

RADIO TEST REPORT

Test Report No.: 10327700H-R1

Applicant	:	Toyota Motor Corporation
Type of Equipment	:	Smart LF Oscillator
Model No.	:	TS-9TY
FCC ID	:	NI4TS-9TY
Test regulation	:	FCC Part 15 Subpart C: 2014
Test Result	:	Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This report is a revised version of 10327700H. 10327700H is replaced with this report.

Date of test:

May 30 to June 17, 2014

Representative test engineer:

Shinya Watanabe Engineer Consumer Technology Division

Approved by:

Motoya Imura Engineer Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://www.ul.com/japan/jpn/pages/services/emc/about/ma rk1/index.jsp#nvlap

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

REVISION HISTORY

Original Test Report No.: 10327700H

Revision	Test report No.	Date	Page revised	Contents
- (Original)	10327700Н	June 25, 2014	-	-
1	10327700H-R1	September 10, 2014	P5	Correction: Worst margin of Electric Field Strength of Fundamental Emission test
1	10327700H-R1	September 10, 2014	P6	Correction: Uncertainty of Radiated emission test
1	10327700H-R1	September 10, 2014	P8	Addition: Note for antenna port
1	10327700H-R1	September 10, 2014	P11	Deletion: Test procedure of Duty Cycle calculation
1	10327700H-R1	September 10, 2014	P12, 13	Correction: Data of PK with Duty factor
1	10327700H-R1	September 10, 2014	- (P17 - 22 of Original report)	Deletion: Data of Duty

CONTENTS

PAGE

SECTION 1: Customer information	.4
SECTION 2: Equipment under test (E.U.T.)	.4
SECTION 3: Test specification, procedures & results	.5
SECTION 4: Operation of E.U.T. during testing	.8
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	.9
SECTION 6: -26dB Bandwidth	11
SECTION 7: 99% Occupied Bandwidth	11
APPENDIX 1: Data of EMI test	12
Radiated Emission below 30MHz (Fundamental and Spurious Emission)	12
Radiated Emission above 30MHz	14
-26dB Bandwidth and 99% Occupied Bandwidth	16
APPENDIX 2: Test instruments	17
APPENDIX 3: Photographs of test setup	18
Radiated Emission	18
Worst Case Position	19

Test report No.: 10327700H-R1Page: 4 of 20Issued date: June 25, 2014Revised date: September 10, 2014FCC ID: NI4TS-9TY

SECTION 1: Customer information

Company Name	:	Toyota Motor Corporation
Address	:	1, Toyota-Cho, Toyota, Aichi, 471-8572 Japan
Telephone Number	:	+81-565-94-1006
Facsimile Number	:	+81-565-94-1162
Contact Person	:	Hiroki Okada

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment	:	Smart LF Oscillator
Model No.	:	TS-9TY
Serial No.	:	Refer to Section 4, Clause 4.2
Rating	:	DC 12.0V
Receipt Date of Sample	:	May 29, 2014
Condition of EUT	:	Production prototype
		(Not for Sale: This sample is equivalent to mass-produced items.)
Modification of EUT	:	No Modification by the test lab

2.2 Product Description

Smart LF Oscillator, model: TS-9TY is a transmitter that is installed in a motor vehicle and is used as part of Smart System.

Radio Specification

Radio Type	:	Transmitter
Frequency of Operation	:	134.2kHz
Modulation	:	ASK
Method of Frequency Genenration	:	Crystal
Antenna type	:	Coil Antenna

Smart LF Oscillator (model: TS-9TY) consists of the following parts:

- Computer Assy, Smart Key (ECU)
- D seat Antenna
- P seat Antenna
- Extra1 Antenna
- Extra2 Antenna
- Extra3 Antenna
- Back Door Antenna

Test report No.	: 10327700H-R1
Page	: 5 of 20
Issued date	: June 25, 2014
Revised date	: September 10, 2014
FCC ID	: NI4TS-9TY

SECTION 3: Test specification, procedures & results

3.1 Test Specification		
Test Specification	:	FCC Part 15 Subpart C: 2014, final revised on May 1, 2014 and effective June 2, 2014
Title	:	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators Section 15.209 Radiated emission limits, general requirements

* The revision on May 1, 2014 does not affect the test specification applied to the EUT.

FCC 15.31 (e)

This test was performed with the New Battery (DC 12V) and the constant voltage was supplied to this EUT during the tests. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	Conducted Emission	<fcc> ANSI C63.4:2003 7. AC powerline conducted emission measurements <ic> RSS-Gen 7.2.4</ic></fcc>	<fcc> Section 15.207 <ic> RSS-Gen 7.2.4</ic></fcc>	-	N/A *1)	N/A	N/A
2	Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic> RSS-Gen 4.8, 4.11</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 2.5.1 RSS-Gen 7.2.5</ic></fcc>	Radiated	N/A	1.2dB 0.134MHz 0 deg. PK with Duty factor <extra antenna=""></extra>	Complied
3	Electric Field Strength of Spurious Emission	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic> RSS-Gen 4.9, 4.11</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 2.5.1 RSS-Gen 7.2.5</ic></fcc>	Radiated	N/A	11.3dB 55.666MHz, Vertical <extra antenna=""></extra>	Complied
4	-26dB Bandwidth	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic></ic></fcc>	<fcc> Reference data <ic> -</ic></fcc>	Radiated	N/A	N/A	N/A
Note	: UL Japan, Inc.'s EMI	Work Procedures No. 1	3-EM-W0420 and	13-EM-W04	22.		

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Test report No.	: 10327700H-R1
Page	: 6 of 20
Issued date	: June 25, 2014
Revised date	: September 10, 2014
FCC ID	: NI4TS-9TY

3.3 Addition to standard

I	No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
-	1	99% Occupied	RSS-Gen 4.6.1	RSS-Gen 4.6.1	Radiated	N/A	N/A	N/A
		Band Width						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room	Radiated emission									
(semi-		(3m *)	(<u>+</u> dB)		$(1m^*)(\pm dB)$ (0.5m*)(
anechoic	9kHz	30MHz	300MHz	1GHz	10GHz	18GHz	26.5GHz			
chamber)	-30MHz	-300MHz	-1GHz	-10GHz	-18GHz	-26.5GHz	-40GHz			
No.1	4.0dB	5.1dB	5.0dB	5.1dB	6.0dB	4.9dB	4.3dB			
No.2 3.9dB		5.2dB	5.0dB	4.9dB	5.9dB	4.7dB	4.2dB			
No.3	4.3dB	5.1dB	5.2dB	5.2dB	6.0dB	4.8dB	4.2dB			
No.4	4.6dB	5.2dB	5.0dB	5.2dB	6.0dB	5.7dB	4.2dB			

*3m/1m/0.5m = Measurement distance

Radiated emission test (3m)

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

Test report No.	: 10327700H-R1
Page	: 7 of 20
Issued date	: June 25, 2014
Revised date	: September 10, 2014
FCC ID	: NI4TS-9TY

3.5 Test Location

Gelephone : +81 596 24 8999 Facsimile : +81 596 24 8124				
	IC Registration	Width x Depth x	Size of	Other
	Number	Height (m)	reference ground plane (m) /	rooms
			horizontal conducting plane	
No.1 semi-anechoic	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power
chamber				source room
No.2 semi-anechoic	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
chamber				
No.3 semi-anechoic	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3
chamber				Preparation
				room
No.3 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4
chamber				Preparation
				room
No.4 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
chamber				
No.6 shielded	-	4.0 x 4.5 x 2.7m	4.0 x 4.5 m	-
room				
No.6 measurement	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
room				
No.7 shielded room	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement	-	3.1 x 5.0 x 2.7m	N/A	-
room				
No.9 measurement	-	8.0 x 4.6 x 2.8m	2.4 x 2.4m	-
room				
No.11 measurement	-	6.2 x 4.7 x 3.0m	4.8 x 4.6m	-
room				

UL Japan, Inc. Ise EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Eacsimile : +81 596 24 81/

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Data of EMI, Test instruments, and Test set up

Refer to APPENDIX.

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

The mode is used :		Transmitting mode (Tx) 134.2kHz *The EUT does not transmit simultaneously from multiple antennas.		
Justification	:	The system was configured in typical fashion (as a customer would normally use it) for testing.		

4.2 Configuration and peripherals

* Cabling and setup were taken into consideration and test data was taken under worse case conditions.

* The test was performed with the representative component which constitute a system.

* During testing, transmitting antenna was fixed to one of two antennas(B,C), and the test was conducted with the worst duty.

Also, the number of connected antennas was no difference within this confirmation, although it was confirmed that some antennas would be added.

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Computer Assy,	TS-9TY	003	-	EUT
	Smart Key (ECU)				
В	D seat Antenna	-	191	-	EUT
С	Extra Antenna	-	00432	-	EUT
D	SW Box	-	-	-	-

Description of EUT and Support equipment

List of cables used

No.	Name	Length (m)	Shi	Remarks	
			Cable	Connector	
1	DC Cable	2.0	Unshielded	Unshielded	-
2	Antenna Cable	2.0	Unshielded	Unshielded	-
3	Antenna Cable	2.0	Unshielded	Unshielded	-
4	Signal Cable	2.0	Unshielded	Unshielded	-
5	Ground Cable	2.0	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

Test report No.	: 10327700H-R1
Page	: 9 of 20
Issued date	: June 25, 2014
Revised date	: September 10, 2014
FCC ID	: NI4TS-9TY

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

The Radiated Electric Field Strength intensity has been measured on No 1 semi anechoic chamber with a ground plane and at a distance of 3m.

Frequency : From 9kHz to 30MHz at distance 3m

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for vertical polarization (antenna angle: 0deg., 45deg., 90deg., 135 deg. and 180deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency : From 30MHz to 1GHz at distance 3m

The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

Measurements were performed with a QP and PK detector.

The radiated emission measurements were made with the following detector function of the test receiver.

	From 9kHz to 90kHz and From 110kHz	From 90kHz to 110kHz	From 150kHz to 490kHz	From 490kHz to 30MHz	From 30MHz to 1GHz
	to 150kHz				
Detector Type	PK	QP	PK	QP	QP
IF Bandwidth	200Hz	200Hz	9kHz	9kHz	120kHz
Distance factor *1)	-80dB	-80dB	-80dB	-40dB	-

*1) $-80dB = 40 \text{ x } \log (3m/300m)$ $-40dB = 40 \text{ x } \log (3m/30m)$

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

With the position, the noise levels of all the frequencies were measured.

Test data	: APPENDIX 1	: APPENDIX 1			
Test result	: Pass	: Pass			
Date: May 30, 2014 May 31, 2014	Test engineer:	Shinya Watanabe Masatoshi Nishiguchi			

Test report No.	: 10327700H-R1
Page	: 10 of 20
Issued date	: June 25, 2014
Revised date	: September 10, 2014
FCC ID	: NI4TS-9TY

Figure 1: Direction of the Loop Antenna

Test report No.	: 10327700H-R1
Page	: 11 of 20
Issued date	: June 25, 2014
Revised date	: September 10, 2014
FCC ID	: NI4TS-9TY

SECTION 6: -26dB Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-26dB Bandwidth	100kHz	1kHz	3kHz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data	: APPENDIX 1
Test result	: Pass

SECTION 7: 99% Occupied Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
99% OccupiedEnough width to displayBandwidth20dB Bandwidth		1 % of Span	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
*1) The measurer	nent was performed with Pe	ak detector, Ma	x Hold since the	e duty cycle was not	100%.		

Test data	: APPENDIX 1
Test result	: Pass

APPENDIX 1: Data of EMI test

Radiated Emission below 30MHz (Fundamental and Spurious Emission)

D seat Antenna

Test place	Ise EMC Lab. No.1 Semi Anechoic Chamber
Order No.	10327700Н
Date	05/31/2014
Temperature/ Humidity	23 deg. C / 60% RH
Engineer	Masatoshi Nishiguchi
Mode	Tx 134.2kHz

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
or				Factor			Factor				
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.13420	PK	99.2	20.0	-74.0	32.3	-	12.9	45.0	32.1	Fundamental
0	0.26840	PK	58.1	19.9	-73.9	32.2	-	-28.1	39.0	67.1	
0	0.40260	PK	48.5	19.8	-73.9	32.2	-	-37.8	35.5	73.3	
0	0.53680	QP	36.6	19.8	-33.9	32.2	-	-9.7	33.0	42.7	
0	0.67100	QP	33.1	19.8	-33.8	32.2	-	-13.1	31.1	44.2	
0	0.80520	QP	33.7	19.8	-33.8	32.2	-	-12.5	29.5	42.0	
0	0.93940	QP	32.0	19.8	-33.8	32.2	-	-14.2	28.1	42.3	
0	1.07360	QP	32.0	19.8	-33.8	32.2	-	-14.2	26.9	41.1	
0	1.20780	QP	31.2	19.8	-33.8	32.2	-	-15.0	25.9	40.9	
0	1.34200	QP	31.2	19.8	-33.7	32.2	-	-14.9	25.0	39.9	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.134	PK	99.2	20.0	-74.0	32.3	0.0	12.9	25.0	12.1	
0	0.268	PK	58.1	19.9	-73.9	32.2	0.0	-28.1	19.0	47.1	
0	0.403	PK	48.5	19.8	-73.9	32.2	0.0	-37.8	15.5	53.3	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor

* Since the peak emission result satisfied the average limit, the peak emission result with Duty Factor was calculated as Duty 100%.

PK or QP (Result of the fundamental emission at 3m without Distance factor)

ĺ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
I					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	0.000	0.134	PK	99.2	20.0	6	32.3	-	92.9	-	-	Fundamental

* All spurious emissions lower than this result.

Test report No.	: 10327700H-R1
Page	: 13 of 20
Issued date	: June 25, 2014
Revised date	: September 10, 2014
FCC ID	: NI4TS-9TY

Radiated Emission below 30MHz (Fundamental and Spurious Emission)

Extra Antenna

Test place	Ise EMC Lab. No.1 Semi Anechoic Chamber
Order No.	10327700Н
Date	05/31/2014
Temperature/ Humidity	23 deg. C / 60% RH
Engineer	Masatoshi Nishiguchi
Mode	Tx 134.2kHz

PK or QP

11101 21											
Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
or				Factor			Factor				
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.13420	PK	77.8	20.0	-74.0	0.0	-	23.8	45.0	21.2	Fundamental
0	0.26840	PK	23.3	19.9	-73.9	0.0	-	-30.7	39.0	69.7	
0	0.40260	PK	16.8	19.8	-73.9	0.0	-	-37.3	35.5	72.8	
0	0.53680	QP	7.9	19.8	-33.9	0.0	-	-6.2	33.0	39.2	
0	0.67100	QP	6.9	19.8	-33.8	0.0	-	-7.1	31.1	38.2	
0	0.80520	QP	6.5	19.8	-33.8	0.0	-	-7.5	29.5	37.0	
0	0.93940	QP	5.9	19.8	-33.8	0.0	-	-8.1	28.1	36.2	
0	1.07360	QP	5.8	19.8	-33.8	0.0	-	-8.2	26.9	35.1	
0	1.20780	QP	5.3	19.8	-33.8	0.0	-	-8.7	25.9	34.6	
0	1.34200	QP	5.1	19.8	-33.7	0.0	-	-8.8	25.0	33.8	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor)

PK with Duty factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.134	PK	77.8	20.0	-74.0	0.0	0.0	23.8	25.0	1.2	
0	0.268	PK	23.3	19.9	-73.9	0.0	0.0	-30.7	19.0	49.7	
0	0.403	PK	16.8	19.8	-73.9	0.0	0.0	-37.3	15.5	52.8	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) + Duty factor * Since the peak emission result satisfied the average limit, the peak emission result with Duty Factor was calculated as Duty 100%.

PK or OP	(Result of the fundamental emission at 3m without Distance factor)	

_	I N OI QI	A of χ_1 (Acout of the fundamental emission at one without Distance factor)												
ſ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark		
I					Factor			Factor						
l		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]			
I	0.000	0.134	PK	77.8	20.0	6	0.0	-	103.8	-	-	Fundamental		

* All spurious emissions lower than this result.

* Gain 0.0dB shows that the pre amplifier was not used to avoid the influence of carrier power. The pre amplifier used for carrier frequency measurement was not saturated.

*The test result is rounded off to one or two decimal places, so some differences might be observed.

Radiated Emission above 30MHz

DATA OF RADIATED EMISSION

CHART: WITH FACTOR ANT TYPE: -30MHz: LOOP, 30-300MHz: BICONICAL, 300MHz-1000MHz: LOGPERIODIC, 1000MHz-: HORN CALCULATION: RESULT=READING + ANT FACTOR + LOSS & GAIN(CABLE+ATTEN. - GAIN(AMP))

*The test result is rounded off to one or two decimal places, so some differences might be observed.

Radiated Emission above 30MHz

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Ise EMC Lab. No. 1 Semi Anechoic Chamber Date : 2014/05/30

						Temp	./Humi.	: 2	24deg. C /	62% RH			
I. / D	l		- Evtro	Antonno		Engi	neer	: :	shinya Wat	anabe			
IE / Remar	KS . IX I 5 200 3m	below	12 EXLIA	ahove									
All	other spi	urious	emission	s were le	ess than 2	20dB fo	r the I	imit.			\equiv	Hori: Vert	zont i ca l
dBuV/m]	<< Q	P DATA	` >>								o X	Hori: Vert	zont i ca
		-									+		
				_									
Ť	Ť			Å	Ť,	k Y	:						
	φ				0	9)				-		
	· ·				<u> </u>								
1	50M	70	DM	100M		200	M	300M		500M		I I I I I I I I I I I I I I I I I I I	
	50M	70	DM	100M		2001	M	300M		500M	70 Fre	OM equer	ncy
 	50M	70	DM Antenna	100M		200	W	300M	I	500M	70 Fre	IOM equer	ncy
Frequency	50M Reading	70 DET	Antenna Factor	100M Loss& Gain	Level	200	W Height	300M Polar.	Limit	500M Margin	70 Fro	OM equer ent	ncy
Frequency [MHz] 41.300	50M Reading [dBuV] 28.8	70 DET QP	Antenna Factor [dB/m] 13.7	100M Loss& Gain [dB] -31.2	Level [dBuV/m] 11.3	2001 Angle [Deg] 0	W Height [cm] 100	300M Polar. Hori.	Limit [dBuV/m] 40.0	500M Margin [dB] 28.7	70 Fro	OM equer ent	ncy
Frequency [MHz] 41.300 41.300 55.666	50M Reading [dBuV] 28.8 46.0 39.5	DET QP QP QP	Antenna Factor [dB/m] 13. 7 9. 1	100M Loss& Gain [dB] -31.2 -31.2 -30.9	Level [dBuV/m] 11. 3 28. 5 17. 7	2001 Angle [Deg] 0 81 154	W Height [cm] 100 100 360	300M Polar. Hori. Vert. Hori.	Limit [dBuV/m] 40.0 40.0	500M Margin [dB] 28.7 11.5 22.3	70 Fro Commo	equer ent	ncy
Frequency [MHz] 41.300 41.300 55.666 55.666	50M Reading [dBuV] 28.8 46.0 39.5 50.5 42.6	DET QP QP QP QP	Antenna Factor [dB/m] 13.7 13.7 9.1 9.1 9.1	100M Loss& Gain [dB] -31.2 -30.9 -30.9 -20.2	Level [dBuV/m] 11.3 28.5 17.7 28.7 28.7	2001 Angle [Deg] 0 81 154 196	Height [cm] 100 100 360 100	300M Polar. Hori. Vert. Hori. Vert. Vert.	Limit [dBuV/m] 40.0 40.0 40.0 40.0	500M Margin [dB] 28.7 11.5 22.3 11.3 11.3	70 Fro Commo	equer ent	ncy
Frequency [MHz] 41.300 41.300 55.666 55.666 110.676 110.676	50M Reading [dBuV] 28.8 46.0 39.5 50.5 43.6 47.8	DET QP QP QP QP QP	Antenna Factor [dB/m] 13. 7 13. 7 9. 1 9. 1 9. 1 11. 6 11. 6	100M <u>Loss&</u> <u>Gain</u> [dB] -31. 2 -31. 2 -30. 9 -30. 9 -30. 2 -30. 2	Level [dBuV/m] 11.3 28.5 17.7 28.7 25.0 29.2	2001 Angle [Deg] 0 81 154 196 0 132	Height [cm] 100 100 360 100 197 100	300M Polar. Hori. Vert. Hori. Vert. Vert. Vert.	Limit [dBuV/m] 40.0 40.0 40.0 40.0 40.3 43.5	500M (dB) 28.7 11.5 2.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3	70 Fro	equer ent	ncy
Frequency [MHz] 41.300 55.666 110.676 110.676 137.429 137.429	50M [dBuV] 28.8 46.0 39.5 50.5 43.6 47.8 30.9 43.1	DET QP QP QP QP QP QP QP QP QP QP	Antenna Factor [dB/m] 13.7 9.1 9.1 11.6 11.6 14.3 14.3	Loss& Gain [dB] -31.2 -31.2 -30.9 -30.9 -30.2 -30.2 -30.0 -30.0	Level [dBuV/m] 11.3 28.5 17.7 28.7 25.0 29.2 15.2 27.4	2001 Angle [Deg] 0 81 154 196 0 132 61 88	Height [cm] 100 100 360 100 197 100 313 100	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Vert.	Limit [dBuV/m] 40.0 40.0 40.0 43.5 43.5 43.5 43.5	500M Margin [dB] 28.7 11.5 22.3 11.3 18.5 14.3 28.3 16.1	70 Fro	equer ent	ncy
Frequency [MHz] 41. 300 41. 300 55. 666 110. 676 110. 676 137. 429 165. 996 165. 996	SOM Reading [dBuV] 28.8 46.0 39.5 50.5 43.6 47.8 30.9 43.1 29.0 29.1	DET DET QP QP QP QP QP QP QP QP QP QP QP QP QP	Antenna Factor [dB/m] 13. 7 9. 1 9. 1 9. 1 9. 1 11. 6 11. 6 11. 6 14. 3 14. 3 15. 6 5	Loss& Gain [dB] -31.2 -30.9 -30.9 -30.9 -30.2 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	Level [dBuV/m] 11.3 28.5 17.7 28.7 28.7 29.2 15.2 27.4 14.8 22.0	2001 Angle [Deg] 0 81 154 196 0 1322 61 88 0 126	Height [cm] 100 360 100 313 313 100 308	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert.	Limit [dBuV/m] 40.0 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5	500M Margin [dB] 228.7 11.5 22.3 11.3 18.5 14.3 28.3 16.1 28.7 10.6 1 28.7 10.5 14.3 28.3 16.1 28.7 10.5	70 Fro	0M equer ent	ncy
Fr equen cy [MHz] 41. 300 55. 666 55. 666 110. 676 110. 676 137. 429 165. 996 165. 996 165. 996	50M Reading [dBuV] 28.8 46.0 39.5 50.5 43.6 47.8 30.9 43.1 29.0 38.1 33.8	DET DET QP QP QP QP QP QP QP QP QP QP QP QP QP	Antenna Factor [dB/m] 13.7 9.1 9.1 11.6 11.6 11.6 14.3 14.3 15.6 15.6 15.6 15.6	Loss& Gain [dB] -31.2 -31.2 -30.9 -30.9 -30.9 -30.2 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0 -30.0	Level [dBuV/m] 11. 3 28. 5 5. 17. 7 25. 0 29. 2 15. 2 27. 4 14. 8 23. 9 20. 8	2001 Angle [Deg] 0 81 154 196 0 132 61 88 0 126 177	Height [cm] 100 100 360 197 100 313 100 308 100 276	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert. Hori.	Limit [dBuV/m] 40.0 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5	500M Margin [dB] 218.7 218.7 222.3 11.3 18.5 222.3 11.3 18.5 14.3 28.3 16.1 28.7 19.6 22.7	Commo	OM equer ent	ncy
Fr equen cy [MHz] 41. 300 55. 666 55. 666 110. 676 110. 676 137. 429 165. 996 165. 996 165. 996 165. 996 165. 996 165. 996	50M Reading [dBuV] 28.8 46.0 39.5 50.5 43.6 47.8 343.6 47.8 343.1 29.0 38.1 33.8 39.2	DET QP QP QP QP QP QP QP QP QP QP	Antenna Factor (B/m) 13. 7 9. 1 11. 6 11. 6 14. 3 14. 3 15. 6 15. 6 15. 6 15. 5	Loss& Gain [dB] -31.2 -31.2 -30.9 -30.9 -30.9 -30.2 -30.0 -30.0 -30.0 -30.0 -29.8 -29.5 -29.5	Level [dBuV/m] 11. 3 28. 5 5 17. 7 25. 0 29. 2 15. 2 27. 4 14. 8 23. 9 20. 8 23. 9 20. 8 26. 2	2001 Angle [Deg] 0 81 154 196 0 132 61 88 0 126 177 198	Height [cm] 100 100 360 100 313 100 308 100 276 100	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert.	Limit [dBuV/m] 40.0 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5	500M Margin [dB] 28.7 11.5 22.3 11.3 18.5 22.3 11.3 18.5 28.3 16.1 28.7 19.6 22.7 17.3	Commo	OM equer ent	ncy
Frequency [MHz] 41.300 55.666 55.666 110.676 110.676 110.676 137.429 137.429 165.996 206.145 206.145	50M Reading [dBuV] 28.8 46.0 39.5 50.5 43.6 47.8 30.9 43.1 29.0 38.1 33.8 39.2	DET OP OP OP OP OP OP OP OP OP OP	Antenna Factor [dB/m] 13.7 9.1 9.1 11.6 11.6 14.3 14.3 15.6 15.6 15.6 15.5 16.5	Loss& Gain (dB] -31.2 -30.9 -30.2 -30.2 -30.2 -30.0 -30.0 -30.0 -30.0 -29.8 -29.5 -29.5	Level [dBuV/m] 11. 3 28. 5 5 17. 7 25. 0 29. 2 15. 2 27. 4 14. 8 23. 9 20. 8 26. 2	2001 Angle [Deg] 0 81 154 196 0 132 61 88 0 126 177 198	Height [cm] 100 360 100 313 100 313 100 308 308 100 276 100	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert. Vert. Vert.	Limit [dBuV/m] 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5	500M (dB) (28.7) 11.5 22.3 11.3 22.3 11.3 28.3 16.1 28.7 19.6 22.7 17.3	70 Fri	00M equer ent	ncy
Frequency [MHz] 41.300 55.666 55.666 110.676 110.676 137.429 137.429 137.429 165.996 206.145 206.145	50M Reading [dBuV] 28.8 46.0 39.5 50.5 43.6 47.8 30.9 43.1 29.0 38.1 33.8 39.2	DET OP OP OP OP OP OP OP OP OP OP	Antenna Factor [dB/m] 13.7 9.1 9.1 11.6 14.3 14.3 15.6 15.6 15.6 15.5 16.5	Loss& Gain [dB] -31.2 -30.9 -30.2 -30.2 -30.2 -30.0 -30.0 -30.0 -30.0 -30.0 -29.8 -29.5 -29.5	Level [dBuV/m] 11.3 28.5 517.7 25.0 29.2 27.4 14.8 23.9 20.8 23.9 20.8 26.2	Angle [Deg] 0 81 154 196 0 1322 61 88 0 126 177 198	Height [cm] 1000 3600 1000 3131 1000 308 1000 2766 1000	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert. Vert. Vert.	Limit [dBuV/m] 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5	500M Margin [dB] 28.7 11.5 22.3 18.5 14.3 18.5 14.3 18.5 12.7 19.6 22.7 17.3	70 Fri	OM equer ent	ncy
Frequency [MHz] 41.300 55.666 110.676 110.676 137.429 137.429 137.429 165.996 206.145 206.145	50M Reading [dBuV] 28.8 46.0 39.5 50.5 43.6 47.8 30.9 43.1 29.0 38.1 33.8 39.2	DET OP OP OP OP OP OP OP OP OP OP OP OP OP	Antenna Factor [dB/m] 13.7 9.1 9.1 11.6 14.3 14.3 15.6 15.6 15.6 15.5 16.5	Loss& Gain [dB] -31.2 -30.9 -30.2 -30.2 -30.0 -30.2 -29.5 -2	Level [dBuV/m] 11.3 28.5 517.7 25.0 29.2 15.2 27.4 14.8 23.9 20.8 23.8 26.2	Ang le [Deg] 0 81 154 196 0 132 61 88 0 126 177 198	Height [cm] 100 100 360 100 197 100 313 110 308 8100 276 100	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert.	Limit [dBuV/m] 40.0 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5	500M [dB] 28.7 11.5 22.3 18.5 14.3 18.5 14.3 16.1 28.7 19.6 22.7 17.3	70 Fri Comm	equer	ncy1
Frequency [MHz] 41.300 55.666 110.676 110.676 110.676 137.429 137.429 137.429 165.996 206.145 206.145	50M Reading [dBuV] 28.8 46.0 39.5 50.5 50.5 43.6 47.8 30.9 43.1 29.0 38.1 33.8 39.2	CP CP CP CP CP CP CP CP CP CP CP CP CP C	Antenna Factor [dB/m] 13.7 9.1 9.1 9.1 11.6 11.6 14.3 14.3 15.6 15.6 15.5 16.5	Loss& Gain [dB] -31.2 -30.9 -30.2 -30.2 -30.0 -30.2 -29.5 -2	Level (dBuV/m) 11.3 28.5 17.7 28.7 25.0 29.2 15.2 27.4 14.8 23.9 20.8 26.2	Ang le [Deg] 0 81 154 154 196 0 132 61 88 0 126 132 0 126 777 198	M Height [<u>cm]</u> 100 100 360 308 100 313 313 308 276 100	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert.	Limit [dBuV/m] 40.0 40.0 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5	500M Margin [dB] 28.7 11.5 22.3 18.5 14.3 16.1 28.7 19.6 22.7 17.3	70 Fru Comm	equer	ncy
Frequency [MHz] 41.300 55.666 110.676 110.676 110.676 137.429 137.429 165.996 206.145 206.145	50M Reading [dBuV] 28.8 46.0 39.5 50.5 50.5 43.6 47.8 30.9 43.1 29.0 38.1 33.8 39.2	7(DET OP OP OP OP OP OP OP OP OP OP OP OP OP	Antenna Factor [dB/m] 13.7 9.1 9.1 9.1 11.6 11.6 14.3 14.3 15.6 15.6 15.5 16.5	Loss& Gain [dB] -31.2 -30.9 -30.2 -30.2 -30.0 -30.2 -29.5 -2	Level [dBuV/m] 11.3 28.5 17.7 28.7 25.0 29.2 15.2 27.4 14.8 23.9 20.8 26.2	Angle [Deg] 0 81 15 196 0 132 61 132 61 132 61 132 61 132 8 8 0 126 61 177 198	M Height [cm] 100 100 100 197 131 313 308 308 308 100 276 100	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert.	Limit [dBuV/m] 40.0 40.0 40.0 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5	500M Margin [dB] 28.7 11.5 22.3 18.5 14.3 16.1 28.7 19.6 22.7 17.3	70 Fru Comm	OM equer ent	ncy
Frequen cy [MHz] 41, 300 41, 300 55, 666 110, 676 110, 676 110, 676 137, 429 137, 429 165, 996 206, 145 206, 145	50M Reading [dBuV] 28.8 46.0 39.5 50.5 50.5 43.6 47.8 30.9 43.1 29.0 38.1 33.8 39.2	7(DET OP OP OP OP OP OP OP OP OP OP OP OP OP	Antenna Factor [dB/m] 13.7 9.1 9.1 9.1 11.6 11.6 14.3 14.3 15.6 15.6 15.5 16.5	Loss& Gain [dB] -31.2 -30.9 -30.9 -30.9 -30.2 -30.2 -30.2 -30.0 -29.8 -29.8 -29.5	Level [dBuV/m] 11.3 28.5 17.7 28.7 25.0 29.2 15.2 27.4 14.8 23.9 20.8 26.2	Angle [Deg] 0 0 81 154 154 154 154 166 0 0 132 61 132 61 132 0 126 137 138	M Height [cm] 100 100 100 197 100 313 308 308 308 100 276 100	300M Polar. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert. Hori. Vert.	Limit [dBuV/m] 40.0 40.0 40.0 40.0 40.0 40.0 40.0 43.5 43.5 43.5 43.5 43.5 43.5 43.5	500M (dB) 28.7 11.5 22.3 18.5 14.3 16.1 28.7 18.5 14.3 28.3 16.1 22.7 19.6 22.7 17.3	70 Fru Comm	equer ent	f

CHART: WITH FACTOR ANT TYPE: -30MHz: LOOP, 30-300MHz: BICONICAL, 300MHz-1000MHz: LOGPERIODIC, 1000MHz-: HORN CALCULATION: RESULT=READING + ANT FACTOR + LOSS & GAIN(CABLE+ATTEN. - GAIN(AMP))

*The test result is rounded off to one or two decimal places, so some differences might be observed.

-26dB Bandwidth and 99% Occupied Bandwidth

Test place	Ise EMC Lab. No.1 Semi Anechoic Chamber
Order No.	10327700H
Date	05/31/2014
Temperature/ Humidity	23 deg. C / 60% RH
Engineer	Masatoshi Nishiguchi
Mode	Tx 134.2kHz

Mode	Frequency	-26dB	99% Occupied	
		Bandwidth	Bandwidth	
	[kHz]	[kHz]	[kHz]	
D seat Antenna	134.2	20.953	20.995	
Extra Antenna	134.2	12.447	10.799	

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

APPENDIX 2: Test instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-01	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	RE	2013/08/01 * 12
MOS-27	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	RE	2014/02/20 * 12
MJM-21	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MTR-09	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	RE	2013/06/07 * 12
KBA-05	Biconical Antenna	Schwarzbeck	BBA9106	2513	RE	2013/11/24 * 12
KLA-04	Logperiodic Antenna	Schwarzbeck	USLP9143	361	RE	2013/11/24 * 12
MAT-08	Attenuator(6dB)	Weinschel Corp	2	BK7971	RE	2013/11/26 * 12
MCC-02	Coaxial Cable	Suhner/storm/Agilent/T SJ	-	-	RE	2013/09/12 * 12
MPA-19	Pre Amplifier	MITEQ	MLA-10K01-B01- 35	1237616	RE	2014/02/17 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2013/10/30 * 12
MCC-143	Coaxial Cable	UL Japan	-	-	RE	2013/07/22 * 12
MCC-03	Coaxial Cable	Fujikura/Suhner/TSJ	5D-2W(20m)/3D-	-/01068	RE	2013/09/12 * 12
			2W(7.5m)/RG400u (1.5m)/RFM- E421(Switcher)	(Switcher)		
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2014/03/14 * 12
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	RE	2013/11/25 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Spurious emission