

RADIO TEST REPORT

Test Report No. 15088350H-A-R1

Customer	TOYOTA MOTOR CORPORATION
Description of EUT	Smart LF oscillator
Model Number of EUT	TMLF19D-6
FCC ID	NI4TMLF19D-6
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied
Issue Date	February 26, 2024
Remarks	-

Approved by **Representative test engineer** Tomoya Sone Shinichi Miyazono Engineer Engineer ACCREDITED CERTIFICATE 5107.02 The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc. There is no testing item of "Non-accreditation". Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 23.0

1000.10 ENFI 0420/100002 (D00.10 ENFI 0420/1000# 20.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided by the customer for this report is identified in SECTION 1.
- The laboratory is not responsible for information provided by the customer which can impact the validity of the results.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No. 15088350H-A-R1

This report is a revised version of 15088350H-A. 15088350H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
- (Original)	15088350H-A	February 21, 2024	-
1	15088350H-A-R1	February 26, 2024	Deletion of the "Operating temperature" from
			Radio Specification of SECTION 2.2.
1	15088350H-A-R1	February 26, 2024	Correction of erroneous description of Gain
			(Amplifier) for 0.26840 MHz of Radiated
			Emission (Mode 5) data.
			From 0.0 dB to 32.2 dB

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics
AM	Amplitude Modulation	IF	Intermediate Frequency
Amp, AMP	Amplifier	ILAC	International Laboratory Accreditation Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	PK	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Тх	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

Reference: Abbreviations (Including words undescribed in this report)

CONTENTS

PAGE

SECTION 1: Customer Information SECTION 2: Equipment Under Test (EUT)	.5 .5
SECTION 3: Test specification, procedures & results	.6
SECTION 4: Operation of EUT during testing	.9
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	12
SECTION 6: -20 dB Bandwidth	14
SECTION 7: 99 % emission bandwidth	14
APPENDIX 1: Test data	15
Radiated Emission (Fundamental and Spurious Emission)	15
Duty Cycle	21
-20 dB Bandwidth / 99 % emission bandwidth	22
APPENDIX 2: Test instruments	24
APPENDIX 3: Photographs of test setup	25
Radiated Emission	25
Worst Case Position	26

SECTION 1: Customer Information

Company Name	TOYOTA MOTOR CORPORATION
Address	1, Toyota-Cho, Toyota, Aichi, 471-8572, Japan
Telephone Number	+81-50-3166-4371
Contact Person	Arinobu Kimura

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer Information
- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date
- SECTION 4: Operation of EUT during testing

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Smart LF oscillator
Model Number	TMLF19D-6
Serial Number	Refer to SECTION 4.2
Condition	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	December 27, 2023
Test Date	January 24 to February 8, 2024

2.2 Product Description

General Specification

Rating	DC 12 V

Radio Specification

Equipment Type	Transceiver
Frequency of Operation	134.2 kHz
Type of Modulation	ASK
Antenna type	Outside antenna (*1), Inside antenna (*2), Rear antenna (*3), Immobilizer antenna *1: Maximum number of this antenna is 4. *2: Maximum number of this antenna is 3. *3: Maximum number of this antenna is 2.

Smart LF oscillator (model: TMLF19D-6) consists of the following parts:

- Smart ECU
- Outside Antenna
- Inside Antenna
- Rear Antenna
- Immobilizer Antenna

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	FCC Part 15 Subpart C
	The latest version on the first day of the testing period
Title	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.209 Radiated emission limits; general requirements.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	<fcc></fcc>	<fcc></fcc>	N/A	N/A	*1)
	ANSI C63.10:2013	Section 15.207			
	6 Standard test methods	<ised></ised>			
	<ised></ised>	RSS-Gen 8.8			
	RSS-Gen 8.8				
Electric Field Strength	<fcc></fcc>	<fcc></fcc>	9.4 dB	Complied	Radiated
of Fundamental	ANSI C63.10:2013	Section 15.209	134.2 kHz, 0 deg.		
Emission	6 Standard test methods	<ised></ised>	Peak with Duty		
	<ised></ised>	RSS-210 7.2	factor		
	RSS-Gen 6.5, 6.12	RSS-Gen 8.9	(Mode 1)		
Electric Field Strength	<fcc></fcc>	<fcc></fcc>	19.9 dB	Complied	Radiated
of Spurious Emission	ANSI C63.10:2013	Section 15.209	0.67100 MHz,		
	6 Standard test methods	<ised></ised>	0 deg., QP		
	<ised></ised>	RSS-210 7.3	(Mode 3, 5)		
	RSS-Gen 6.5, 6.6, 6.13	RSS-Gen 8.9			
-20 dB Bandwidth	<fcc></fcc>	<fcc></fcc>	N/A	Complied	Radiated
	ANSI C63.10:2013	Reference data		-	
	6 Standard test methods	<ised></ised>			
	<ised></ised>	-			
	-				
Note: UL Japan, Inc.'s E	MI Work Procedures: Wo	k Instructions-ULID-	003591 and Work Ir	nstructions-Ul	ID-003593.

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

FCC Part 15.31 (e)

The battery voltage (DC 12 V) is provided to the EUT. Input voltage to RF part does not go through the regulator.

So the test was performed with the supply voltage varied between 85 % and 115 % of the nominal rated supply voltage (DC 12 V) and the variation of the input power does not affect the test result, therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99 % emission bandwidth	RSS-Gen 6.7	-	N/A	-	Radiated

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission Measurement Frequency range Unit Calculated distance Uncertainty (+/-) 9 kHz to 30 MHz dB 3.3 3 m 3.1 10 m dB 30 MHz to 200 MHz 3 m Horizontal dB 4.8 Vertical dB 5.0 200 MHz to 1000 MHz Horizontal dB 5.1 Vertical dB 6.2 10 m 30 MHz to 200 MHz Horizontal dB 4.8 dB 4.8 Vertical 200 MHz to 1000 MHz Horizontal dB 4.9 Vertical dB 5.0

-20 dB Bandwidth and 99% Occupied Bandwidth

Item	Unit	Calculated
		Uncertainty (+/-)
Bandwidth (OBW)	%	0.96

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan

Telephone: +81-596-24-8999

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

Test mode	Remarks					
1) Tx 134.2kHz, Outside Antenna in A circuit	*1)					
2) Tx 134.2kHz, Rear Antenna in B circuit	*1)					
3) Tx 134.2kHz, Inside Antenna in C circuit	*1)					
4) Tx 134.2kHz, Immobilizer Antenna in D circuit ^{*2)}	*1)					
5) Tx 134.2kHz, Outside Antenna and Rear Antenna	*1)					
(B, C, D, E, F and G)						
*Power of the EUT was set by the software as follows;						
Software: 19CY_IDT_denpa_v01_200721 Version:	01					
(Date: 2020.07.21, Storage location: EUT	memory)					
*This setting of software is the worst case.						
Any conditions under the normal use do not exceed the condition of setting.						
In addition, end users cannot change the settings of the o	utput power of the product.					
Justification: The system was configured in typical fashior	n (as a user would normally use it) for testing.					

*1) Refer to Timing of transmission in "Theory of Operation" for details.

*2) This EUT has two modes which transponder key is attached or not. The worst case was confirmed with and without transponder key attached, as a result, the test without transponder key attached was the worst case. Therefore for Electric Field Strength of Fundamental Emission and Electric Field Strength of Spurious Emission tests, the test without transponder key attached was performed only.

- * Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.
- *The test was performed with Item B as representative, because it was confirmed that there was no difference among Item B to Item E at the pre-check.
- *The test was performed with Item F as representative, because it was confirmed that there was no difference among Item F to Item G at the pre-check.
- *The test was performed with Item H as representative, because it was confirmed that there was no difference among Item H to Item J at the pre-check.

Description of EUT and Support Equipment

No.	Item	Model number	Serial Number	Manufacturer	Remark
А	Smart ECU	TMLF19D-6	LF19-099 *1)	-	EUT
			LF19-115 *2)		
В	Outside Antenna	D19A2	TD776	-	EUT
С	Outside Antenna	D19A2	TD777	-	EUT
D	Outside Antenna	D19A2	TD778	-	EUT
Е	Outside Antenna	D19A2	TD779	-	EUT
F	Rear Antenna	12TA0	TT189	-	EUT
G	Rear Antenna	12TA0	TT190	-	EUT
Н	Inside Antenna	18WAO	307	-	EUT
1	Inside Antenna	18WAO	307	-	EUT
J	Inside Antenna	18WAO	308	-	EUT
Κ	Immobilizer Antenna	18PA1	TP225	-	EUT
L	Switch Box	TMLF19D-6MAX	B001	-	-
Μ	Smart key	19CY	102	-	*3)

*1) Used for Mode 1 to 4 *2) Used for Mode 5 *3) Used for Mode 4 only

List of Cables Used

No.	Name	Length (m)		Remark	
			Cable	Connector	
1	DC Cable	2.4	Unshielded	Unshielded	-
2	Antenna Cable	3.0	Unshielded	Unshielded	-
3	Antenna Cable	3.0	Unshielded	Unshielded	-
4	Antenna Cable	3.0	Unshielded	Unshielded	-
5	Antenna Cable	3.0	Unshielded	Unshielded	-
6	Antenna Cable	3.0	Unshielded	Unshielded	-
7	Antenna Cable	3.0	Unshielded	Unshielded	-
8	Antenna Cable	3.0	Unshielded	Unshielded	-
9	Antenna Cable	3.0	Unshielded	Unshielded	-
10	Antenna Cable	3.0	Unshielded	Unshielded	-
11	Antenna Cable	3.0	Unshielded	Unshielded	-
12	DC & Signal Cable	3.0	Unshielded	Unshielded	-

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[Limit conversion]

The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

[Frequency: From 9 kHz to 30 MHz]

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., and 135 deg., 180 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 m open field test site. Therefore, sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

These tests were performed in semi anechoic chamber. Therefore, the measured level of emissions may be higher than if measurements were made without a ground plane. However, test results were confirmed to pass against standard limit.

[Frequency: From 30 MHz to 1 GHz]

The measuring antenna height varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

[Test instruments and test settings]

[1 eet met americe	ana teet eettiingej		
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz
Antenna Type	Loop	Biconical	Logperiodic

The test was made with the detector (RBW/VBW) in the following table. When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Frequency	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz
Instrument used	Test Receiver				
Detector	PK / AV	QP	PK / AV	QP	QP
IF Bandwidth	200 Hz	200 Hz	9 kHz	9 kHz	120 kHz
Test Distance	3 m *1)	3 m *1)	3 m *1)	3 m *2)	3 m

*1) Distance Factor: 40 x log (3 m / 300 m) = -80 dB

*2) Distance Factor: 40 x log (3 m / 30 m) = -40 dB

Figure 1: Test Setup

Below 1 GHz

Test Distance: 3 m

 $\pmb{\mathsf{x}}$: Center of turn table

Figure 1: Direction of the Loop Antenna

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range	: 9 kHz to 1 GHz
Test data	: APPENDIX
Test result	: Pass

SECTION 6: -20 dB Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-20 dB Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer

Test data	: APPENDIX
Test result	: Pass

SECTION 7: 99 % emission bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used				
99 % emission	Enough width to	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer				
bandwidth	display	of OBW	of RBW								
	emission skirts										
Peak hold was app	Peak hold was applied as Worst-case measurement.										

Test data: APPENDIXTest result: Pass

APPENDIX 1: Test data

Radiated Emission (Fundamental and Spurious Emission)

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.2 January 24, 2024 23 deg. C / 38 % RH Tomoya Sone (Above 30 MHz) Mode 1

No.2 January 25, 2024 22 deg. C / 41 % RH Tomoya Sone (Below 30 MHz)

Mode

PK or QP											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	70.1	19.5	-74.0	0.0	-	15.6	45.0	29.4	Fundamental (DC 10.2 V)
0deg	0.13420	PK	70.1	19.5	-74.0	0.0	-	15.6	45.0	29.4	Fundamental (DC 12.0 V)
0deg	0.13420	PK	70.1	19.5	-74.0	0.0	-	15.6	45.0	29.4	Fundamental (DC 13.8 V)
0deg	0.26840	PK	44.8	19.6	-64.3	32.2	-	-32.1	39.0	71.1	
0deg	0.40260	PK	54.1	19.7	-64.3	32.2	-	-22.7	35.5	58.2	
0deg	0.53680	QP	23.6	19.7	-24.3	32.2	-	-13.2	33.0	46.2	
0deg	0.67100	QP	43.6	19.7	-24.3	32.2	-	6.8	31.1	24.3	
0deg	0.80520	QP	22.1	19.7	-24.3	32.2	-	-14.7	29.5	44.2	
0deg	0.93940	QP	36.0	19.7	-24.3	32.2	-	-0.8	28.1	28.9	
0deg	1.07360	QP	21.5	19.7	-24.2	32.2	-	-15.2	26.9	42.1	
0deg	1.20780	QP	28.2	19.7	-24.2	32.2	-	-8.5	25.9	34.4	
0deg	1.34200	QP	21.2	19.7	-24.2	32.2	-	-15.5	25.0	40.5	
Hori.	34.063	QP	21.6	17.0	6.7	28.6	-	16.7	40.0	23.3	
Hori.	70.539	QP	23.7	6.3	7.1	28.5	-	8.6	40.0	31.4	
Hori.	157.164	QP	20.9	15.4	7.8	28.2	-	15.9	43.5	27.6	
Hori.	303.199	QP	20.4	13.8	8.7	27.8	-	15.1	46.0	30.9	Floor Noise
Hori.	492.003	QP	21.1	17.8	9.7	29.1	-	19.5	46.0	26.5	Floor Noise
Hori.	803.204	QP	21.2	20.9	10.9	29.1	-	23.9	46.0	22.1	Floor Noise
Vert.	34.063	QP	22.3	17.0	6.7	28.6	-	17.4	40.0	22.6	
Vert.	70.716	QP	25.7	6.3	7.1	28.5	-	10.6	40.0	29.4	
Vert.	157.164	QP	20.9	15.4	7.8	28.2	-	15.9	43.5	27.6	
Vert.	303.199	QP	20.4	13.8	8.7	27.8	-	15.1	46.0	30.9	Floor Noise
Vert.	492.003	QP	21.1	17.8	9.7	29.1	-	19.5	46.0	26.5	Floor Noise
Vert.	803.204	QP	21.2	20.9	10.9	29.1	-	23.9	46.0	22.1	Floor Noise

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	70.1	19.5	-74.0	0.0	0.0	15.6	25.0	9.4	Fundamental (DC 10.2 V)
0deg	0.13420	PK	70.1	19.5	-74.0	0.0	0.0	15.6	25.0	9.4	Fundamental (DC 12.0 V)
0deg	0.13420	PK	70.1	19.5	-74.0	0.0	0.0	15.6	25.0	9.4	Fundamental (DC 13.8 V)
0deg	0.26840	PK	44.8	19.6	-64.3	32.2	0.0	-32.1	19.0	51.1	
0deg	0.40260	PK	54.1	19.7	-64.3	32.2	0.0	-22.7	15.5	38.2	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Since the peak emission result satisfied the average limit, duty factor was omitted.

Result of the fundamental emission at 3 m without Distance factor

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	70.1	19.5	6.0	0.0	-	95.6	-	-	Fundamental
Result = Reading + An	t Factor + Los	ss (Cable+	Attenuator) -	Gain(Amprifie	er)						

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated. Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.2 January 24, 2024 23 deg. C / 38 % RH Tomoya Sone (Above 30 MHz) Mode 2

No.2 January 25, 2024 22 deg. C / 41 % RH Tomoya Sone (Below 30 MHz)

Mode

PK or QP											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	68.9	19.5	-74.0	0.0	-	14.4	45.0	30.6	Fundamental (DC 10.2 V)
0deg	0.13420	PK	68.9	19.5	-74.0	0.0	-	14.4	45.0	30.6	Fundamental (DC 12.0 V)
0deg	0.13420	PK	68.9	19.5	-74.0	0.0	-	14.4	45.0	30.6	Fundamental (DC 13.8 V)
0deg	0.26840	PK	38.6	19.6	-64.3	32.2	-	-38.3	39.0	77.3	
0deg	0.40260	PK	50.7	19.7	-64.3	32.2	-	-26.1	35.5	61.6	
0deg	0.53680	QP	43.1	19.7	-24.3	32.2	-	6.3	33.0	26.7	
0deg	0.67100	QP	38.6	19.7	-24.3	32.2	-	1.8	31.1	29.3	
0deg	0.80520	QP	21.3	19.7	-24.3	32.2	-	-15.5	29.5	45.0	
0deg	0.93940	QP	37.3	19.7	-24.3	32.2	-	0.5	28.1	27.6	
0deg	1.07360	QP	20.9	19.7	-24.2	32.2	-	-15.8	26.9	42.7	
0deg	1.20780	QP	33.7	19.7	-24.2	32.2	-	-3.0	25.9	28.9	
0deg	1.34200	QP	20.7	19.7	-24.2	32.2	-	-16.0	25.0	41.0	
Hori.	33.922	QP	21.6	17.0	6.7	28.6	-	16.7	40.0	23.3	
Hori.	70.830	QP	23.7	6.3	7.1	28.5	-	8.6	40.0	31.4	
Hori.	157.111	QP	20.5	15.4	7.8	28.2	-	15.5	43.5	28.0	
Hori.	303.132	QP	20.3	13.8	8.7	27.8	-	15.0	46.0	31.0	Floor Noise
Hori.	492.632	QP	21.4	17.8	9.7	29.1	-	19.8	46.0	26.2	Floor Noise
Hori.	803.742	QP	21.1	20.9	10.9	29.1	-	23.8	46.0	22.2	Floor Noise
Vert.	34.247	QP	22.2	16.9	6.7	28.6	-	17.2	40.0	22.8	
Vert.	70.495	QP	25.6	6.3	7.1	28.5	-	10.5	40.0	29.5	
Vert.	157.638	QP	20.7	15.3	7.8	28.2	-	15.6	43.5	27.9	
Vert.	303.742	QP	20.5	13.8	8.7	27.8	-	15.2	46.0	30.8	Floor Noise
Vert.	492.167	QP	21.0	17.8	9.7	29.1	-	19.4	46.0	26.6	Floor Noise
Vert.	803.731	QP	21.1	20.9	10.9	29.1	-	23.8	46.0	22.2	Floor Noise

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	68.9	19.5	-74.0	0.0	0.0	14.4	25.0	10.6	Fundamental (DC 10.2 V)
0deg	0.13420	PK	68.9	19.5	-74.0	0.0	0.0	14.4	25.0	10.6	Fundamental (DC 12.0 V)
0deg	0.13420	PK	68.9	19.5	-74.0	0.0	0.0	14.4	25.0	10.6	Fundamental (DC 13.8 V)
0deg	0.26840	PK	38.6	19.6	-64.3	32.2	0.0	-38.3	19.0	57.3	
0deg	0.40260	PK	50.7	19.7	-64.3	32.2	0.0	-26.1	15.5	41.6	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

* Since the peak emission result satisfied the average limit, duty factor was omitted.

Result of the fundame	ental emissio	on at 3 m w	ithout Distar	nce factor							
Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor			-	
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	68.9	19.5	6.0	0.0	-	94.4	-	-	Fundamental
		(0	A.u	0 . /							

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated. Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.2 January 24, 2024 23 deg. C / 38 % RH Tomoya Sone (Above 30 MHz) Mode 3

No.2 January 25, 2024 22 deg. C / 41 % RH Tomoya Sone (Below 30 MHz)

Mode

PK or QP											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Odeg	0.13420	PK	69.2	19.5	-74.0	0.0	-	14.7	45.0	30.3	Fundamental (DC 10.2 V)
Odeg	0.13420	PK	69.2	19.5	-74.0	0.0	-	14.7	45.0	30.3	Fundamental (DC 12.0 V)
0deg	0.13420	PK	69.2	19.5	-74.0	0.0	-	14.7	45.0	30.3	Fundamental (DC 13.8 V)
0deg	0.26840	PK	37.7	19.6	-64.3	32.2	-	-39.2	39.0	78.2	
0deg	0.40260	PK	57.7	19.7	-64.3	32.2	-	-19.1	35.5	54.6	
0deg	0.53680	QP	36.7	19.7	-24.3	32.2	-	-0.1	33.0	33.1	
0deg	0.67100	QP	48.0	19.7	-24.3	32.2	-	11.2	31.1	19.9	
0deg	0.80520	QP	23.4	19.7	-24.3	32.2	-	-13.4	29.5	42.9	
0deg	0.93940	QP	39.8	19.7	-24.3	32.2	-	3.0	28.1	25.1	
0deg	1.07360	QP	21.1	19.7	-24.2	32.2	-	-15.6	26.9	42.5	
0deg	1.20780	QP	31.5	19.7	-24.2	32.2	-	-5.2	25.9	31.1	
0deg	1.34200	QP	20.8	19.7	-24.2	32.2	-	-15.9	25.0	40.9	
Hori.	34.533	QP	21.5	16.8	6.7	28.6	-	16.4	40.0	23.6	
Hori.	70.848	QP	23.7	6.3	7.1	28.5	-	8.6	40.0	31.4	
Hori.	157.764	QP	20.7	15.3	7.8	28.2	-	15.6	43.5	27.9	
Hori.	303.457	QP	20.5	13.8	8.7	27.8	-	15.2	46.0	30.8	Floor Noise
Hori.	492.877	QP	21.1	17.8	9.8	29.1	-	19.6	46.0	26.4	Floor Noise
Hori.	803.765	QP	21.3	20.9	10.9	29.1	-	24.0	46.0	22.0	Floor Noise
Vert.	34.985	QP	22.4	16.6	6.7	28.6	-	17.1	40.0	22.9	
Vert.	70.749	QP	25.6	6.3	7.1	28.5	-	10.5	40.0	29.5	
Vert.	157.421	QP	20.7	15.3	7.8	28.2	-	15.6	43.5	27.9	
Vert.	303.432	QP	20.4	13.8	8.7	27.8	-	15.1	46.0	30.9	Floor Noise
Vert.	492.135	QP	21.1	17.8	9.7	29.1	-	19.5	46.0	26.5	Floor Noise
Vert.	803.410	QP	21.1	20.9	10.9	29.1	-	23.8	46.0	22.2	Floor Noise

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	69.2	19.5	-74.0	0.0	0.0	14.7	25.0	10.3	Fundamental (DC 10.2 V)
0deg	0.13420	PK	69.2	19.5	-74.0	0.0	0.0	14.7	25.0	10.3	Fundamental (DC 12.0 V)
0deg	0.13420	PK	69.2	19.5	-74.0	0.0	0.0	14.7	25.0	10.3	Fundamental (DC 13.8 V)
0deg	0.26840	PK	37.7	19.6	-64.3	32.2	0.0	-39.2	19.0	58.2	
0deg	0.40260	PK	57.7	19.7	-64.3	32.2	0.0	-19.1	15.5	34.6	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *

* Since the peak emission result satisfied the average limit, duty factor was omitted.

Result of the fundame	ental emissio	on at 3 m v	vithout Distar	nce factor							
Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor			-	
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	69.2	19.5	6.0	0.0	-	94.7	-	-	Fundamental
		(0.1.1		0 . / .							

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated. Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer Ise EMC Lab. No.2 January 24, 2024 23 deg. C / 38 % RH Tomoya Sone (Above 30 MHz) Mode 4

No.2 January 25, 2024 22 deg. C / 41 % RH Tomoya Sone (Below 30 MHz)

Mode

PK or QP											
Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Odeg	0.13420	PK	63.4	19.5	-74.0	0.0	-	8.9	45.0	36.1	Fundamental (DC 10.2 V)
0deg	0.13420	PK	63.4	19.5	-74.0	0.0	-	8.9	45.0	36.1	Fundamental (DC 12.0 V)
0deg	0.13420	PK	63.4	19.5	-74.0	0.0	-	8.9	45.0	36.1	Fundamental (DC 13.8 V)
0deg	0.26840	PK	32.7	19.6	-64.3	32.2	-	-44.2	39.0	83.2	
0deg	0.40260	PK	49.7	19.7	-64.3	32.2	-	-27.1	35.5	62.6	
Odeg	0.53680	QP	22.2	19.7	-24.3	32.2	-	-14.6	33.0	47.6	
0deg	0.67100	QP	38.2	19.7	-24.3	32.2	-	1.4	31.1	29.7	
0deg	0.80520	QP	21.3	19.7	-24.3	32.2	-	-15.5	29.5	45.0	
0deg	0.93940	QP	31.1	19.7	-24.3	32.2	-	-5.7	28.1	33.8	
0deg	1.07360	QP	21.4	19.7	-24.2	32.2	-	-15.3	26.9	42.2	
0deg	1.20780	QP	26.0	19.7	-24.2	32.2	-	-10.7	25.9	36.6	
0deg	1.34200	QP	21.6	19.7	-24.2	32.2	-	-15.1	25.0	40.1	
Hori.	34.421	QP	21.5	16.8	6.7	28.6	-	16.4	40.0	23.6	
Hori.	70.683	QP	23.6	6.3	7.1	28.5	-	8.5	40.0	31.5	
Hori.	157.086	QP	20.8	15.4	7.8	28.2	-	15.8	43.5	27.7	
Hori.	303.422	QP	20.5	13.8	8.7	27.8	-	15.2	46.0	30.8	Floor Noise
Hori.	492.043	QP	21.2	17.8	9.7	29.1	-	19.6	46.0	26.4	Floor Noise
Hori.	803.745	QP	21.5	20.9	10.9	29.1	-	24.2	46.0	21.8	Floor Noise
Vert.	34.433	QP	22.4	16.8	6.7	28.6	-	17.3	40.0	22.7	
Vert.	70.893	QP	25.7	6.3	7.1	28.5	-	10.6	40.0	29.4	
Vert.	157.433	QP	21.1	15.3	7.8	28.2	-	16.0	43.5	27.5	
Vert.	303.589	QP	20.4	13.8	8.7	27.8	-	15.1	46.0	30.9	Floor Noise
Vert.	492.108	QP	21.1	17.8	9.7	29.1	-	19.5	46.0	26.5	Floor Noise
Vert.	803.310	QP	21.4	20.9	10.9	29.1	-	24.1	46.0	21.9	Floor Noise

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	63.4	19.5	-74.0	0.0	0.0	8.9	25.0	16.1	Fundamental (DC 10.2 V)
0deg	0.13420	PK	63.4	19.5	-74.0	0.0	0.0	8.9	25.0	16.1	Fundamental (DC 12.0 V)
0deg	0.13420	PK	63.4	19.5	-74.0	0.0	0.0	8.9	25.0	16.1	Fundamental (DC 13.8 V)
0deg	0.26840	PK	32.7	19.6	-64.3	32.2	0.0	-44.2	19.0	63.2	
0deg	0.40260	PK	49.7	19.7	-64.3	32.2	0.0	-27.1	15.5	42.6	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * * Since the peak emission result satisfied the average limit, duty factor was omitted.

result of the fulldume	intal cillissio	in at o in a	itilout Bistui								
Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	63.4	19.5	6.0	0.0	-	88.9	-	-	Fundamental
- 5											

Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated. Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test place
Semi Anechoic Chamber
Date
Temperature / Humidity
Engineer
Mode

Ise EMC Lab. No.1 February 8, 2024 22 deg. C / 35 % RH Junya Okuno Mode 5

PK or QP

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Odeg	0.13420	PK	69.8	19.5	-74.0	0.0	-	15.3	45.0	29.7	Fundamental (DC 10.2 V)
Odeg	0.13420	PK	69.8	19.5	-74.0	0.0	-	15.3	45.0	29.7	Fundamental (DC 12.0 V)
Odeg	0.13420	PK	69.8	19.5	-74.0	0.0	-	15.3	45.0	29.7	Fundamental (DC 13.8 V)
Odeg	0.26840	PK	54.6	19.6	-64.3	32.2	-	-22.3	39.0	61.3	
0deg	0.40260	PK	62.6	19.7	-64.3	32.2	-	-14.2	35.5	49.7	
Odeg	0.53680	QP	37.4	19.7	-24.3	32.2	-	0.7	33.0	32.3	
Odeg	0.67100	QP	47.9	19.7	-24.2	32.2	-	11.2	31.1	19.9	
Odeg	0.80520	QP	24.3	19.7	-24.2	32.2	-	-12.4	29.5	41.8	
Odeg	0.93940	QP	40.9	19.7	-24.2	32.2	-	4.3	28.1	23.9	
Odeg	1.07360	QP	22.7	19.7	-24.2	32.1	-	-13.9	26.9	40.9	
Odeg	1.20780	QP	37.1	19.7	-24.2	32.1	-	0.5	25.9	25.4	
Odeg	1.34200	QP	21.9	19.7	-24.2	32.1	-	-14.7	25.0	39.7	
Hori.	38.522	QP	30.4	15.4	7.4	38.7	-	14.5	40.0	25.6	
Hori.	84.065	QP	34.6	7.6	8.2	38.8	-	11.6	40.0	28.4	
Hori.	91.879	QP	31.3	8.9	8.3	38.8	-	9.6	43.5	33.9	
Hori.	300.000	QP	27.7	13.6	10.4	38.7	-	13.1	46.0	33.0	Floor Noise
Hori.	500.000	QP	27.2	17.8	11.8	38.3	-	18.6	46.0	27.5	Floor Noise
Hori.	800.000	QP	26.9	20.7	13.6	38.0	-	23.2	46.0	22.9	Floor Noise
Vert.	38.522	QP	30.0	15.4	7.4	38.7	-	14.1	40.0	26.0	
Vert.	84.065	QP	38.1	7.6	8.2	38.8	-	15.1	40.0	24.9	
Vert.	91.879	QP	31.7	8.9	8.3	38.8	-	10.0	43.5	33.5	
Vert.	300.000	QP	27.7	13.6	10.4	38.7	-	13.1	46.0	33.0	Floor Noise
Vert.	500.000	QP	27.2	17.8	11.8	38.3	-	18.6	46.0	27.5	Floor Noise
Vert.	800.000	QP	26.9	20.7	13.6	38.0	-	23.2	46.0	22.9	Floor Noise

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Ant Deg [deg] or	Frequency	Detector	Reading	Ant Factor	Loss	Gain	Duty Factor	Result	Limit	Margin	Remark
Polarity [Hori/Vert]	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	69.8	19.5	-74.0	0.0	-21.7	-6.4	25.0	31.4	Fundamental (DC 10.2 V)
0deg	0.13420	PK	69.8	19.5	-74.0	0.0	-21.7	-6.4	25.0	31.4	Fundamental (DC 12.0 V)
0deg	0.13420	PK	69.8	19.5	-74.0	0.0	-21.7	-6.4	25.0	31.4	Fundamental (DC 13.8 V)
0deg	0.26840	PK	54.6	19.6	-64.3	32.2	-21.7	-44.0	19.0	63.0	
0deg	0.40260	PK	62.6	19.7	-64.3	32.2	-21.7	-35.9	15.5	51.4	
Result = Reading + Ar	esult = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor *										

Result of the fundamental emission at 3 m without Distance factor

Result of the fundamental emission at 5 m without Distance factor											
Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0deg	0.13420	PK	69.8	19.5	6.0	0.0	-	95.3	-	-	
Result = Reading + Ant Factor + Loss (Cable+Attenuator) - Gain(Amprifier)											

If Gain 0.0dB shown in the above table, pre-amplifier was not used to avoid the influence of carrier power. The pre-amplifier used for carrier frequency measurement was not saturated. Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Radiated Spurious Emission (Plot data, Worst case for Fundamental Emission)

Duty Cycle

Test place	Ise EMC Lab.
Semi Anechoic Chamber	No.1
Date	February 8, 2024
Temperature / Humidity	22 deg. C / 35 % RH
Engineer	Junya Okuno

Mode	Duty [%]	Duty [dB]
5	0.82	-21.7

* "Timing of transmission" of the application documents was referred, since Intentional off time was unrealizable in measurement circumstance.

Mode 5									
One transmission duration 8.20 msec	Transmission cycle > 100 msec								
Stop 97m/V 500 1000ms/ 4500ms Stop # 11100ms/ 4500ms/V 1 Cursor 1 Cursor 1 1 Cursor 1	500 97mW 500 F 1 102mV 2 1 0 <t< td=""></t<>								

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan / +81-596-24-8999

6.52

-20 dB Bandwidth / 99 % emission bandwidth

Test place Semi Anechoic Chamber Date Temperature / Humidity Engineer	se EMC Lab. No.2 No.1 January 26, 2024 February 8, 22 deg. C / 37 % RH 22 deg. C / Fomohisa Nakagawa Junya Okur	2024 35 % RH 10
Mode	99 % emission bandwidth	-20 dB Bandwidth
	[kHz]	[kHz]
1	14.02	5.53
2	15.23	6.05
3	14.97	6.02
4 with key	14.97	8.16
4 without key	14.84	7.89

*It was confirmed that there were no differences in the bandwidth due to the input voltage.

13.09

5

-20 dB Bandwidth / 99 % emission bandwidth

APPENDIX 2: Test instruments

Test Equipment

Test	LIMS ID	Description	Manufacturer	Model	Serial	Last	Cal Int
nem						Date	mit
RE	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	12/12/2023	24
RF	192300	Thermo-Hygrometer	CUSTOM Inc	CTH-201	0013	-	-
RF	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/01/2023	12
RF	142228	Measure Tape Steel	KOMELON	KMC-36	-	-	-
RE	178648	EMI measurement	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	141427	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103B+BBA9106	08031	07/11/2023	12
RE	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-190	07/11/2023	12
RE	220646	Attenuator	Huber+Suhner	6806_N-50-1	-	03/17/2023	12
RE	141317	Coaxial Cable	UL Japan	-	-	09/12/2023	12
RE	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/02/2023	12
RE	141949	Test Receiver	Rohde & Schwarz	ESCI	100767	05/17/2023	12
RE	142152	Loop Antenna	Rohde & Schwarz	HFH2-Z2	836553/009	10/17/2023	12
RE	159670	Coaxial Cable	UL Japan	-	-	11/21/2023	12
RE	141222	Coaxial Cable	Fujikura,HP,Mini- Circits,Fujikura	3D-2W(12m)/ 5D-2W(5m)/ 5D-2W(0.8m)/ 5D-2W(1m)	-	02/01/2023	12
RE	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/07/2023	12
RE	141295	High Pass Filter 0.15-30MHz	Rohde & Schwarz	EZ-25/3	100041	02/01/2023	12
RE	141951	EMI Test Receiver	Rohde & Schwarz	ESR26	101408	04/10/2023	12
RE	141904	Spectrum Analyzer	Keysight Technologies Inc	N9030A	US51350215	11/08/2023	12
RE	150449	Digital Storage Oscilloscope	Keysight Technologies Inc	DSOX3102T, N2750A	MY56310068, US53331022	10/17/2023	12
RE	142528	Detector	Millitech	DET-15-RPFW0	34	-	-
RE	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	11/20/2023	12
RE	141213	Attenuator(6dB)	Weinschel Corp	2	BK7971	11/16/2023	12
RE	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	04/05/2023	12
RE	141585	Pre Amplifier	L3 Narda-MITEQ	MLA-10K01-B01-35	1237616	02/02/2023	12
RE	141198	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	2513	06/06/2023	12
RE	160924	Logperiodic Antenna	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	225	11/29/2023	12
RE	141215	Coaxial Cable	Fujikura/Suhner/TSJ	5D-2W/3D-2W/ RG400u/ RFM-E421(SW)	-/01068 (Switcher)	06/23/2023	12
RE	141350	Coaxial Cable	Suhner/storm/Agilent/TSJ	-	-	03/03/2023	12
RE	141998	AC1_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	12/06/2023	24
RE	141566	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	A08Q26	-	-
RE	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	02/01/2024	12
RE	142226	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	142645	Loop Antenna	UL Japan	-	-	-	-

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated Emission