Exposure of humans to RF fields

As per FCC KDB 447498 D01 and Section 2.1091 radio frequency transmitters are required to be operated in a manner that ensures the public is not exposed to RF energy levels.

Calculations have been made using the General Public/Uncontrolled Exposure limits that are defined in Section 1.1310.

Minimum safe distances have been calculated below.
Power density, $\mathrm{mW} / \mathrm{cm}^{2}=\mathrm{E}^{2} / 3770$

- General Population / Uncontrolled exposure limit will be $0.28 \mathrm{~mW} / \mathrm{cm}^{2}$
(f/1500 $=421 \mathrm{MHz} / 1500$)
As this radio can operate over the range of $421-512 \mathrm{MHz}$ the lowest frequency of operation in the USA, which will give the worst case result, would be 421 MHz .

The minimum distance from the antenna at which the MPE is met is calculated from the equation relating field strength in V / m, transmit power in watts, transmit antenna gain, transmitter duty cycle and separation distance in metres:

Power Density $=0.28 \mathrm{~mW} / \mathrm{cm}^{2}=\mathrm{E}^{2} / 3770$
$\mathrm{E}=\sqrt{ } 0.28 * 3770$
$\mathrm{E}=32.5 \mathrm{~V} / \mathrm{m}$
The rated maximum transmitter power $=10$ watts $(+40 \mathrm{dBm})$.
A duty cycle of 100% as the transmitter is a base station could possibly be operated for long periods of time.

The client has declared that this transmitter can be operated using a range of antennas with various gains, from 0 to 16 dBd , as detailed in the table below.

Antenna Gains (dBd)	Max Gain (dBi)	TX power $(\mathbf{d B m})$	EiRP $(\mathbf{d B m})$	EiRP (Watts)	E Limit $(\mathbf{V} / \mathbf{m})$	Safe Distance (Metres)
0 to 4	6.15	40.0	46.15	41.2	32.5	1.08
4 to 8	10.15	40.0	50.15	103.5	32.5	1.71
8 to 12	14.15	40.0	54.15	260.0	32.5	2.72
12 to 16	18.15	40.0	58.15	653.1	32.5	4.31

A sample calculation for the safe distance would be:
$\mathrm{d}=\sqrt{ }\left(30 * P * \mathrm{G}^{*} \mathrm{DC}\right) / \mathrm{E}$
$\mathrm{d}=\sqrt{ }(30 * 10 * 65.3 * 1.0) / 32.5$
$\mathrm{d}=4.31$ metres or 431 cm
Result: Complies if the safe distances defined above are applied.

