

Blank Page Don't Forget To Delete Mel

EMI TESTING REPORT

EUT	:	MOUSE
MODEL	;	CREUBV-P
FCC ID	:	NHM-CREUBV

PREPARED FOR:

CRE TECHNOLOGY CORP. LTD.					
3F. NO. 46. SEC. 2, KAI-FENG ST.,					
TAIPEL TAIWAN, R.O.C.					

PREPARED BY:

SPECTRIM RESEARCH & TESTING LABORATORY INC.

NO. 101-10, LING 8, SHAN-TONG LI CHUNG – LI CITY,

TAOYUAN, TAIWAN, R.O.C.

TEL: (03) 4987684 FAX: (03) 4986528

PAGE: 2 OF 25

TABLE OF CONTENTS

1.	TEST REPORT CERTIFICATION	4
2.	TEST STATEMENT	
	2.1 TEST STATEMENT	5
	2.2 DEPARTURE FROM DOCUMENT POLICIES,	
	PROCEDURE OR SPECIFICATIONS, TEST STATEMENT	5
3.	EUT MODIFICATIONS	6
4.	MODIFICATION LETTER.	7
5.	CONDUCTED POWER LINE TEST	
	5.1 TEST EQUIPMENT	8
	5.2 TEST PROCEDURE	8
	5.3 TEST SETUP	9
	5.4 CONFIGURATION OF THE EUT	10-
	5.5 EUT OPERATING CONDITION	12
	5.6 EMISSION LIMIT	12
	5.7 EMISSION TEST RESULT	13
6.	RADIATED EMISSION TEST	
	6.1 TEST EQUIPMENT	14
	6.2 TEST PROCEDURE	15
	6.3 TEST SETUP	15-
	6.4 CONFIGURATION OF THE EUT	17
	6.5 EUT OPERATING CONDITION	17
	6.6 EMISSION LIMIT	17
	6.7 RADIATION EMISSION TEST RESULT	18
_	DUOTOS OF TESTINO	10.

PAGE: 3 OF 25

1. TEST REPORT CERTIFICATION

APPLICANT : CRE TECHNOLOGY CORP. LTD.

ADDRESS: 3F. NO. 46, SEC. 2, KAI-FENG ST.,

TAIPEI, TAIWAN, R.O.C.

EUT DESCRIPTION : MOUSE

(A) POWER SUPPLY : FROM PC

: <u>CREUBV-P</u> (B) MODEL

(C) FCC ID : NHM-CREUBV

FINAL TEST DATE : 01/15/1999

MEASUREMENT PROCEDURE USED :

* PART 15 SUB PART B OF FCC RULES AND REGULATIONS (47 CFR PART 15) FCC / ANSI C63.4 - 1992

We hereby show that :

The measurement shown in the attachment were made in accordance with the procedures indicated, and the energy emitted by the equipment was found to be within the limits applicable.

TESTING ENGINEER: WM CAM DATE 1/15/99

Hill Chou

: _______ DATE _1 / 15 / 99/ SUPERVISOR

Jesse Ho

: 3 18 DATE 1/15/99 APPROVED BY

Johnson Ho

2. TEST STATEMENT

2.1 TEST STATEMENT

To whom it may concern,

This letter is to explain the EUT (Mouse) will be class II changed.

The original FCC ID: NHM-CREUBV was approved by FCC.

The different between new one and old one is USB cable and IC (HT82M33C).

CPU PC: PENTIUM – 166MMX CLOCK CHIP: 66MHz

RESOLUTION: 640 * 480

The data was shown in this report reflects the worst - case data for the condition as listed above.

2.2 DEPARTURE FROM DOCUMENT POLICIES, PROCEDURE OR SPECIFICATIONS, THE STATEMNT

A	DII	ז ו	JA	VF.

Any departure from document policies & procedures or from specifications. Yes _____, No ______. If yes, the description as below.

- B. The certificate and report shall not be reproduced except in full, without the written approval of SRT LABORATORY.
- C. The report must not be used by the client to claim product endorsement by NVLAP or any agency the government.

PAGE: 5 OF 25

3. EUT MODIFICATIONS

The following accessories were added to the EUT during testing :

- 1). Changed C1 and C2 from 47pF to cap. 68pF.
- 2). Cut off the ground of C1 and C2 contact to HT82M33C Pin9.

PAGE: 6 OF 25

4. MODIFICATION LETTER

This section contains the following documents:

A. Letter of modifications

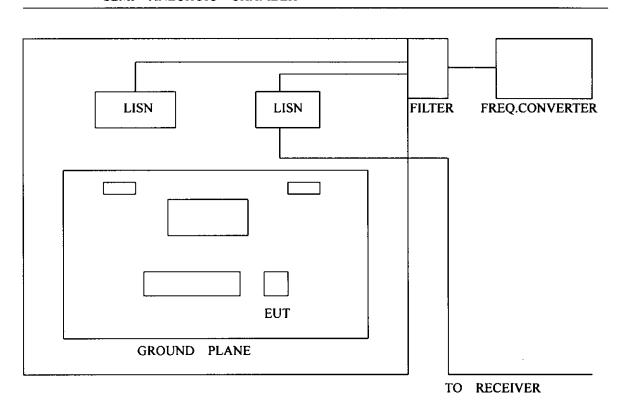
PAGE: 7 OF 25

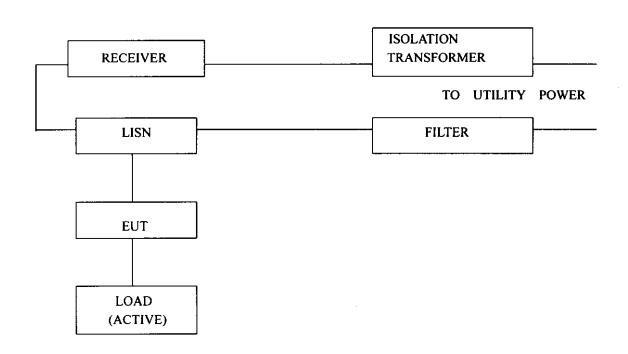
5. CONDUCTED POWER LINE TEST

5.1 TEST EQUIPMENT

The following test equipment was used during the conducted power line test:

EQUIPMENTA FACILITIES	SPECIFICATIONS		Samuel American Control of the Contr		
SPECTRUM ANALYZER	9 KHz TO I GHz	НР	8590L/ 3624A01317	AUGUST , 1998 ETC	1Y
EMI TEST RECEIVER	9 KHz TO 30 MHz	ROHDE & SCHWARZ	ESHS30/ 826003/008	AUGUST , 1998 ETC	1Y
LISN	50 uH, 50 ohm	SOLAR ELECTRONICS	9252-50- R24-BNC/ 951315	AUGUST , 1998 ETC	1Y
LISN	50uH, 50 ohm	SOLAR ELECTRONICS	9252-50- R24-BNC/ 951315	AUGUST , 1998 ETC	1Y
SIGNAL GENERATOR	9 KHz TO 1080 MHz	ROHDE & SCHWARZ	SMY01/ 841104/019	APPIL, 1998 ITRI	1Y
POWER CONVERTER	0 TO 300 VAC VAC 47-500 Hz	AFC	AFC-1KW/ 850510	APPIL, 1998 SRT	1Y


5.2 TEST PROCEDURE


The EUT was tested according to ANSI C63.4-1992. The frequency spectrum from 0.45 MHz to 30 MHz was investigated. The LISN used was 50 ohm/50 uHenry as specified by SECTION 5.1 of ANSI C63.4-1992. Cables and peripherals were moved to find the maximum emission levels for each frequency.

PAGE: 8 OF 25

5.3 TEST SETUP

SEMI - ANECHOIC CHAMBER

PAGE: 9 OF 25

5.4 CONFIGURATION OF THE EUT

The EUT was configured according to ANSI C63.4-1992. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

A. EUT

DEVICE			
MOUSE	CRE TECHNOLOGY	CREUBV-P	NHM-CREUBV
	CORP. LTD.		

B. INTERNAL DEVICES

DEGE THE	the state of the s	policidada de la destada dos como servicios.	

PAGE: 10 OF 25

SPECTRUM RESEARCH & TESTING LAB. FCC ID: <u>NHM-CREUBY</u> REPORT#: <u>T8K05-2</u>

C. PERIPHERALS

DEXICE	Westing Verrings			
MONITOR	OPTIQUEST	4500DC-E	GWGMULT182	POWER-UNS DATA-S
PRINTER	НР	2225C	BS46XU2225C	POWER-UNS DATA-S
MODEM	SMARTEAM	103/212A	EF56A5103/212A	POWER-UNS DATA-S
KEYBOARD	НР	SK-2502	GYUR41SK	DATA-UNS
PC	COMPAQ	3431	EUN3431	POWER-UNS

- REMARK:

- (1). cable uns : unshielded
 - s : shielded
- (2). cables All 1m or greater in length bundled according to ANSI C63.4 1992.

PAGE: 11 OF 25

5.5 EUT OPERATING CONDITION

OPERATING CONDITION IS ACCORDING TO ANSI C63.4 - 1992.

- 1. EUT POWER ON.
- 2. "H" PATTERN SENT TO THE FOLLOWING PERIPHERALS:
 - PRINTER
 - MONITOR
 - MODEM
- 3. PC CPU: PENTIUM 166MMX

CLOCK CHIP: 66MHz

4. RESOLUTION: 640 * 480

5.6 CONDUCTED POWER LINE EMISSION LIMIT

FREQUENCY RANGE (NH)		
0.45 - 1.705	1000 uV	250 uV
1.705 - 30	3000 uV	250 uV

NOTE: In the above table, the toghter limit applies at the band edges.

PAGE: 12 OF 25

5.7 CONDUCTED POWER LINE TEST RESULT

The frequency spectrum from <u>0.45</u> MHz to <u>30</u> MHz was investigated. All readinges are QUASI-PEAK VALUES with a resolution bandwidth of <u>9</u> KHz.

TEMPERATURE : 24 °C HUMIDITY: <u>56</u> %RH

FREQUENCY (VIII)			The state of the s
0.76	*	43.65	250
0.97	38.46	58.88	250
1.80	*	69.98	250
3.59	98.86	*	250
3.73	112.20	*	250
6.58	87.10	127.35	250
11.19	38.46	90.16	250
23.98	167.88	165.96	250

REMARKS: (1). * = measurement does not apply for this frequency

(2).uncertainty in conducted emmission measured is <+/-2dB

(3).any departure from specification : N/A

(4).PC CPU: PENTIUM - 166MMX

CLOCK CHIP: 66MHz

(5), RESOLUTION: 640*480

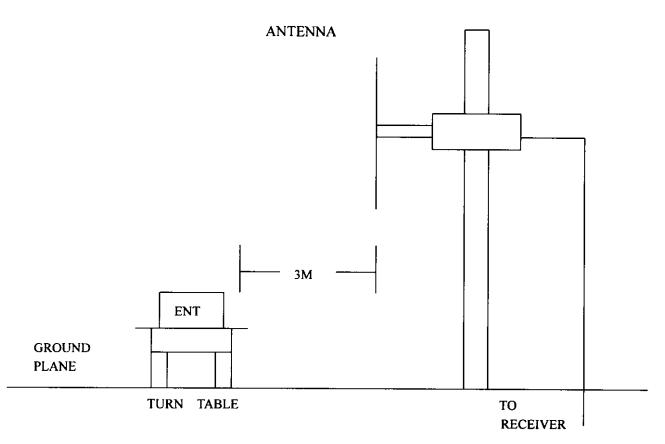
SIGNED BY TESTING ENGINEER:

PAGE: 13 OF 25

6. RADIATED EMISSION TEST

6.1 TEST EQUIPMENT

THE FOLLOWING TEST EQUIPMENT WAS USED DURING THE RADIATED EMISSION TEST:


EQPMENT?	ENDYCHTE COVE		216)113.27		3 1 1 1 1 N
FACILITIES	(ONS)	ikan <u>andika</u> n kan kalendar ka	tisinastinastininastininastinini (mitai ilini ilini)	si danca del adamanta, et masta antimismos	Security Security &
RECEIVER	20 MHz TO	R & S	ESVS30/	APRIL, 1998	1Y
	1000 MHz		841977/03	ITRI	
SPECTRUM	100 Hz TO	HP	8568B/	OCT., 1998	1Y
ANALYZER	1500 MHz		3019A05294	ETC	
SPECTRUM	9 KHz TO	HP	8593E/	APRIL, 1998	1 Y
ANALYZER	22 GHz		3322A00670	ITRI	
SPECTRUM	100 Hz TO	IF R	A-7550/	JULY, 1998	1 Y
ANALYZER	1000 MHz		2684/1248	ETC	
SIGNAL	9 KHz TO	ROHDE &	SMY01/	APPRIL, 1998	1Y
GENERATOR	1080 MHz	SCHWARZ	841104/019	ITRI	
DIPOLE	28 MHz TO	EMCO	3121C/	SEP., 1998	ΙY
ANTENNA	1000 MHz		9003-535	SRT	!
DIPOLE	28 MHz TO	EMCO	3121C/	NOV., 1998	1 Y
ANTENNA	1000 MHz		9611-1239	SRT	
BI-LOG	26 MHz TO	ЕМСО	3142/	NOV., 1998	1 Y
ANTENNA	2000 MHz		9608-1073	SRT	
BI-LOG	26 MHz TO	EMCO	3143/	SEP., 1998	1 Y
ANTENNA	1100 MHz		9509-1152	SRT	
PRE-AMPLIFIER	0.1 MHz TO	НР	8447D/	APRIL, 1998	1 Y
	1300 MHz		2944A08402	ITRI	
PRE-AMPLIFIER	0.1 MHz TO	НР	8447D/	AUGUST, 1998	۱Y
	1300 MHz		2944A06412	ETC	
HORN ANTENNA	1 GHz TO	EMCO	3115/	JULY, 1997	1.5Y
	18 GHz		9602-4681	SRT	

PAGE: 14 OF 25

6.2 TEST PROCEDURE

- (1). The EUT was tested according to ANSI C63.4-1992. The radiated test was performed at SRT LAB'S OPEN SITE, this site is on file with the FCC laboratory division, reference 31040/SRT.
- (2). The EUT, peripheralls were put on the turntable which table size is 1m x 1.5 m, table heigh 0.8 m. All set up is according to ANSI C63.4-1992.
- (3). The frequency spectrum from 30 MHz to 1 GHz was investigated. All readings from 30 MHz to 1 GHz are QUASI-PEAK values with a resolution bandeidth of 120 KHz. All readings are above 1 GHz, PEAK values with a resolution bandwidth of 1 MHz. Measurements were made at 3 METERS.
- (4). The antenna heigh were varied from <u>1</u> m to <u>4</u> m heigh to find the maximum emission for each frequency.
- (5). The antenna polarization vertical polarization and horizontal polarization.

6.3 RADIATED TEST SET-UP

PAGE: 15 OF 25

6.3 RADIATED TEST SET-UP

ANSI

ELECTRICAL AND ELECTRONIC EQUIIPMENT IN THE RANGE IN THE RANGE OF 9 KHz TO 40 GHz C63.4-1992

NONCONDUCTIVE **EŲT** 10 cm TABLE 1.5 × 1 METER 10 cm 80 cm TO **GROUND PLANE** CONDUCTING GROUND PLANE EXTENDS 0.5 m BEYOND EUT SYSTEM FOOTPRINT

PAGE: 16 OF 25

6.4 CONFIGURATION OF THE THE EUT

Same as section 4.4 of this report

6.5 EUT OPERATING CONDITION

Same as section 4.5 of this report.

6.6 REDIATED EMISSION LIMIT

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

CLASS B

FREQUENCY (MH2)	DISTANCE (6)	
30 - 88	3	100
88 - 216	3	150
216 - 960	3	200
ABOVE 960	3	500

CLASS B (OPEN CASE)

FREQUENCY (MHz)	and DISTANCE (m) and the man	urs sunction.
30 - 88	3	199.5
88 - 216	3	298.5
216 - 960	3	398.1
ABOVE 960	3	

CLASS A

FREQUENCY (MH2) DISTANCE (m) PRESENTABLE (CV)						
30 - 88	3	316.3				
88 - 216	3	473.2				
216 - 960	3	613.0				
ABOVE 960	3	1000.0				

NOTE: 1. In the emission tables above, the toghter limit applies at the band edges.

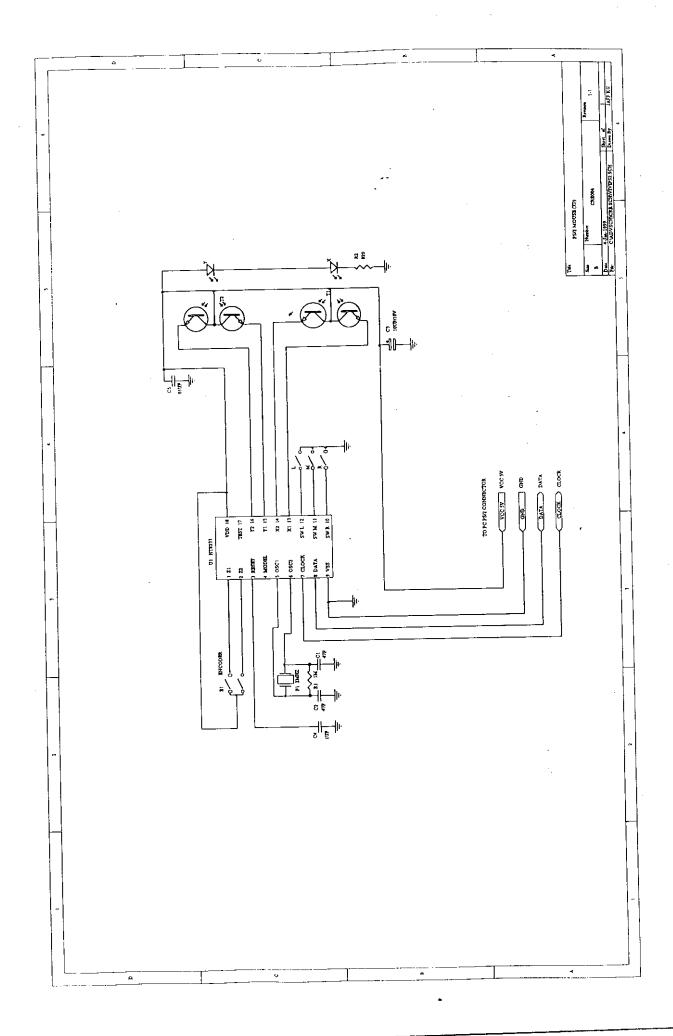
2. Distance refers to the distance between measuring instrument, antenna, and the closest point of any part of the device or system.

PAGE: 17 OF 25

6.7 RADIATED EMISSION TEST RESULT

The frequency spectrum from 30 MHz to 1 GHz was investigated. All readings from 30 MHz to 1 GHz are QUASI-PEAK VALUES with a resolution bandwidth of 120 KHz. Measurements were made at 3 meters. The measurements above 1 GHz with a resolution bandwidth of 1 MHz are PEAK READING at a distance of 3 meters.

TEMPERATURE: 24 °C HUMIDITY: <u>56</u> %RH


FREQ.	CABLE		no once and the same				
(MH2):	(dB)	(dB)	; (e):147 (e):247				
132.45	1.0	10.7	14.5	11.6	20.4	14.6	150
156.50	1.1	10.2	13.3	8.9	17.0	10.2	150
216.09	1.2	13.0	11.3	10.4	18.8	17.0	200
432.66	1.8	17.1	16.7	16.2	60.3	56.9	200
532.50	1.8	19.7	13.5	12.6	56.2	50.7	200
599.07	2.1	23.2	13.2	9.4	84.1	54.3	200
	<u> </u>						

- **REMARKS**: (1).*=measurement does not apply for this frequency.
 - (2) the maximum condition was with the monitor power cord connected to the personal computer. (3). sample calculation
 - 20 LOG(EMISSION)Uv/m = CABLE LOSS(dB)+FACTOR(dB)+READING (dBuV/m)
 - (4) uncertainty in radiated emission measured is <+/-4dB
 - (5). any departure from specification: N/A
 - (6).CPU: PENTIUM 166MMX CLOCK CHIP: 66MHz

RESOLUTION: 640 * 480

SIGNED BY TESTING ENGINEER:

PAGE: 18 OF 25

