

ENGINEERING TEST REPORT

ON: THE ELECTRA ENTERPRISES "TC900 VIDEO TRANSMITTER"

FCC ID: NIMTC900

IN ACCORDANCE WITH: FCC PART 15, SUBPART C, 15.249 FOR 900 MHz TRANSMITTERS

PROJECT NO.: 8R00451

TESTED FOR:

ELECTRA ENTERPRISES 390 EDGELEY BLVD., UNIT 21 CONCORD, ONTARIO L4K 3Z6

TESTED BY:

KTL OTTAWA INC. 3325 RIVER ROAD, R.R. 5 OTTAWA, ONTARIO K1V 1H2

<u>ĝa</u>lvk

NVLAP LAB CODE: 100351-0

JUNE 1998

This document contains 21 pages including this one.

KTL Ottawa Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. KTL Ottawa Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report applies only to the items tested.

Table Of Contents

Section 1. Summary of Test Results General Summary of Test Data

Summary of Test Data

Section 2. General Equipment Specification

Specifications Modifications Theory of Operation System Diagram

Section 3. Powerline Conducted Emissions

Test Results Graphs Photographs

Section 4. Radiated Emissions

Test Results Table Photographs

Section 5. Test Equipment List

Annex A. Test Diagrams

Conducted Emissions Radiated Prescan Test Site for Radiated Emissions

Section 1.	Summary Of Test Results
Manufacturer:	Electra Enterprises
Model No.:	TC900
Serial No.:	None
General:	All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15.249. All tests were conducted using measurement procedure ANSI C63.4-1992. Radiated Emissions were made on an open area test site.

\boxtimes	New Submission		Production Unit
	Class II Permissive Change	\square	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. See "Summary of Test Data".

NVLAP LAB CODE: 100351-0

TESTED BY:

DATE:

Tom Tidwell, Senior Technologist

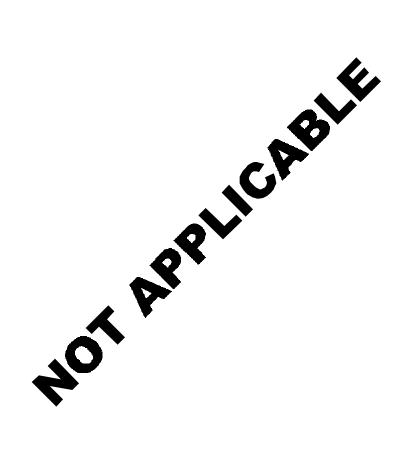
APPROVED BY: _____ DATE: _____

Summary Of Test Data

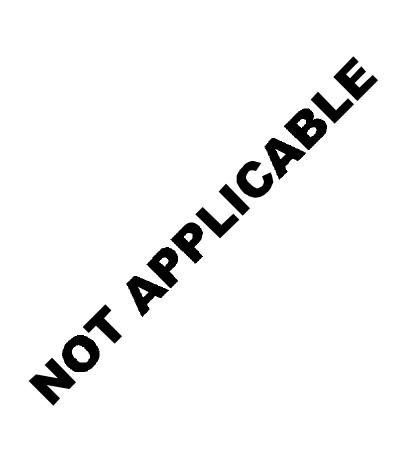
NAME OF TEST	PARA. NO.	RESULT
Conducted Emissions	15.207	Complies
Radiated Emissions	15.249	Complies

Footnotes For N/A's:

Test Conditions:

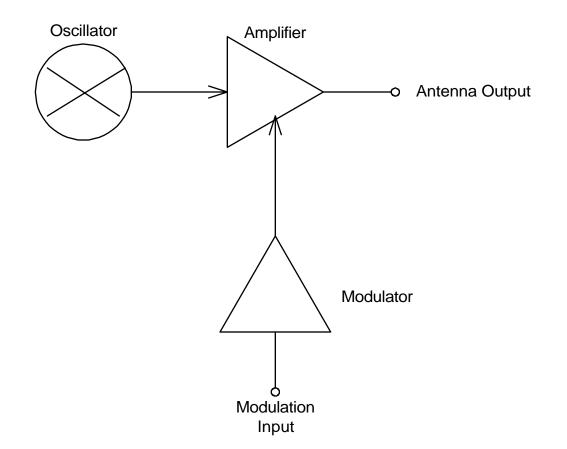

Temperature:27 °CHumidity:25 %

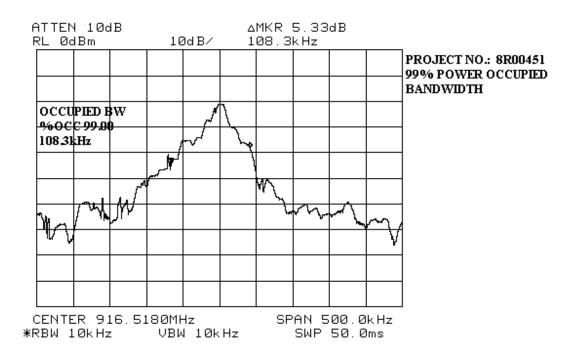
Section 2. General Equipment Specification

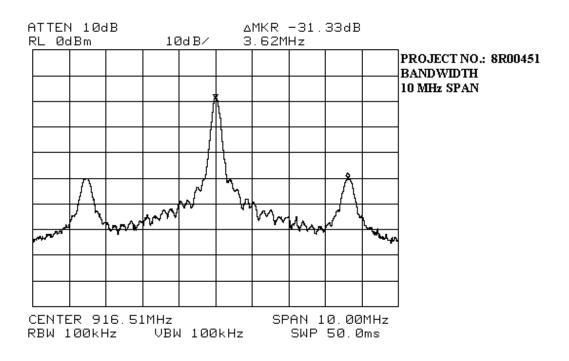

Equipment:	Video Transmitter
Model Number:	TC900
Serial Number:	None
Frequency Range:	916.5 MHz (Fixed)
Operating Frequency(ies) of Sample:	Not Applicable
Tunable Bands:	Not Applicable
Number of Channels:	1
Channel Spacing:	Not Applicable
Emission Designator:	108KC3F
Crystal Frequencies:	Not Applicable
User Frequency Adjustment:	Not Applicable
Integral Antenna	Yes No

The antenna connector is a standard TNC connector. The manufacturer will use permanent thread lock to install the antenna. The metal enclosure is secured with tamper-proof screws.

Description of Modification for Class II Permissive Change


Modifications Made During Testing




Theory of Operation

The E.U.T. is a video only transmitter operating at 916.5 MHz. The transmitter can be used in any application to wirelessly transmit analogue video information. Modulation input would typically be a 1 V pk/pk NTSC video signal from a camera.

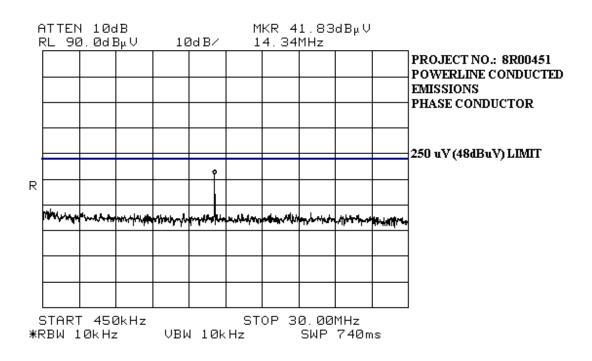
System Diagram

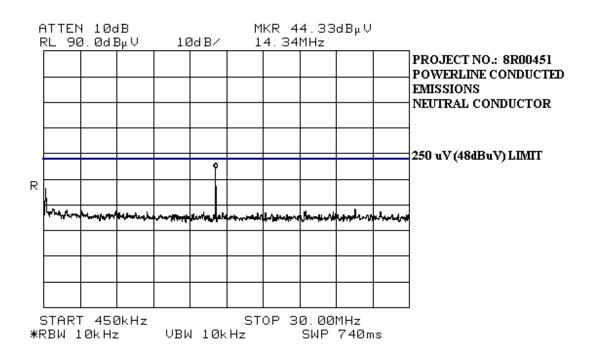
Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions	PARA. NO.: 15.207
TESTED BY: Tom Tidwell	DATE: June 24, 1998

Test Conditions:	Standard Temperature and Humidity				
	Standard Test Voltage				

Minimum Standard:

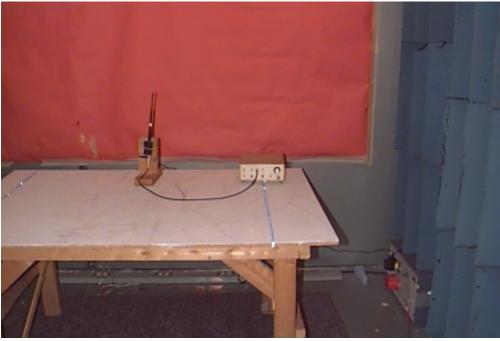

Frequency	Maximum Powerline Conducted RF Voltage				
(MHz)	(µV)	(dBµV)			
0.45 - 30.0	250	48			


Test Results: Complies. See attached graph(s).

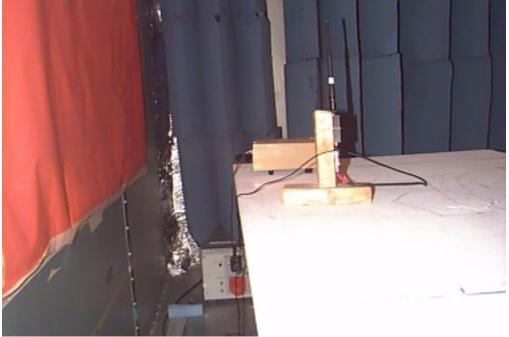
Measurement Data: See attached graph(s).

Method of Measurement: (Procedure ANSI C63.4-1992)

Measurements were made using a spectrum analyzer with 10 kHz RBW, Peak Detector. Any emissions that are close to the limit are measured using a test receiver with 10 kHz bandwidth, CISPR Quasi-Peak Detector.



KTL Ottawa


EQUIPMENT: TC900 Video Transmitter

Conducted Photographs (Worst Case Configuration)

Front View

Side View

Section 4. Radiated Emissions

NAME OF TEST: Radiated Emissions

PARA. NO.: 15.249

TESTED BY: Tom Tidwell

DATE: June 19, 1998

Test Conditions:Outdoor RangeStandard Test Voltage

Minimum Standard: Para no. 15.249

(a) The field strengths shall not exceed the following:

Fundamental	Field Strength	Field Strength	Harmonic	Harmonic
(MHz)	(mV/m)	(dBµV)	(mV/m)	(dBµV)
902-928	50	94	0.5	54

(b) Field strength limits are specified at a distance of 3 metres.

- (c) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated limits of 15.209 whichever is the less attenuation.
- (d) The emission limits shown above are based on measurement instrumentation employing a CISPR quasi-peak detector below 1000 MHz and an averaging detector above 1000 MHz. However, the peak field strength of any emission shall not exceed the average limit by more than 20 dB.

Test Results:	Complies. The worst-case emission level is $93.2 \text{ dB}\mu\text{V/m} @ 3\text{m}$
	at 916.42 MHz. This is 0.8 dB below the specification limit.

Measurement Data: See attached table.

Maximizing Emission Levels:

For hand held equipment or equipment that may be mounted in a variety of positions, the E.U.T. was tested on three orthogonal axis to determine orientation of worst-case emission levels.

The spectrum was searched up to the 10^{th} harmonic of the fundamental frequency.

Test Dis (meter			nge: ower		eiver: ther		(kHz): The r	Detector: As Per Table			
Freq. (MHz)	Ant. *	Pol. (V/H)	BW & Det.**	Table (deg.)	RCVD Signal (dBµV/m)	Ant. Factor (dB)**	Amp. Gain (dB)***	Dist. Corr. (dB)	Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
916.42	E/D4	V	3		58.5	34.7			93.2	94.0	0.8
916.42	E/D4	Н	3		53.4	34.7			88.1	94.0	5.9
1833.02	Hrn2	V	5		62.5	31.1	-45.8		47.5	54.0	6.2
1833.02	Hrn2	Н	5		62.7	31.1	-45.8		48.0	54.0	6.0
2749.64	Hrn2	V	5		63.6	34.1	-45.9		51.8	54.0	2.2
2749.64	Hrn2	Н	5		62.8	34.1	-45.9		51.0	54.0	3.0
3666.16	Hrn2	V	5		56.7	40.2	-45.3		51.6	54.0	2.4
3666.16	Hrn2	Н	5		54.5	40.2	-45.3		49.4	54.0	4.6
4582.38	Hrn2	V	5		45.4	40.0	-45.6		39.8	54.0	14.2
4582.38	Hrn2	Н	5		40.9	40.0	-45.6		35.3	54.0	18.7
					eriodic, H = Denotes failin						

Test Data - Radiated Emissions

- (1) 120 kHz, Q-Peak
 (2) 10 kHz, Peak
 (3) 100 kHz RBW, 300 kHz VBW, Peak,
 (4) 300 kHz RBW
 (5) 1 MHz RBW, 3 MHz VBW, Peak
 (6) 1 MHz RBW, 10 Hz VBW, Peak

Radiated Photographs (Worst Case Configuration)

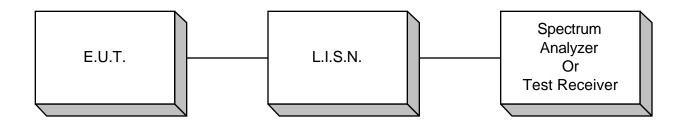
Front View

Section 5. Test Equipment List

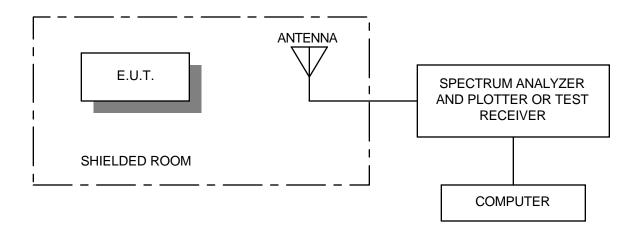
Equipment List - Conducted Emissions - Shielded Room #1

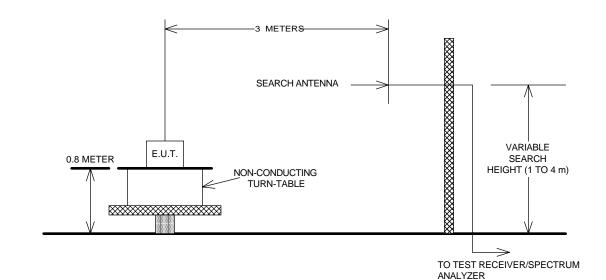
CAL Cycle	Equipment	Manufacturer	Model #	Serial/Asset #	Last Cal.	Next Cal.
1Year	LISN	Rohde & Schwarz	ESH2-Z5	890485/017	July 25/97	July 25/98
1Year	LISN(peripheral)	Tegam	95300-50	T-109014/15	July 25/97	July 25/98
1Year	Spectrum analyzer	Hewlett-Packard	8566B	2311A02238	Sept. 30/97	Sept. 30/98
1Year	Spectrum analyzer display	Hewlett-Packard	8566B	2314A04759	Sept. 30/97	Sept. 30/98
1Year	Quasi-peak adapter	Hewlett-Packard	85650A	2043A00302	Sept. 30/97	Sept. 30/98
1 Year	Transient Limiter	Hewlett-Packard	1194 7A	3107A01766	July 23/97	July 23/98

Equipment List - Radiated Emissions


CAL Cycle	Equipment	Manufacturer	Model #	Serial/Asset #	Last Cal.	Next Cal.
oyere	Biconilog Antenna	ЕМСО	3143	9404-1039	NCR	NCR
1Year	Dipole Antenna Set	EMCO	3121C	1029	Oct. 28/97	Oct. 28/98
1Year	Spectrum Analyzer	Hewlett-Packard	8566B	2311A02238	Sept. 30/97	Sept. 30/98
1Year	Spectrum Analyzer Display	Hewlett-Packard	8566B	2314A04759	Sept. 30/97	Sept. 30/98
2 Year	Horn Antenna	EMCO	3115	4336	Oct. 30/97	Oct. 30/99
1 Year	Log Periodic Antenna	EMCO	LPA-25	1141	July 10/97	July 10/98
1 Year	Low Noise Amplifier	Avantek	AWT- 8035	1005	Oct. 24/97	Oct. 24/98
1 Year	Low Noise Amplifier	DBS Microwave	DWT- 13035	9623	Oct. 24/97	Oct. 24/98

Note: N/A = Not ApplicableNCR = No Cal Required


ANNEX A


TEST DIAGRAMS

Conducted Emissions

Radiated Prescan

Test Site For Radiated Emissions