

FCC TEST REPORT

REPORT NO.: RF940321L01

MODEL NO.: KB22

TESTED: Mar. 21, 2005 **TESTED:** Mar. 22, 2005 **ISSUED:** Mar. 25, 2005

APPLICANT: DEXIN CORPORATION

ADDRESS: 14F-8, No 258, Lian Cheng Rd., Chung Ho City,

Taipei Hsien, Taiwan, R.O.C.

ISSUED BY: Advance Data Technology Corporation

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou

Hsiang 244, Taipei Hsien, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen,

Kwei Shan Hsiang, Taoyuan Hsien 333,

Taiwan, R.O.C.

This test report consists of 16 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1	CERTIFICATION	3
2	SUMMARY OF TEST RESULTS	4
2.1	MEASUREMENT UNCERTAINTY	4
3	GENERAL INFORMATION	5
3.1	GENERAL DESCRIPTION OF EUT	5
3.1	DESCRIPTION OF TEST MODES	6
3.1.1	CONFIGURATION OF SYSTEM UNDER TEST	6
3.1.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	7
3.2	GENERAL DESCRIPTION OF APPLIED STANDARDS	8
3.3	DESCRIPTION OF SUPPORT UNITS	
4	TEST PROCEDURE AND RESULT	9
4.1	CONDUCTED EMISSION MEASUREMENT	9
4.2	RADIATED EMISSION MEASUREMENT	9
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	9
4.2.2	TEST INSTRUMENT	
4.2.3	TEST PROCEDURE	
4.2.4	TEST SETUP	12
4.2.5	EUT OPERATING CONDITION	
4.2.6	TEST RESULTS	_
4	PHOTOGRAPHS OF THE TEST CONFIGURATION	
5	INFORMATION ON THE TESTING LABORATORIES	16

1 CERTIFICATION

PRODUCT: Cordless Slim Multimedia Keyboard

BRAND NAME: DEXIN

MODEL NO: KB22

TEST SAMPLE: ENGINEERING SAMPLE

TESTED: Mar. 22, 2005

APPLICANT: DEXIN CORPORATION

STANDARDS: FCC Part 15, Subpart C (Section 15.227),

ANSI C63.4 -2003

The above equipment has been tested by **Advance Data Technology Corporation**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY: Andrea Hsia), DATE: Mar. 25, 2005

(Andrea Hsia

TECHNICAL

ACCEPTANCE: Jay Jae , DATE: Mar. 25, 2005

Responsible for RF (Gary Chang)

APPROVED BY: ______, DATE: Mar. 25, 2005 (Cody Chang, Deputy Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C						
STANDARD PARAGRAPH	TEST TYPE	RESULT	REMARK			
15.207	Conducted Emission Test	N/A	Power supply is 3Vdc from batteries			
15.227 15.209 Radiated Emission Test		PASS	Minimum passing margin is –13.08dB at 185.51MHz			

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4:

MEASUREMENT	FREQUENCY	UNCERTAINTY		
Conducted emissions	9kHz~30MHz	2.44 dB		
	30MHz ~ 200MHz	3.55 dB		
Dadiated emissions	200MHz ~1000MHz	3.58 dB		
Radiated emissions	1GHz ~ 18GHz	1.10 dB		
	18GHz ~ 40GHz	0.91 dB		

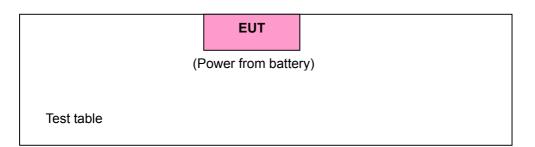
3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Cordless Slim Multimedia Keyboard
MODEL NO.	KB22
POWER SUPPLY	3Vdc from batteries
MODULATION TYPE	FSK
CARRIER FREQUENCY OF EACH CHANNEL	27.095MHz
NUMBER OF CHANNEL	1
ANTENNA TYPE	Loop antenna
DATA CABLE	NA
I/O PORTS	NA
ASSOCIATED DEVICES	NA

NOTE:

- 1. The EUT is a Keyboard.
- 2. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.1 DESCRIPTION OF TEST MODES

One channel was provided to this EUT.

Channel	Frequency
1	27.095MHz

3.1.1 CONFIGURATION OF SYSTEM UNDER TEST

3.1.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT configure	Applical	ole to	Description
mode	PLC	RE<1G	Bosonphon
-	-	Х	-

Where PLC: Power Line Conducted Emission

RE<1G RE: Radiated Emission below 1GHz

Power Line Conducted Emission Test:

Following channel(s) was (were) selected for the final test as listed below.

EUT Available Channel		Tested Channel	Modulation Type	
Keyboard	1	1	FSK	

Radiated Emission Test (Below 1 GHz):

☑Following channel(s) was (were) selected for the final test as listed below.

EUT	Available Channel	Tested Channel	Modulation Type
Keyboard	1	1	FSK

3.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a Cordless Slim Multimedia Keyboard. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.227) ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

3.3 DESCRIPTION OF SUPPORT UNITS

NA

4 TEST PROCEDURE AND RESULT

4.1 CONDUCTED EMISSION MEASUREMENT

NA

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

According to 15.227 the field strength of Emissions from intentional radiators operated under these frequencies bands shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (dBuV/m)		
26.96-27.28	Peak	Average	
	100	80	

Field strength limits are at the distance of 3 meters, Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

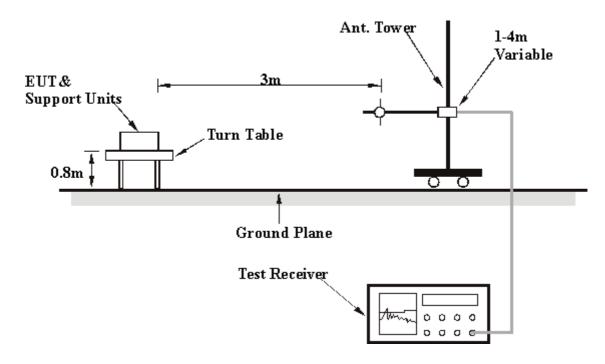
4.2.2 TEST INSTRUMENT

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL	
Test Receiver	ESI7	838496/016	Jan. 07, 2006	
ROHDE & SCHWARZ	2017	000 100/010	0411. 07 , 2000	
Spectrum Analyzer	FSP40	100041	Nov. 29, 2005	
ROHDE & SCHWARZ	1 01 10	100011	1404. 20, 2000	
BILOG Antenna	VULB9168	9168-155	Jan. 22, 2006	
SCHWARZBECK	V OLDS 100	9100-100	Jan. 22, 2000	
HORN Antenna	BBHA 9120D	9120D-404	Jan. 05, 2006	
SCHWARZBECK	DDI IA 9 120D	91200-404	Jan. 05, 2000	
HORN Antenna	BBHA 9170	BBHA 9170242	lan 23 2006	
SCHWARZBECK	BBIIA 9170	BBI IA 9170242	Jan. 23, 2006	
Preamplifier	8447D	2944A10631	Nov. 17, 2005	
Agilent	0447D	2944A10031		
Preamplifier	8449B	3008A01960	Nov. 14, 2005	
Agilent	04490	3000A01900	14, 2003	
RF signal cable	SUCOFLEX 104	219272/4	Jan. 26, 2006	
HUBER+SUHNNER	SUCUFIEX 104	219212/4	Jan. 20, 2000	
RF signal cable	SUCOFLEX 104	219275/4	Jan. 26, 2006	
HUBER+SUHNNER	SUCUFIEX 104	219215/4		
Software	ADT_Radiated_V5.14	NA	NA	
ADT.	ADT_Radiated_v5.14	INA	NA	
Antenna Tower	MA 4000	010303	NA	
inn-co GmbH	IVIA 4000	010303		
Antenna Tower Controller	CO2000	019303	NA	
inn-co GmbH	CO2000	019303	INA	
Turn Table	TT100.	TT93021704	NA	
ADT.	11100.	1193021704	NA	
Turn Table Controller	SC100.	SC93021704	NA	
ADT.	SC 100.	3093021704		
Loop Antenna	HFH2-Z2	100070	Nov. 14, 2005	

NOTE:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in HwaYa Chamber 3.
- 3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 4. The IC Site Registration No. is IC4924-4.

4.2.3 TEST PROCEDURE


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

1.	The resolution I	bandwidth	and video	bandwidth	of test	receiver/spectrur	n analyzer is	120kHz for
	Peak detection	(PK) and C	uasi-peak	detection (QP) at t	frequency below 1	GHz.	

4.2.4 TEST SETUP

For the actual test configuration, please refer to the related item in this test report - Photographs of the Test Configuration.

4.2.5 EUT OPERATING CONDITION

Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.

4.2.6 TEST RESULT

EUT	Cordless Slim Multimedia Keyboard	MODEL	KB22	
INPUT POWER	INPUT POWER 3Vdc		Below 1000 MHz	
ENVIRONMENTAL CONDITIONS	22 deg. C, 53 % RH, 991 hPa	DETECTOR FUNCTION	Peak / Average	
TESTED BY	Brad Wu			

TEST DISTANCE: 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	27.095	45.96PK	100.00	-54.04	2.00	57	32.11	13.85
2	27.095	44.79 AV	80.00	-35.21	1.00	161	30.94	13.85

REMARKS:1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.
- 5. "*"= Fundamental frequency.
- 6. Loop Antenna was used for the frequency below 30MHz.

EUT	Cordless Slim Multimedia Keyboard	MODEL	KB22	
INPUT POWER	3Vdc	FREQUENCY RANGE	Below 1000 MHz	
ENVIRONMENTAL CONDITIONS	22 deg. C, 53 % RH, 991 hPa	DETECTOR FUNCTION	Quasi-Peak	
TESTED BY	Brad Wu			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
	Freq.	Emission	Limit (dBuV/m)	Margin (dB)	Antenna	Table	Raw	Correction	
No.	•	Level			Height	Angle	Value	Factor	
(MHz)	(IVII-12)	(dBuV/m)			(m)	(Degree)	(dBuV)	(dB/m)	
1	121.36	22.30 QP	43.50	-21.20	2.50 H	313	9.33	12.97	
2	185.51	30.42 QP	43.50	-13.08	1.50 H	214	17.97	12.45	
3	245.77	23.49 QP	46.00	-22.51	1.00 H	148	10.44	13.05	
4	879.48	25.77 QP	46.00	-20.23	1.00 H	115	1.33	24.44	
5	916.41	24.27 QP	46.00	-21.73	2.00 H	10	-0.72	24.98	
6	953.35	25.79 QP	46.00	-20.21	2.50 H	283	0.45	25.34	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M								
No. Freq. (MHz)	Erog	Emission	Limit	Margin	Antenna	Table	Raw	Correction	
	Level	(dBuV/m)	-	Height	Angle	Value	Factor		
	(dBuV/m)			(m)	(Degree)	(dBuV)	(dB/m)		
1	31.94	21.00 QP	40.00	-19.00	1.00 V	271	7.00	14.01	
2	181.62	25.00 QP	43.50	-18.50	1.50 V	352	12.23	12.77	
3	780.34	24.89 QP	46.00	-21.11	1.00 V	232	1.51	23.37	
4	852.26	24.87 QP	46.00	-21.13	1.50 V	247	0.92	23.95	
5	904.75	28.52 QP	46.00	-17.48	3.00 V	10	3.66	24.86	
6	953.35	27.36 QP	46.00	-18.64	1.50 V	91	2.02	25.34	

REMARKS:1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

4 PHOTOGRAPHS OF THE TEST CONFIGURATION

RADIATED EMISSION TEST

5 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025

USA FCC, NVLAP, UL, A2LA

Germany TUV Rheinland

Japan VCCI Norway NEMKO

Canada INDUSTRY CAMar. 21, 2005DA, CSA

R.O.C. CNLA, BSMI, DGT

Netherlands Telefication

Singapore PSB , GOST-ASIA(MOU)

Russia CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Tel: 886-3-5935343 Fax: 886-2-26052943 Fax: 886-3-5935342

 Hwa Ya EMC/RF/Safety/Telecom Lab:
 Linko RF Lab.

 Tel: 886-3-3183232
 Tel: 886-3-3270910

 Fax: 886-3-3185050
 Fax: 886-3-3270892

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.