DoC Approved

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non-shielded (1.8m).

4. TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209, 15.249 as following:

15.209 Limit		
Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3
15.249 Limit		
Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Aug. 04, 2010	Aug. 03, 2011
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100041	Jul. 09, 2010	Jul. 08, 2011
BILOG Antenna SCHWARZBECK	VULB9168	9168-156	Apr. 30, 2010	Apr. 29, 2011
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-209	Aug. 02, 2010	Aug. 01, 2011
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 27, 2010	Dec. 26, 2011
Preamplifier Agilent	8449B	3008A01910	Sep. 09, 2010	Sep. 08, 2011
Preamplifier Agilent	8447D	2944A10638	Nov. 03, 2010	Nov. 02, 2011
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	218190/4 231241/4	May 14, 2010	May 13, 2011
RF signal cable Worken	8D-FB	Cable-HYCH9-01	Aug. 20, 2010	Aug. 19, 2011
Software	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
Antenna Tower EMCO	2070/2080	512.835.4684	NA	NA
Turn Table EMCO	2087-2.03	NA	NA	NA
Antenna Tower &Turn Table Controller EMCO	2090	NA	NA	NA

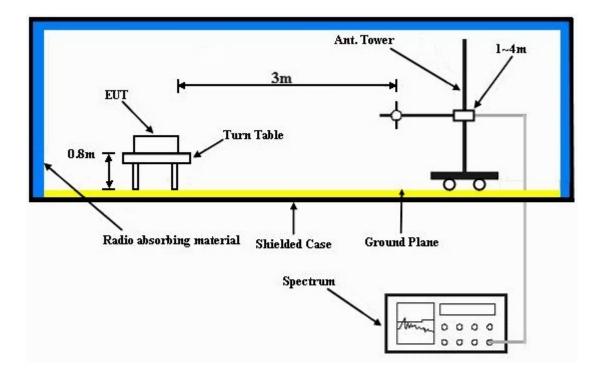
NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 9.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The FCC Site Registration No. is 460141.
- 5. The IC Site Registration No. is IC 7450F-4.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Plugged the EUT to notebook and placed on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.

4.1.7 TEST RESULTS

ABOVE 1GHz DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
TEST FREQUENCY	2405MHz	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH 1018 hPa	TESTED BY	David Huang	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	39.4 PK	74.0	-34.6	1.32 H	174	8.90	30.50		
2	2390.00	27.7 AV	54.0	-26.3	1.32 H	174	-2.80	30.50		
3	2398.00	61.8 PK	74.0	-12.2	1.32 H	174	31.20	30.60		
4	2398.00	29.2 AV	54.0	-24.8	1.32 H	174	-1.40	30.60		
5	2400.00	51.5 PK	74.0	-22.5	1.32 H	174	20.90	30.60		
6	2400.00	7.3 AV	54.0	-46.7	1.32 H	174	-23.30	30.60		
7	*2405.00	82.0 PK	114.0	-32.0	1.32 H	174	51.40	30.60		
8	*2405.00	37.8 AV	94.0	-56.2	1.32 H	174	7.20	30.60		
9	4810.00	54.0 PK	74.0	-20.0	1.00 H	19	17.50	36.50		
10	4810.00	9.8 AV	54.0	-44.2	1.00 H	19	-26.70	36.50		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency
- 6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (0.616 ms / 100 ms) = -44.2 dB

EUT TEST CONDITION		MEASUREMENT DETAIL		
TEST FREQUENCY	2405MHz	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH 1018 hPa	TESTED BY	David Huang	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	2390.00	42.7 PK	74.0	-31.3	1.00 V	296	12.20	30.50		
2	2390.00	32.5 AV	54.0	-21.5	1.00 V	296	2.00	30.50		
3	2398.00	58.5 PK	74.0	-15.5	1.00 V	296	27.90	30.60		
4	2398.00	28.7 AV	54.0	-25.3	1.00 V	296	-1.90	30.60		
5	2400.00	47.6 PK	74.0	-26.4	1.00 V	296	17.00	30.60		
6	2400.00	3.4 AV	54.0	-50.6	1.00 V	296	-27.20	30.60		
7	*2405.00	78.1 PK	114.0	-35.9	1.00 V	288	47.50	30.60		
8	*2405.00	33.9 AV	94.0	-60.1	1.00 V	288	3.30	30.60		
9	4810.00	52.0 PK	74.0	-22.0	1.00 V	142	15.50	36.50		
10	4810.00	7.8 AV	54.0	-46.2	1.00 V	142	-28.70	36.50		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

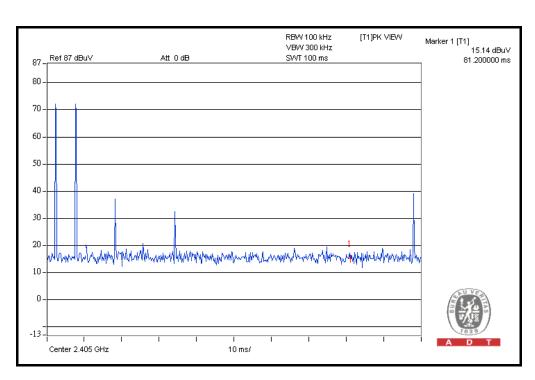
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * " : Fundamental frequency
- 6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (0.616 ms / 100 ms) = -44.2 dB

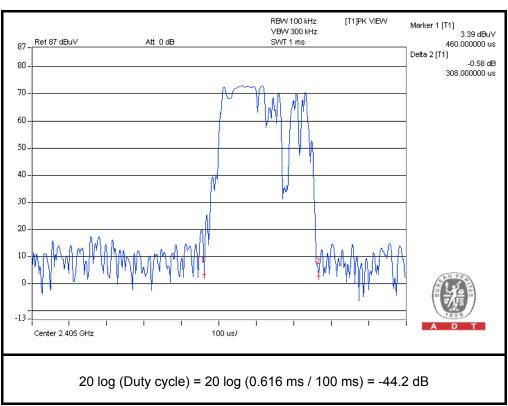
EUT TEST CONDITION		MEASUREMENT DETAIL		
TEST FREQUENCY	2439MHz	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	23deg. C, 60%RH 1018 hPa	TESTED BY	David Huang	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2439.00	81.0 PK	114.0	-33.0	1.30 H	177	50.30	30.70			
2	*2439.00	36.8 AV	94.0	-57.2	1.30 H	177	6.10	30.70			
3	4878.00	54.4 PK	74.0	-19.6	1.00 H	32	17.70	36.70			
4	4878.00	10.2 AV	54.0	-43.8	1.00 H	32	-26.50	36.70			
		ANTENNA	A POLARIT	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2439.00	77.1 PK	114.0	-36.9	1.31 V	10	46.40	30.70			
2	*2439.00	32.9 AV	94.0	-61.1	1.31 V	10	2.20	30.70			
	4070.00	54.0 DV	74.0	-19.2	1.42 V	328	18.10	36.70			
3	4878.00	54.8 PK	74.0	-19.2	1.42 V	520	10.10	30.70			

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * " : Fundamental frequency
- 6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (0.616 ms / 100 ms) = -44.2 dB


EUT TEST CONDITION		MEASUREMENT DETAIL		
TEST FREQUENCY	2476MHz	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
	23deg. C, 60%RH 1018 hPa	TESTED BY	David Huang	


		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2476.00	81.3 PK	114.0	-32.7	1.33 H	169	50.50	30.80
2	*2476.00	37.1 AV	94.0	-56.9	1.33 H	169	6.30	30.80
3	2483.50	49.8 PK	74.0	-24.2	1.33 H	169	18.90	30.90
4	2483.50	5.6 AV	54.0	-48.4	1.33 H	169	-25.30	30.90
5	2485.50	39.2 PK	74.0	-34.8	1.33 H	169	8.30	30.90
6	2485.50	29.0 AV	54.0	-25.0	1.33 H	169	-1.90	30.90
7	4952.00	53.4 PK	74.0	-20.6	1.35 H	195	16.50	36.90
8	4952.00	9.2 AV	54.0	-44.8	1.35 H	195	-27.70	36.90
		ANTENNA	A POLARIT	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2476.00	77.8 PK	114.0	-36.2	1.25 V	194	47.00	30.80
2	*2476.00	33.6 AV	94.0	-60.4	1.25 V	194	2.80	30.80
3	2483.50	50.5 PK	74.0	-23.5	1.25 V	149	19.60	30.90
4	2483.50	6.3 AV	54.0	-47.7	1.25 V	149	-24.60	30.90
5	2485.50	38.2 PK	74.0	-35.8	1.25 V	194	7.30	30.90
6	2485.50	27.3 AV	54.0	-26.7	1.25 V	194	-3.60	30.90
0								
7	4952.00	47.0 PK	74.0	-27.0	1.20 V	15	10.10	36.90

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. " * ": Fundamental frequency
- 6. The average value of fundamental frequency is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula: 20 log (Duty cycle) = 20 log (0.616 ms / 100 ms) = -44.2 dB

BELOW 1GHz WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL		
TEST FREQUENCY	2405MHz	FREQUENCY RANGE		
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak	
	23deg. C, 60%RH 1025 hPa	TESTED BY	David Huang	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	101.84	14.1 QP	43.5	-29.4	1.75 H	301	4.50	9.60		
2	173.78	18.8 QP	43.5	-24.7	1.00 H	241	6.10	12.70		
3	333.21	24.4 QP	46.0	-21.6	1.75 H	193	9.90	14.50		
4	549.03	26.2 QP	46.0	-19.8	1.75 H	100	5.40	20.80		
5	667.63	27.1 QP	46.0	-18.9	1.00 H	91	4.60	22.50		
6	850.39	25.1 QP	46.0	-20.9	1.75 H	145	-0.60	25.70		
		ANTENNA	POLARITY	/ & TEST DI	STANCE: V	ERTICAL A	T 3 M			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	173.78	22.7 QP	43.5	-20.8	1.00 V	10	10.00	12.70		
2	333.21	22.0 QP	46.0	-24.0	2.00 V	130	7.50	14.50		
3	471.25	25.4 QP	46.0	-20.6	1.00 V	106	7.00	18.40		
4	549.03	24.5 QP	46.0	-21.5	1.00 V	148	3.70	20.80		
5	665.68	32.2 QP	46.0	-13.8	1.00 V	10	9.70	22.50		
6	832.89	31.2 QP	46.0	-14.8	1.75 V	184	5.60	25.60		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

4.2 CONDUCTED EMISSION MEASUREMENT

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED	LIMIT (dBμV)
	Quasi-peak	Average
0.15 ~ 0.5 0.5 ~ 5 5 ~ 30	66 to 56 56 60	56 to 46 46 50

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 TEST INSTRUMENTS

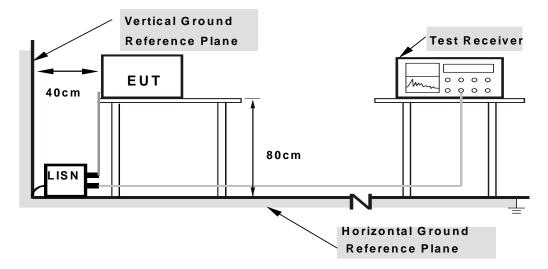
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100289	Nov. 23, 2010	Nov. 22, 2011
RF signal cable Woken	5D-FB	Cable-HYCO2-01	Dec. 30, 2010	Dec. 29, 2011
LISN ROHDE & SCHWARZ	ESH2-Z5	100100	Jan. 06, 2011	Jan. 05, 2012
LISN ROHDE & SCHWARZ	ESH3-Z5	100311	Jul. 08, 2010	Jul. 07, 2011
V-LISN SCHWARZBECK	NNBL 8226-2	8226-142	Jul. 12, 2010	Jul. 11, 2011
Software ADT	ADT_Cond_ V7.3.7	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 2.
- 3. The VCCI Site Registration No. is C-2047.

4.2.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

4.2.5 TEST SETUP

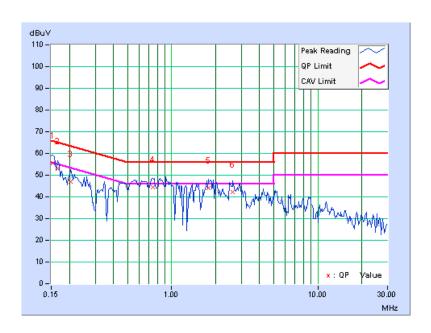
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT OPERATING CONDITIONS

Same as 4.1.6.

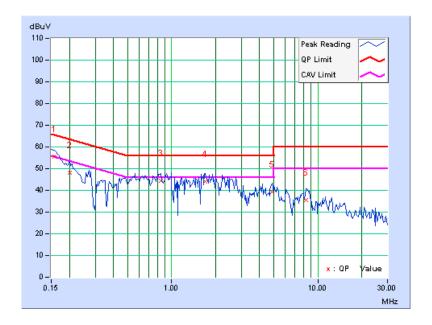

4.2.7 TEST RESULTS

CONDUCTED WORST-CASE DATA

	Freq.	Corr.	Readin	g Value	Emis Le	ssion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB ((uV)]	[dB	(uV)]	(dl	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.154	0.16	55.38	-	55.54	-	65.79	55.79	-10.25	-
2	0.166	0.16	52.80	-	52.96	-	65.18	55.18	-12.22	-
3	0.205	0.16	46.92	-	47.08	-	63.42	53.42	-16.34	-
4	0.740	0.21	44.20	-	44.41	-	56.00	46.00	-11.59	-
5	1.785	0.29	43.86	-	44.15	-	56.00	46.00	-11.85	-
6	2.625	0.32	42.08	-	42.40	-	56.00	46.00	-13.60	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



PHASE	Line 2	6dB BANDWIDTH	9kHz
	LI110 Z	oub Brand mib iii	OI(112

	Freq.	Corr.	Readin	g Value		ssion vel	Lit	nit	Mar	gin
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.158	0.13	55.50	36.56	55.63	36.69	65.58	55.58	-9.95	-18.89
2	0.201	0.13	47.84	-	47.97	-	63.58	53.58	-15.61	-
3	0.845	0.20	44.18	-	44.38	-	56.00	46.00	-11.62	-
4	1.707	0.28	43.64	-	43.92	-	56.00	46.00	-12.08	-
5	4.867	0.37	38.80	-	39.17	-	56.00	46.00	-16.83	-
6	8.297	0.42	35.16	-	35.58	-	60.00	50.00	-24.42	-

- REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
 - 3. The emission levels of other frequencies were very low against the limit.
 - 4. Margin value = Emission level Limit value
 - 5. Correction factor = Insertion loss + Cable loss
 - 6. Emission Level = Correction Factor + Reading Value.

4.3 BAND EDGES MEASUREMENT

4.3.1 LIMITS OF BAND EDGES MEASUREMENT

Below –50dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
SPECTRUM ANALYZER R&S	FSP40	100040	Jul. 17, 2010	Jul. 16, 2011

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE

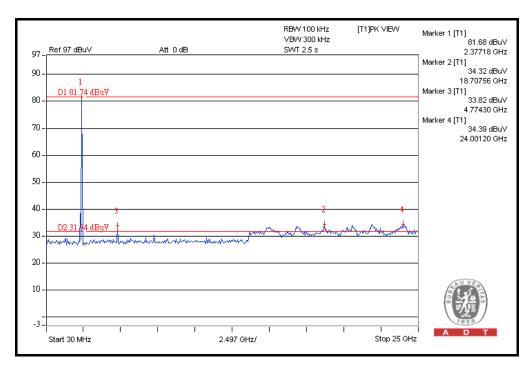
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

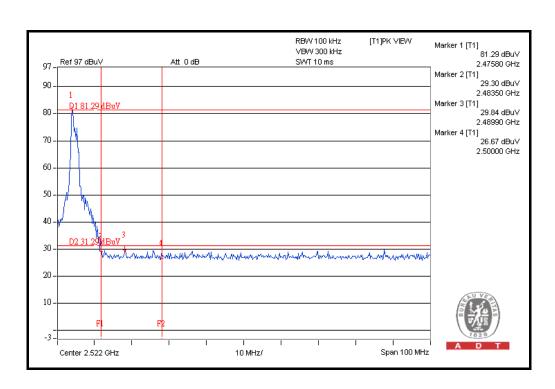
The spectrum plots are attached on the following pages.

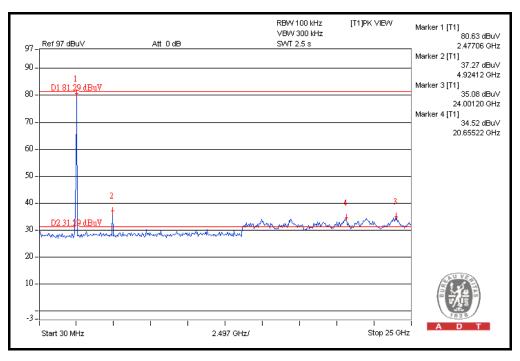
4.3.4 DEVIATION FROM TEST STANDARD

No deviation.

4.3.5 EUT OPERATING CONDITION


The software provided by client to enable the EUT under transmission condition continuously at lowest and highest channel frequencies individually.


4.3.6 TEST RESULTS


The spectrum plots are attached on the following images. D1 line indicates the highest level, and D2 line indicates the 50dB offset below D1. It shows compliance with the requirement in part 15.249 (d).

5. PHOTOGRAPHS OF THE TEST CONFIGURATION Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

<u>www.adt.com.tw/index.5.phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26051924 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END---