

Date: 7.SEP.2004 09:43:15

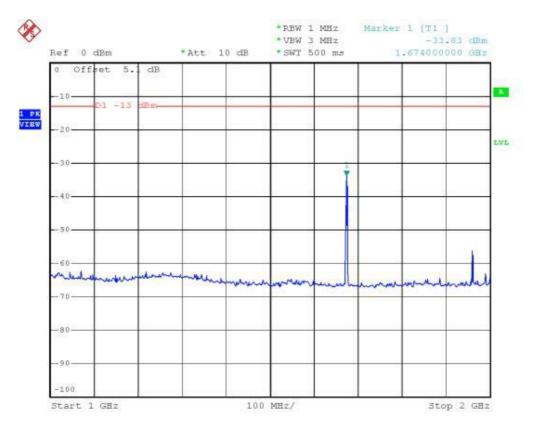
Power: HIGH Modulation: PCS 1900 99% BANDWIDTH

SPORTON International Inc. TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

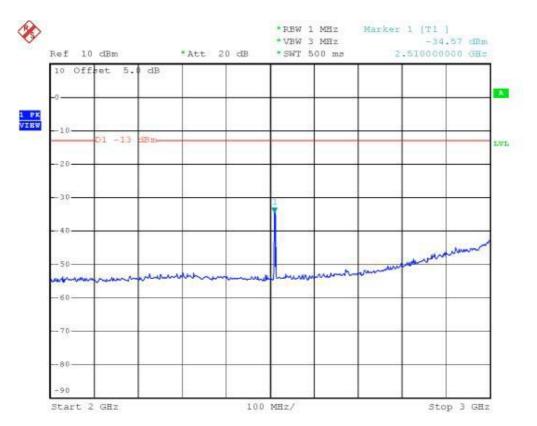
Name of Test: Emission Masks (Occupied Bandwidth) State 2:High Power

Date: 7.SEP.2004 09:41:55

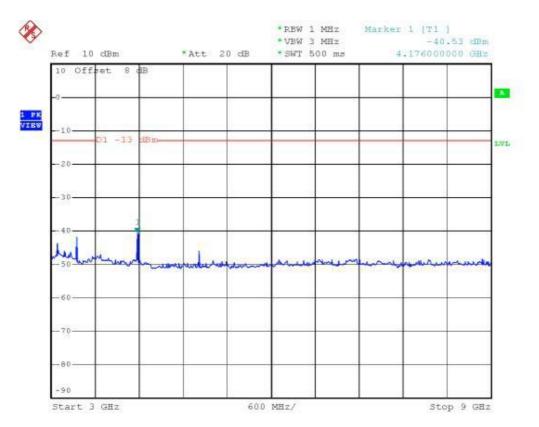
Power: HIGH Modulation: PCS 1900 UPPER BAND EDGE


SPORTON International Inc. TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

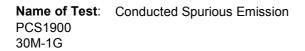
Name of Test: Conducted Spurious Emission GSM850 30M-1G

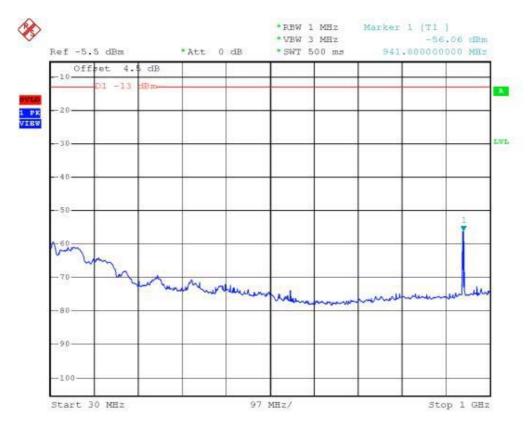

Date: 7.SEP.2004 09:06:32

Name of Test: Conducted Spurious Emission GSM850 1G-2G

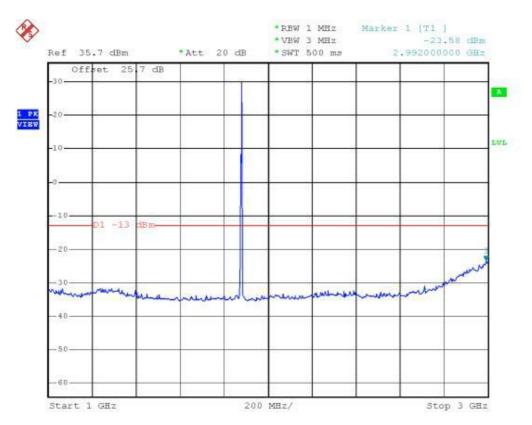

Date: 7.SEP.2004 09:03:45

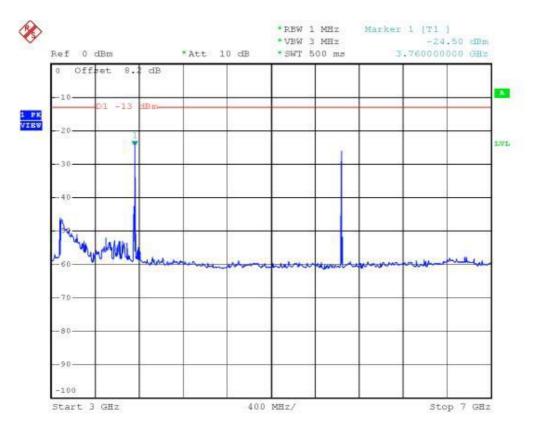
Name of Test: Conducted Spurious Emission GSM850 2G-3G



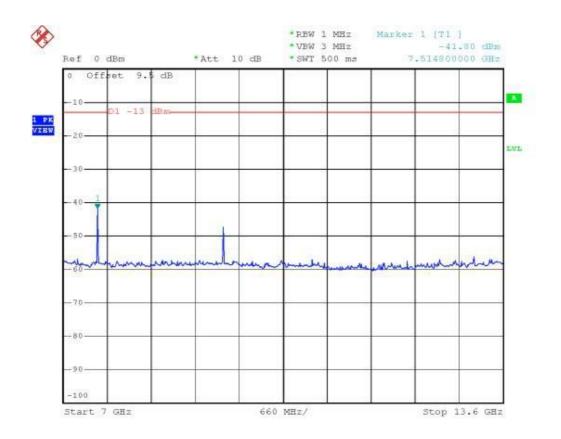

Date: 7.SEP.2004 09:10:15

Name of Test: Conducted Spurious Emission GSM850 3G-9G

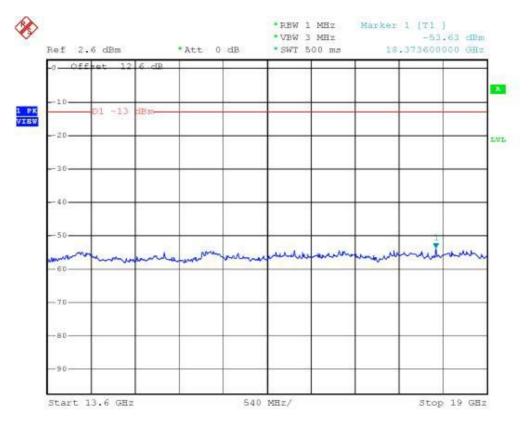

Date: 7.SEP.2004 09:12:13


Date: 7.SEP.2004 08:57:15

Name of Test: Conducted Spurious Emission PCS1900 1G-3G


Date: 7.SEP.2004 08:46:12

Name of Test: Conducted Spurious Emission PCS1900 3G-7G


Date: 7.SEP.2004 08:52:50

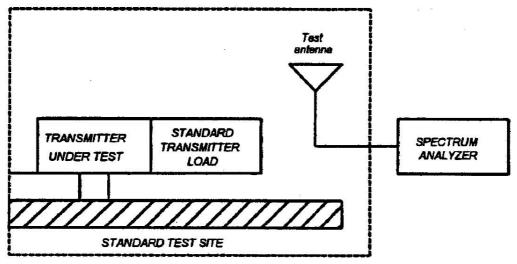
Name of Test: Conducted Spurious Emission PCS1900 7G-13.6G

Date: 7.SEP.2004 08:54:43

Name of Test: Conducted Spurious Emission PCS1900 13.6G-19G

Date: 7.SEP.2004 08:58:42

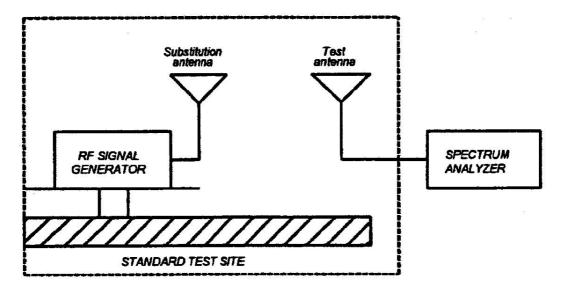
SCWI375U 42 of 66 Sep. 13, 2004


Name of Test: Field Strength of Spurious Radiation

Specification: 47 CFR 2.1053(a)

Guide: ANSI/TIA/EIA-603-1992/2001, Paragraph 1.2.12 and Table 16

Measurement Procedure


- 1.2.12.1 Definition: Radiated spurious emissions are emissions from the equipment when transmitting into a non-radiating load on a frequency or frequencies which are outside an occupied band sufficient to ensure transmission of information of required quality for the class of communications desired.
- 1.2.12.2 Method of Measurement
- A) Connect the equipment as illustrated
- B) Adjust the spectrum analyzer for the following settings:
 - 1) Resolution Bandwidth 100 kHz (<1 GHZ), 1 MHZ (> 1GHz).
 - 2) Video Bandwidth ≥ 3 times Resolution Bandwidth
 - 3) Sweep Speed ≤2000 Hz/second
 - 4) Detector Mode = Mean or Average Power
- C) Place the transmitter to be tested on the turntable in the standard test site. If the antenna is detatchable, The transmitter is transmitting into a non-radiating load which is placed on the turntable. The RF cable to this load should be of minimum length.

SPORTON International Inc.	FCC ID
TEL: 886-2-2696-2468	Page No.
FAX: 886-2-2696-2255	Issued Date

Name of Test: Field Strength of Spurious Radiation (Cont.)

- D) For each spurious measurement the test antenna should cover the measured frequency. Measurements shall be made from the lowest radio frequency generated in the equipment to the tenth harmonic of the carrier, except for the region close to the carrier equal to ± the test bandwidth (see section 1.3.4.4).
- E) For each spurious frequency, raise and lower the test antenna from 1 m to 4 m to obtain a maximum reading on the spectrum analyzer with the test antenna at horizontal polarity. Repeat this procedure to obtain the highest possible reading. Record this maximum reading.
- F) Repeat step E) for each spurious frequency with the test antenna polarized vertically.
- G) Reconnect the equipment as illustrated.
- H) Keep the spectrum analyzer adjusted as in step B).
- Remove the transmitter and replace it with a substitution antenna. The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.

SPORTON International Inc. TEL : 886-2-2696-2468		SCWI375U 43 of 66
FAX : 886-2-2696-2255	Issued Date	Sep. 13, 2004

Name of Test: Field Strength of Spurious Radiation (Cont.)

- J) Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a non-radiating cable. With the antennas at both ends horizontally polarized and with the signal generator tuned to a particular spurious frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- K) Repeat step J) with both antennas vertically polarized for each spurious frequency.
- L) Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps J) and K) by the power loss in the cable between the generator and the antenna and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna.

NOTE: It is permissible that other antennas provided can be referenced to a dipole.

Tim

Tested By:

Tim Kao

SPORTON International Inc. TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

SCWI375U FCC ID Page No. 44 of 66 Issued Date Sep. 13, 2004

Report No. : F481401

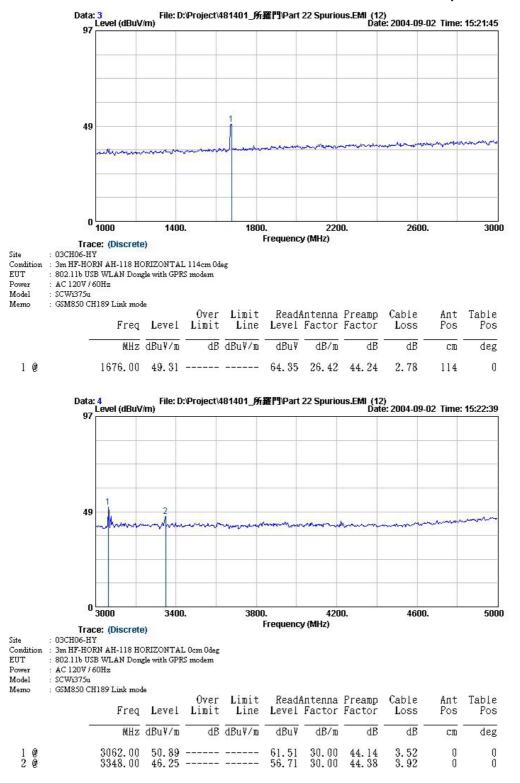
Name of Test: Field Strength of Spurious Radiation

GSM 850 (Channel 189)

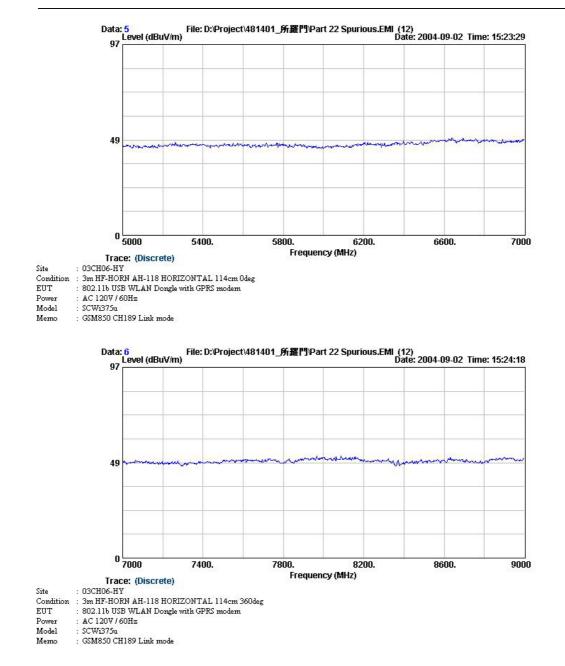
Freq MHz	Pol	Substitution Antenna Input Power (dBm)	Substitution Antenna Gain (dBd)	Et	Es (dBuV/m)	Et - Es (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
295.41	Н	-1.44	-0.48	35.44	93.32	-57.88	-59.80	-13.0	-46.80
940.50	Н	-2.63	-1.38	45.49	93.04	-47.55	-51.56	-13.0	-38.56
1676.00	Н	-3.60	4.42	49.31	102.05	-52.74	-51.92	-13.0	-38.92
3062.00	Н	-5.03	5.26	50.89	99.71	-48.82	-48.59	-13.0	-35.59
3348.00	Н	-4.91	5.32	46.25	99.63	-53.38	-52.97	-13.0	-39.97
101.82	V	-1.08	0.12	32.78	92.61	-59.83	-60.79	-13.0	-47.79
912.50	V	-2.68	-1.22	40.98	92.93	-51.95	-55.84	-13.0	-42.84
1670.00	V	-3.59	4.42	49.90	102.06	-52.16	-51.34	-13.0	-38.34
3342.00	V	-4.91	5.32	49.39	99.63	-50.24	-49.84	-13.0	-36.84
6692.00	V	-7.57	6.90	53.32	97.28	-43.96	-44.64	-13.0	-31.64

PCS 1900 (Channel 661)

FC3 1900	Cinar								
Freq MHz	Pol	Substitution Antenna Input Power (dBm)	Substitution Antenna Gain (dBi)	Εĭ	Es (dBuV/m)	Et - Es (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
141.78	Н	-1.08	1.26	55.56	91.94	-36.38	-36.20	-13.0	-23.20
250.05	Н	-1.45	1.77	33.36	93.69	-60.33	-60.01	-13.0	-47.01
295.41	Н	-1.44	1.67	35.44	93.32	-57.88	-57.65	-13.0	-44.65
318.90	Н	-1.56	1.61	52.83	93.38	-40.55	-40.49	-13.0	-27.49
329.40	Н	-1.58	1.58	52.32	93.50	-41.18	-41.18	-13.0	-28.18
940.50	Н	-2.63	0.77	44.49	93.04	-48.55	-50.41	-13.0	-37.41
1804.00	Н	-3.71	6.62	40.37	101.79	-61.42	-58.51	-13.0	-45.51
3758.00	Н	-5.25	7.45	48.87	99.07	-50.20	-48.00	-13.0	-35.00
				-					-
54.84	V	-0.77	0.33	32.59	82.04	-49.45	-49.89	-13.0	-36.89
101.82	V	-1.08	2.27	32.78	92.61	-59.83	-58.64	-13.0	-45.64
141.78	V	-1.08	1.26	53.24	91.94	-38.70	-38.52	-13.0	-25.52
321.00	V	-1.56	1.61	40.66	93.40	-52.74	-52.70	-13.0	-39.70
634.60	V	-2.12	1.28	37.34	94.20	-56.86	-57.70	-13.0	-44.70
912.50	V	-2.68	0.93	39.98	92.93	-52.95	-54.69	-13.0	-41.69
2966.00	V	-5.03	7.41	41.26	99.60	-58.34	-55.97	-13.0	-42.97
3758.00	V	-5.25	7.45	47.18	99.07	-51.89	-49.69	-13.0	-36.69
5638.00	V	-6.67	8.44	50.60	98.79	-48.19	-46.42	-13.0	-33.42

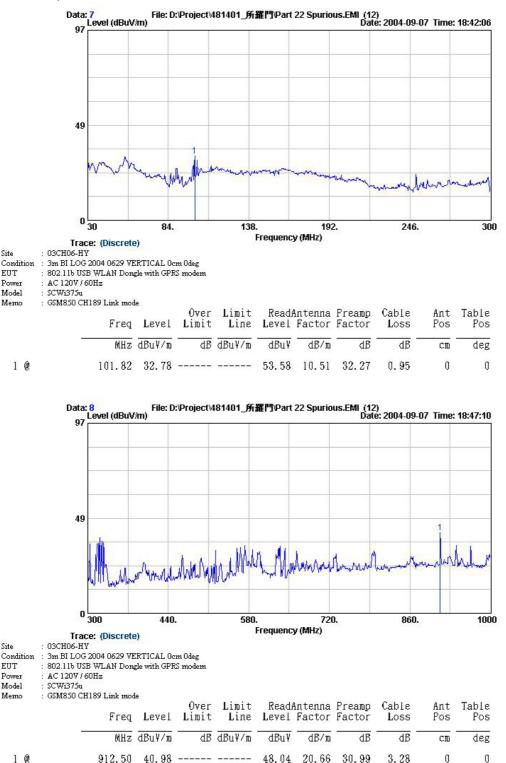

SPORTON International Inc.
TEL: 886-2-2696-2468
FAX : 886-2-2696-2255

Report No. : F481401

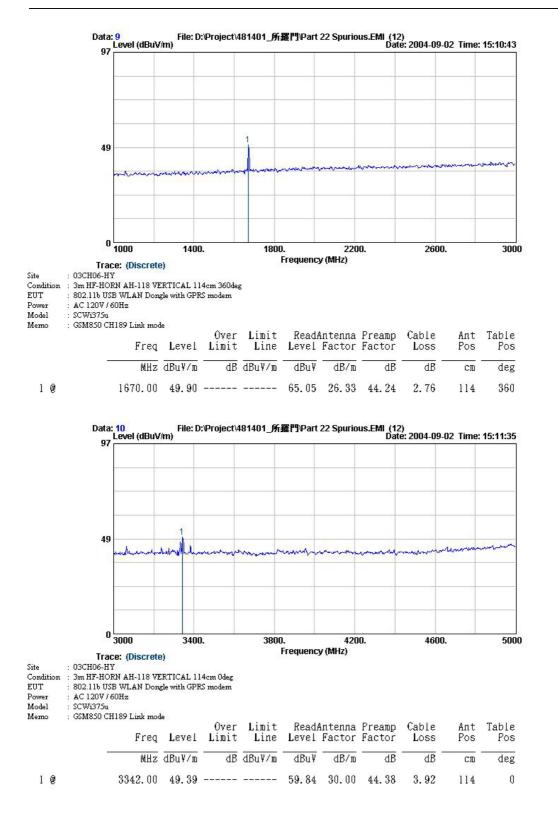


SPORTON International Inc.	FCC ID	SCWI375U
TEL: 886-2-2696-2468	Page No.	46 of 66
FAX: 886-2-2696-2255	Issued Date	Sep. 13, 2004

Report No. : F481401

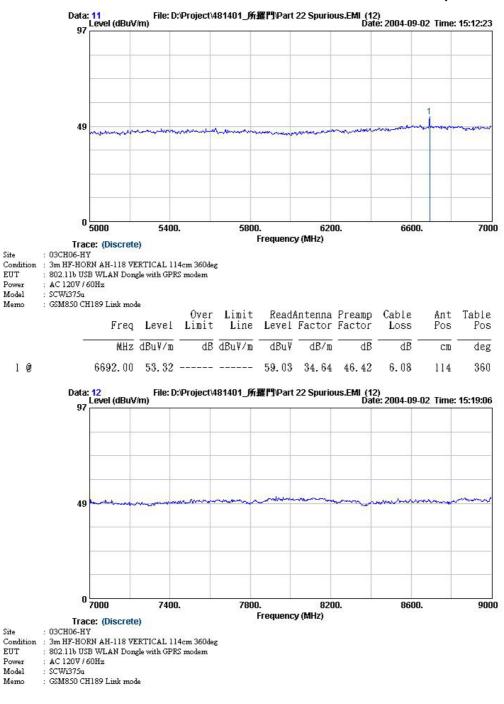


SPORTON International Inc.	FCC ID	SCWI375U
TEL: 886-2-2696-2468	Page No.	47 of 66
FAX: 886-2-2696-2255	Issued Date	Sep. 13, 2004



SPORTON International Inc. TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

SPORTON International Inc.	FCC ID	SCWI375U
TEL: 886-2-2696-2468	Page No.	49 of 66
FAX: 886-2-2696-2255	Issued Date	Sep. 13, 2004

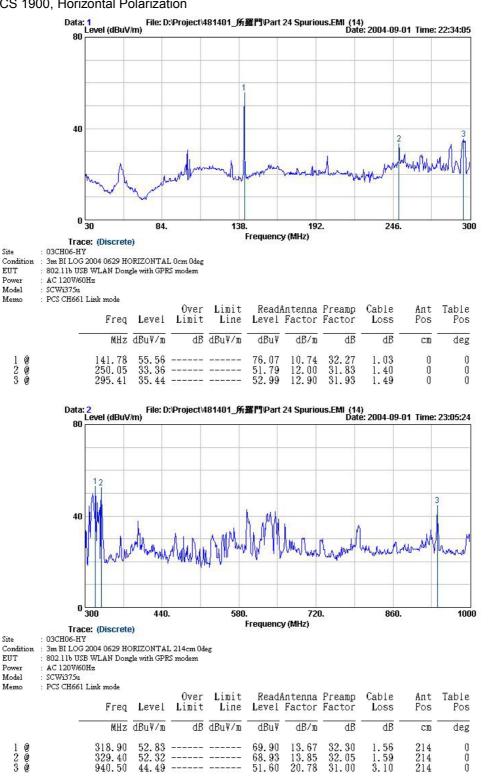


 SPORTON International Inc.
 FCC ID
 SCWI375U

 TEL: 886-2-2696-2468
 Page No.
 50 of 66

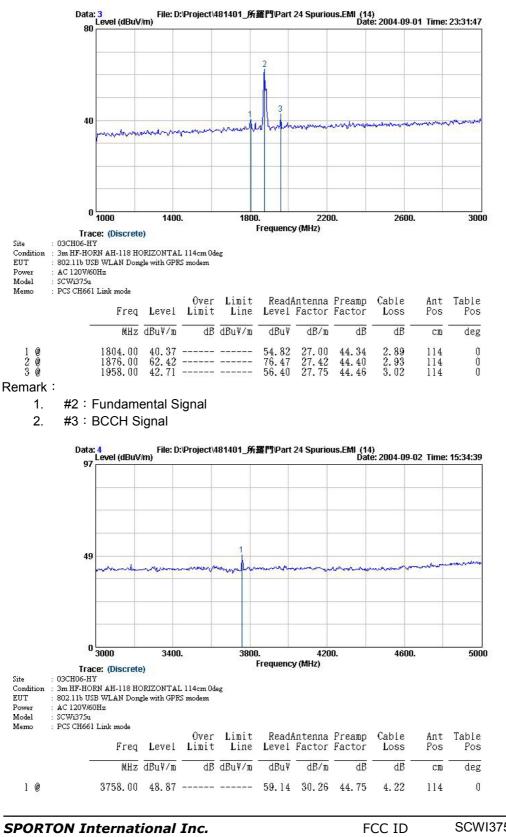
 FAX: 886-2-2696-2255
 Issued Date
 Sep. 13, 2004

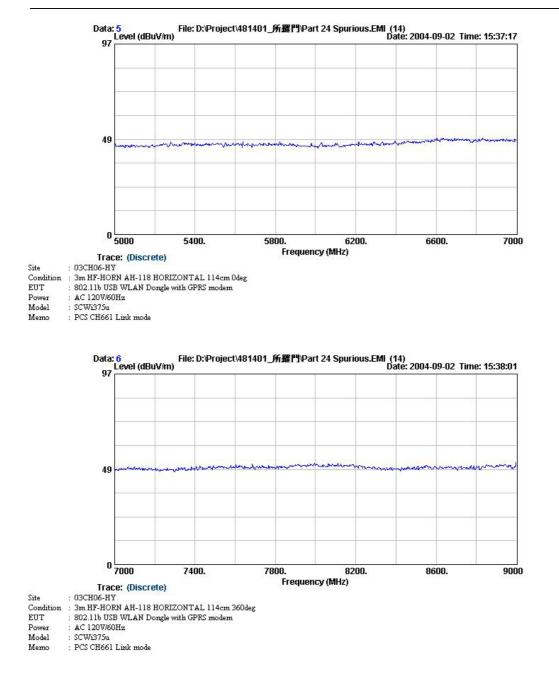
Report No. : F481401


Mark:

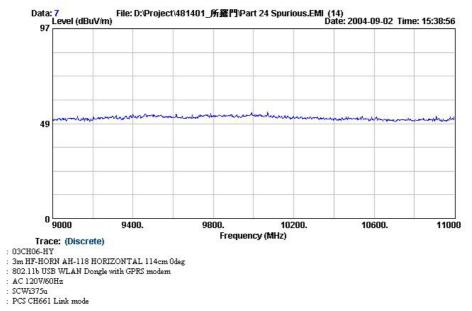
Frequency from 9GHz to 19GHz, the emission emitted by the EUT is too low to be measured.

SPORTON International Inc.	
TEL : 886-2-2696-2468	
FAX: 886-2-2696-2255	

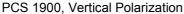

FCC ID	SCWI375U
Page No.	51 of 66
Issued Date	Sep. 13, 2004

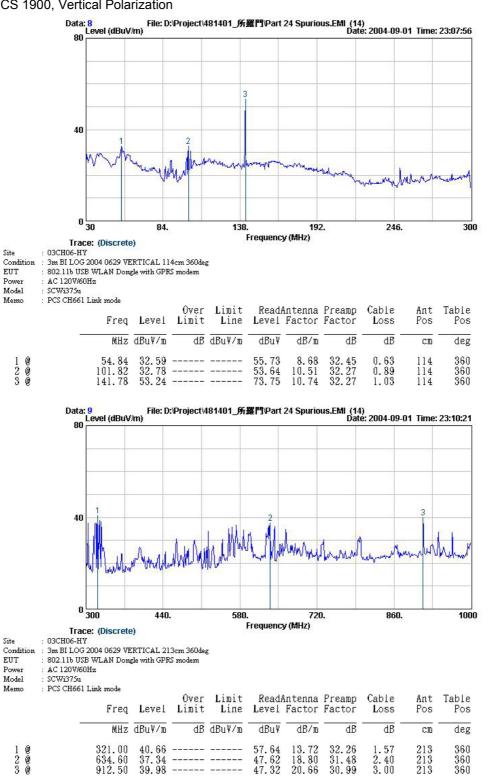


SPORTON International Inc. TEL: 886-2-2696-2468 FAX: 886-2-2696-2255


SCWI375U FCC ID 52 of 66 Page No. Issued Date Sep. 13, 2004

TEL : 886-2-2696-2468 FAX : 886-2-2696-2255

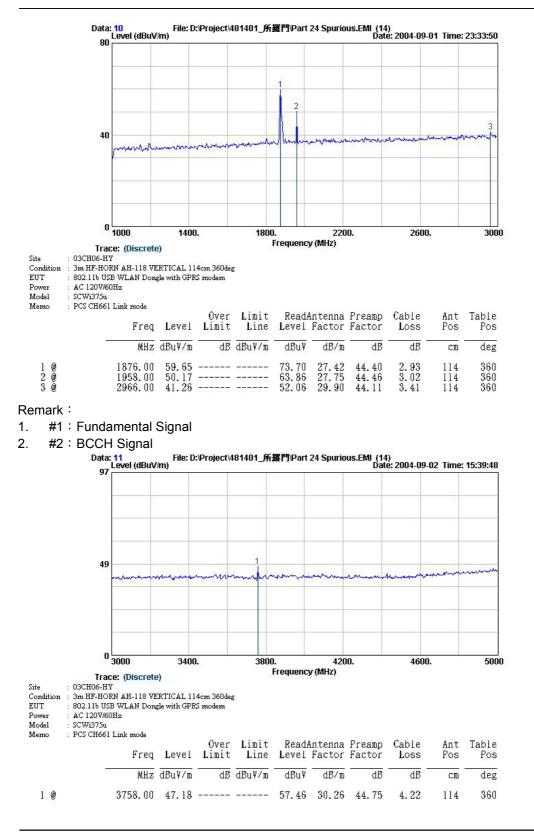

SPORTON International Inc. TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

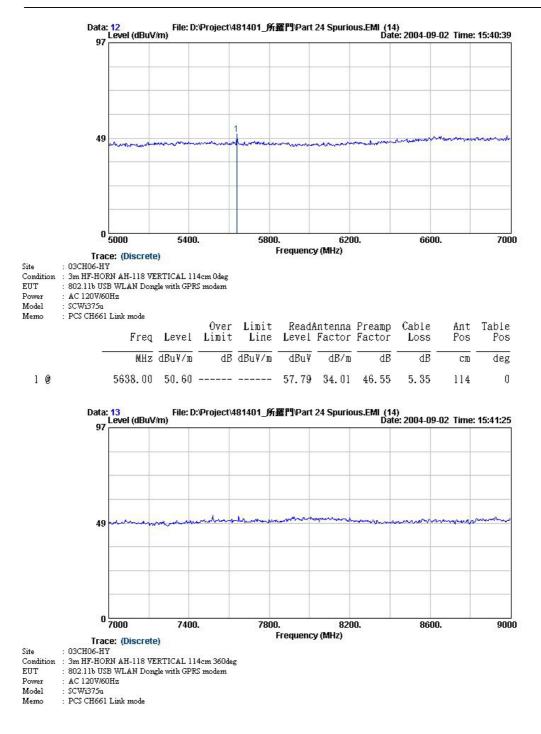


Site Condition EUT Power Model

Memo

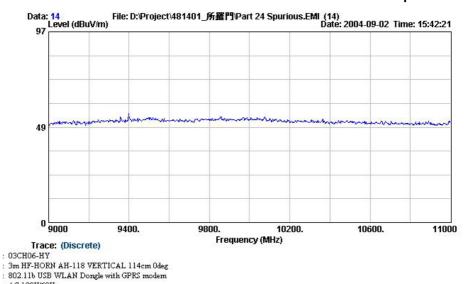
SPORTON International Inc.
TEL: 886-2-2696-2468
FAX: 886-2-2696-2255




SPORTON International Inc. TEL: 886-2-2696-2468

FAX: 886-2-2696-2255

SCWI375U FCC ID 56 of 66 Page No. Issued Date Sep. 13, 2004



SPORTON International Inc.	
TEL: 886-2-2696-2468	
FAX : 886-2-2696-2255	

SPORTON International Inc.					
TEL: 886-2-2696-2468					
FAX: 886-2-2696-2255					

Report No. : F481401

Condition EUT

Power Model AC 120V/60Hz

: SCWi375u : PCS CH661 Link mode Memo

\triangleright Mark:

Site

Frequency from 11GHz to 19GHz, the emission emitted by the EUT is too low to be measured.

Name of Test: Frequency Stability (Temperature Variation)

Specification: 47 CFR 2.1055(a)(1)

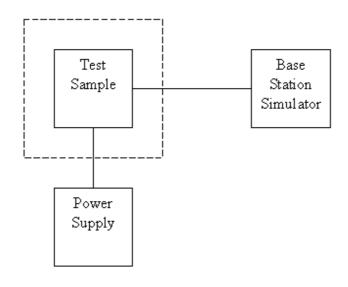
Test Conditions: As Indicated

Test Equipment: As per previous page

Measurement Procedure

- 1. The EUT and test equipment were set up as shown on the following page.
- 2. With all power removed, the temperature was decreased to -30°C and permitted to stabilize for three hours. Power was applied and the maximum change in frequency was noted within one minute.
- 3. With power OFF, the temperature was raised in 10°C steps. The sample was permitted to stabilize at each step for at least one-half hour. Power was applied and the maximum frequency change was noted within one minute.
- 4. The temperature tests were performed for the worst case.
- 5. Measurement Results: Attached

Tim Kao


Tested By:

Tim Kao

SPORTON International Inc. TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 FCC IDSCWI375UPage No.60 of 66Issued DateSep. 13, 2004

Transmitter Test Set-Up

Frequency Stability:Temperature VariationFrequency Stability:Voltage Variation

Asset	Model Name	S/N
Temperature & Humidity Controller	P-9000	612
AC/DC Power Source	HPA-500W	HPA0100024
Base Station Simulator	CMU200	102278
Base Station Simulator	E5515C	GB43460754

SPORTON International Inc.				
TEL: 886-2-2696-2468				
FAX : 886-2-2696-2255				

Name of Test: Frequency Stability (Temperature Variation)

GSM 850 (Channel 189)

Temperature(°C)	Change, Hz	Change, ppm
-30	-21.2	-0.02
-20	-25.7	-0.03
-10	-24.6	-0.03
0	-31.1	-0.04
10	-33.4	-0.04
20	-34.1	-0.04
30	-31.8	-0.04
40	-37.5	-0.04
50	-42.5	-0.05

PCS 1900 (Channel 611)

Temperature(°C)	Change, Hz	Change, ppm
-30	-241	-0.13
-20	-124	-0.07
-10	-89.9	-0.05
0	-61.6	-0.03
10	-48.7	-0.03
20	-45.8	-0.02
30	-51.1	-0.03
40	-57.4	-0.03
50	-61.8	-0.03

Name of Test: Frequency Stability (Voltage Variation)

Specification: 47 CFR 2.1055 (b)(1)

Test Equipment: As per previous page

Measurement Procedure

- 1. The EUT was placed in a temperature chamber at 25±5°C and connected as for "Frequency Stability Temperature Variation" test.
- 2. The power supply voltage to the EUT was varied from 85% to 115% of the nominal value measured at the input to the EUT.
- 3. The variation in frequency was measured for the worst case.

Results: Frequency Stability (Voltage Variation)

GSM 850 (Channel 189)

Nominal Value (Voltage) = 4.25V

Voltage(Volt)	Change, Hz	Change, ppm
5	-62.1	-0.07
BEP	-243	-0.29
5.75	-87.4	-0.10

PCS 1900 (Channel 611)

Nominal Value (Voltage) = 4.25V

Voltage(Volt)	Change, Hz	Change, ppm
5	-58.2	-0.03
BEP	-98.4	-0.05
5.75	-61.8	-0.03

Limit: Must remain within authorized frequency block.

Tim Kao

Tested By:

FCC IDSCWI375UPage No.63 of 66Issued DateSep. 13, 2004

SPORTON International Inc. TEL: 886-2-2696-2468 FAX: 886-2-2696-2255

Report No. : F481401

Antenna Factor & Cable Loss

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)	Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)
30	15.35	4.50	1000	24.10	3.92
35	13.63	1.13	2000	27.40	5.66
40	11.11	1.18	3000	30.00	7.20
45	10.59	1.26	4000	32.60	9.36
50	6.47	1.31	5000	33.40	9.16
55	5.83	1.34	6000	34.20	10.70
60	5.18	1.43	7000	35.30	12.16
65	4.81	1.52	8000	36.90	13.12
70	4.43	1.56	9000	38.10	13.81
75	5.10	1.57	10000	39.00	14.83
80	5.91	1.60	11000	38.60	15.83
85	7.33	1.66	12000	39.50	17.11
90	8.74	1.75	13000	39.30	17.62
95	9.05	1.76	14000	41.60	18.37
100	9.36	1.83	15000	40.60	19.10
110	9.65	1.86	16000	37.20	19.72
120	9.97	1.92	17000	40.20	21.98
130	10.51	2.00	18000	48.90	21.22
140	10.32	2.11	19000	37.60	23.90
150	9.42	2.18	20000	37.30	24.07
160	8.09	2.22	21000	37.00	25.49
170	7.43	2.26	22000	38.00	24.92
180	7.60	2.31	23000	38.70	25.60
190	7.43	2.37	24000	38.60	25.70
200	7.26	2.43	25000	24.10	3.92
220	9.11	2.56	14000	27.40	5.66
240	10.88	2.70	15000	30.00	7.20
260	11.75	2.83	16000	32.60	9.36
280	11.55	2.93	17000	33.40	9.16
300	11.36	3.03	18000	34.20	10.70
320	12.03	3.13	19000	35.30	12.16
340	12.69	3.23	20000	36.90	13.12
360	13.33	3.32	21000	38.10	13.81
380	14.00	3.41	22000	39.00	14.83
400	14.63	3.48	23000	38.60	15.83
450	15.33	3.71	24000	39.50	17.11
500 550	16.03	3.85	25000	39.30	17.62
550 600	16.65 17.29	4.03 4.32			
650					
	17.64	4.51			
700 750	18.00 18.39	4.54 4.90			
800	18.79	4.90 5.04			
850	19.10	5.04 5.04			
900	19.10	5.20			
950	19.42	5.20			
1000	19.58	5.28 5.58			
1000	19.70	0.00			

SPORTON International Inc.				
TEL: 886-2-2696-2468				
FAX : 886-2-2696-2255				

Report No. : F481401

List of Measuring Equipments

Instrument	Manufacturer	Model No.	Serial No.	Characteristics Calibration Date		Due Date	Remark
Spectrum analyzer	R&S	FSP40	100057	9KHz-40GHz	Feb. 26, 2004	Feb. 26, 2005	Radiation (03CH06-HY)
Controller	СТ	SC100	N/A	N/A	N/A	N/A	Radiation (03CH06-HY)
Bilog Antenna	SCHAFFNER	CBL6112B	2885	30MHz -2GHz	Dec. 18, 2003	Dec. 18, 2004	Radiation (03CH06-HY)
Horn Antenna	Com-Power	AH118	071025	1G-18G	Feb. 11, 2004	Feb. 11, 2005	Radiation (03CH06-HY)
SHF-EHF Horn	SCHWARZBE CK	BBHA 9170	9170-249	14G - 40G	Jun. 22, 2004	Jun. 22, 2005	Radiation (03CH06-HY)
PreAmplifier	Com-Power	PA-103	161055	1MHz - 1000MHz	Apr. 26, 2004	Apr. 26, 2005	Radiation (03CH06-HY)
HF Amplifier	MITEQ	AFS44	973248	0.1G - 26.5G	May. 20, 2004	May. 20, 2005	Radiation (03CH06-HY)
Amplifier	MITEQ	AMF-6F	997165	26G - 40G	Jun. 24, 2004	Jun. 24, 2005	Radiation (03CH06-HY)
Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	N/A	Radiation (03CH06-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	N/A	Radiation (03CH06-HY)
Wireless Communications Test Set	Agilent	8960	E5515C	Qual-band	N/A	N/A	Radiation (03CH06-HY)

Uncertainty of Test Site

Contribution	Uncertainty of x_i		
	dB	Probability Distribution	$u(x_i)$
Receiver reading	0.41	Normal(k=2)	0.21
Antenna factor calibration	0.83	Normal(k=2)	0.42
Cable loss calibration	0.25	Normal(k=2)	0.13
Pre Amplifier Gain calibration	0.27	Normal(k=2)	0.14
RCV/SPA specification	2.50	Rectangular	0.72
Antenna Factor Interpolation for Frequency	1.00	Rectangular	0.29
Site imperfection	1.43	Rectangular	0.83
Mismatch Receiver VSWR Γ1= 0.20 Antenna VSWR Γ2= 0.23 Uncertainty=20log(1-Γ1*Γ2)	+0.39/-0.41	U-shaped	0.28
combined standard uncertainty Uc(y)		1.27	
Measuring uncertainty for a level of confidence of 95% U=2Uc(y)		2.54	

Uncertainty of Radiated Emission Measurement (30MHz ~ 1000MHz)

Uncertainty of Radiated Emission Measurement (1GHz ~ 40GHz)

Contribution	$\begin{array}{c c} & & x_i \\ \hline & & \text{Probability} \\ \text{dB} & & \text{Distribution} \end{array}$		$u(x_i)$	Ci	$Ci * u(x_i)$
	10.10		0.40		
Receiver reading	±0.10	Normal(k=1)	0.10	1	0.10
Antenna factor calibration	±1.70	Normal(k=2)	0.85	1	0.85
Cable loss calibration	±0.50	Normal(k=2)	0.25	1	0.25
Receiver Correction	±2.00	Rectangular	1.15	1	1.15
Antenna Factor Directional	±1.50	Rectangular	0.87	1	0.87
Site imperfection	±2.80	Triangular	1.14	1	1.14
Mismatch Receiver VSWR Γ1= 0.197 Antenna VSWR Γ2= 0.194 Uncertainty=20log(1-Γ1*Γ2*Γ3)	+0.34/-0.35	U-shaped	0.244	1	0.244
Combined standard uncertainty Uc(y)	y) 2.36				
Measuring uncertainty for a level of confidence of 95% U=2Ue(y)	of 4.72				

$$\begin{split} U = & \sqrt{\{(1/2)^2 + (0.3/2)^2 + (2^2 + 0.5^2 + 2^2 + 0.25^2 + 2^2)/3 + (0.54)^2/2\}} = 2.2 & \text{for 10m test distance} \\ U = & \sqrt{\{(1/2)^2 + (0.3/2)^2 + (2^2 + 3^2 + 2^2 + 0.25^2 + 2^2)/3 + (0.54)^2/2\}} = 2.7 & \text{for 3m test distance} \end{split}$$

END OF TEST REPORT

SPORTON International Inc.
TEL: 886-2-2696-2468
FAX: 886-2-2696-2255