

MEASUREMENT/TECHNICAL REPORT**APPLICANT:** SPEC RESEARCH, Inc.**MODEL NO.:** SR2000,SR3000**FCC ID:** OCJSR3000

This report concerns (check one) : **Original Grant** **Class II Change**

Equipment type: **MOUSE**

Deferred grant requested per 47CFR 0.457(d)(1)(ii)?

Yes No If yes, defer until: _____ (date)

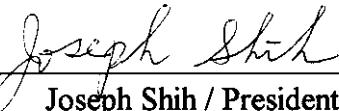
We, the undersigned, agree to notify the Commission by (date) _____ / _____ / _____ of the intended date of announcement of the product so that the grant can be issued on that date.

Transiyion Rules Request per 15.37?

Yes No

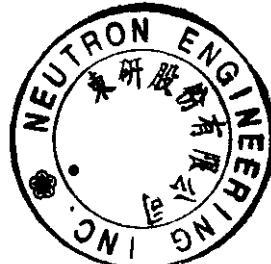
If no, assumed Part 15, Subpart B for unintentional radiator the new 47 CFR (10-1-90 Edition) provision.

Report Prepared


by **Testing House** : **Neutron Engineering Inc.**

for **Company** :

Name **SPEC RESEARCH, Inc.**


Address **16725 E. Gale Ave., City of Industry, CA91745**

Applicant Signature :

Joseph Shih / President

CERTIFICATION**We hereby certify that:**

The test data , data evaluation , test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (1992)/CISPR22(1996) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15 , Subpart B/CISPR22(1996).

Prepared by : Carol ChenCarol Chen**Reviewed by :** Andy ChiuAndy Chiu**Approved by :** George YaoGeorge Yao**Issued Date :** Jan. 15, 1999**Report No. :** NEI-FCCB-98219**Company Stamp :**

NEUTRON ENGINEERING INC.
20, Alley 50, Lane 119, Dong Hwu Rd.,
P.O. Box 6-158, Nei Hwu,
Taipei, Taiwan
TEL : (02) 2633-6872 FAX : (02) 2633-4578

Table of Contents

1. General Information	
1-1	Product Description	4
1-2	Related Submittal(s)/Grant(s)	4
1-3	Tested System Details	5
1-4	Test Methodology	6
1-5	Test Facility	6
2. Product Labeling	
Figure 2-1	FCC ID Label	7
Figure 2-2	Location of Label on EUT	7
3. System Test Configuration	
3-1	Justification	8
3-2	EUT Exercise Software	8
3-3	Special Accessories	9
3-4	Equipment Modifications	9
3-5	Configuration of Tested System	10
Figure 3-1	Configuration of Tested System	12
4. Block Diagram(s)	13
5. Conducted and Radiated Measurement Photos	14
Figure 5-1	Conducted Measurement Photos	14
Figure 5-2	Radiated Emission Data	15
6. Conducted Emission Dates	16
7. Radiated Emission Dates	17
7-1	Radiated Emission Data	17
7-2	Field Strength Calculation	18
7-3	Correction Factor Table VS Frequency	19
8. Attachment	
Photos of Tested EUT	20
User Manual	21

1. GENERAL INFORMATION**1-1. Product Description**

The SPEC RESEARCH, INC. Model : SR2000,SR3000 (referred to as the EUT in this report) is a RS-232 interface mouse designed as an "Input Device" plug and play for compatible with Windows95/98.

Detailed features and/or technical specification enclosed as User's Manual attached.

1-2. Related Submittal(s) / Grant (s)**1-2-1. Models Covered**

SPEC RESEARCH / SR3000

1-2-2. Models Difference

Model SR2000 is identical to Model SR3000 except numbers of function key.

Model SR2000 is two keys. Model SR3000 is three keys.

1-3. Tested System Details

The FCC IDs for all equipments, plus descriptions of all cables used in the tested system (including inserted cards, which have grants) are:

Model No.	FCC ID	Equipment	Cable
SR3000	OCJSR3000	Mouse ⁽¹⁾	Shielded Data Cable
4500DC-E	GWGMULTI82	Monitor	Shielded Data Cable ⁽²⁾ Un-Shielded Power Cord
93V	ANO6282	PC	Shielded Power Cord
HP2225C+	DSI6XU2225	Printer	Shielded Parallel Data Cable Un-Shielded Power Cord
AT-1200CK	E2O5OV1200CK	Modem	Shielded Serial Data Cable Un-Shielded Power Cord
FDA-102A	F4Z4K3FDA-102A	Keyboard	Shielded Data Cable

Notes:

- (1) EUT submitted for grant.
- (2) Monitor's attached video cable without ferrite core.

1-4. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 (1992)/CISPR 22(1996). Radiated testing was performed at an antenna to EUT distance 10 meters.

1-5. Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the address of No. 5, All 2, Lane 220, Kang Lo St., Nei Hwu, Taipei, Taiwan, R.O.C. of NEUTRON ENGINEERING INC. This site has been fully described in report dated Feb.4,1998 Submitted to your office, and accepted in a letter dated March 28, 1998 (31040/SIT-1300F2).

3. System Test Configuration

3-1. Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). The mouse was connected to support equipment-personal computer. Peripherals of PC, such as monitor, keyboard, modem and printer were contained in this system in order to comply with the ANSI C63.4/CISPR22(1996) Rules requirement. The PC operated in the default 640x480/31.5KHz VGA Graphic mode. This operating condition was tested and used to collect the included data.

3-2. EUT Exercise Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software, contained on a 3-1/2 inch disk, was inserted into driver A and is auto-starting on power-up. Once loaded, the program sequentially exercises each system component in turn. The sequence used is:

1. Read(write) from(to) mass storage device (Disk).
2. Send "H" pattern to video port device (Monitor).
3. Send " H " pattern to parallel port device (Printer).
4. Send " H " pattern to COM2 port device (Modem).
5. Repeated from 1 to 4 continuously.

As the Keyboard and mouse are strictly input devices, no data is transmitted from them during test. They are, however, continuously scanned for data input activity.

3-3. Special Accessories

Not available for this EUT intended for grant.

3-4. Equipment Modifications

Not available for this EUT intended for grant.

Applicant Signature :

Date :

Jan. 15, 1999

Type/Printed Name :

Joseph Shih

Position :

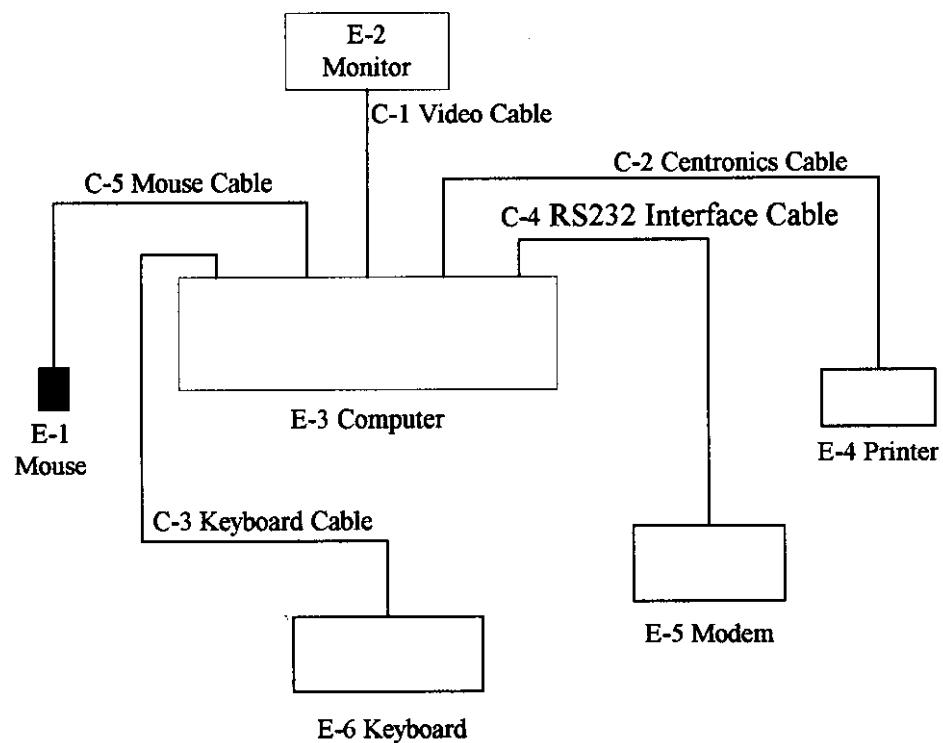
President

3.5 Configuration of Tested System

The configuration of tested system is described as the block diagram shown in next page Figure 3.1 and details information of I/O cable and power cord connection are tablized as Table A and B. The monitor is powered from a floor mounted receptacle (referred to as the wall outlet in the previous described)was tested.

TABLE A - Test Equipment

Item	Equipment	Mfr.	Model/Type No.	I/O Port	FCC ID	Remark
E-1	Mouse	SPEC RESEARCH	SR3000	COM Port	OCJSR3000	EUT
E-2	Monitor	Optiquest	4500DC-E	VGA Port	GWGMULTI82	
E-3	PC	IBM	93V		ANO6282	
E-4	Printer	HP	HP2225C+	Printer Port	DSI6XU2225	
E-5	Modem	Datatronics	AT-1200CK	COM Port	E2O5OV1200CK	
E-6	Keyboard	Forward	FDA-102A	PS/2 Port	F4Z4K3FDA-102A	


Remark:

- (1) Unless otherwise denoted as EUT in 「Remark」 column, device(s) used in tested system is a support equipment.
- (2) Unless otherwise marked as ※ in 「Remark」 column, Neutron consigns the supporting equipment(s) to the tested system.

Table B. - Information Cable Information

Note:

(1) Unless otherwise marked as **※** in 「Remark」 column, Neutron consigns the supporting equipment(s) to the tested system.

Figure 3.1 Configuration of Tested System

4. Block Diagram(s)

Figure 4.1 Block diagram of system, Page 13.A

6. Conducted Emission Dates

6.1 The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Judgement: Passed by **-13.07 dB** in mode of **Line terminal 0.51 MHz**

Freq. (MHz)	Terminal	Measured(dBuV)		Limits(dBuV)		Safe Margins	
		L/N	QP-Mode	AV-Mode	QP-Mode	AV-Mode	(dBuV)
0.28	Line		46.10	*	60.91	50.91	-14.81 (QP)
0.38	Line		43.54	*	58.30	48.30	-14.76 (QP)
0.51	Line		42.93	*	56.00	46.00	-13.07 (QP)
0.76	Line		42.29	*	56.00	46.00	-13.71 (QP)
6.19	Line		42.00	*	60.00	50.00	-18.00 (QP)
0.28	Neutral		45.28	*	60.85	50.85	-15.57 (QP)
0.40	Neutral		42.33	*	57.85	47.85	-15.52 (QP)
0.76	Neutral		42.79	*	56.00	46.00	-13.21 (QP)
4.27	Neutral		39.42	*	56.00	46.00	-16.58 (QP)
6.06	Neutral		41.95	*	60.00	50.00	-18.05 (QP)

Remark :

- (1) Reading in which marked as QP means measurements by using are Quasi-Peak Mode with Detector BW=9KHz ; SPA setting in RBW=100KHz, VBW =100KHz, Swp. Time = 0.3 sec./MHz . Reading in which marked as AV means measurements by using are Average Mode with instrument setting in RBW=1MHz, VBW=10Hz, Swp. Time =0.3 sec./MHz .
- (2) All readings are QP Mode value unless otherwise stated AVG in column of «Note». If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform . In this case, a “*” marked in AVG Mode column of Interference Voltage Measured .
- (3) Measuring frequency range from 150KHz to 30MHz .

Review :

Test Personnel :

Riley HSY

Date:

Dec. 07 , 1998

7. Radiated Emission Dates

7.1 The following data lists the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, as well as the limit. Explanation of the Correction Factor is given in paragraph 7.2.

Judgement: Passed by **-2.70 dB** in polarity of **Vertical 66.47 MHz**

Freq. (MHz)	Ant. H/V	Reading(RA) (dBuV)	Corr.Factor(CF) (dB)	Measured(FS) (dBuV/m)	Limits(QP) (dBuV/m)	Safe Margins (dBuV/m)	Note
30.50	V	29.74	-5.02	24.72	30.00	-	5.28
37.70	H	31.97	-5.19	26.78	30.00	-	3.22
66.47	V	34.41	-7.11	27.30	30.00	-	2.70
121.40	V	25.76	-2.25	23.51	30.00	-	6.49
143.10	H	26.22	-3.02	23.20	30.00	-	6.80
158.40	H	21.79	-1.68	20.11	30.00	-	9.89
212.80	H	27.52	-3.72	23.80	30.00	-	6.20
226.40	V	26.39	-3.72	22.67	30.00	-	7.33
332.00	H	28.80	1.55	30.35	37.00	-	6.65
332.00	V	31.19	1.55	32.74	37.00	-	4.26
464.80	V	27.98	5.30	33.28	37.00	-	3.72
486.40	H	27.20	6.39	33.59	37.00	-	3.41

Remark :

- (1) Reading in which marked as QP or Peak means measurements by using are Quasi-Peak Mode or Peak Mode with Detector BW=120KHz ; SPA setting in RBW=1MHz, VBW=1MHz, Swp. Time = 0.3 sec./MHz.
- (2) All readings are Peak unless otherwise stated QP in column of "Note". Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform.
- (3) Measuring frequency range from 30MHz to 1000MHz.
- (4) If the peak scan value lower limit more than 20dB, then this signal data does not show in table.

Review :

Test Personnel :

Riley Hsu

Date:

Dec. 04, 1998

7-2. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$\mathbf{FS = RA + AF + CF - AG}$$

Where **FS** = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor (1)

CF = Cable Attenuation Factor (1)

AG = Amplifier Gain (1) (2)

Remark :

(1) The Correction Factor = $AF + CF - AG$, as shown in the data tables' Correction Factor column.

(2) AG is not available for Neutron's Open Site Facility

Example of Calculation:

Assume a Receiver Reading of 23.7 dBuV is obtained with an Antenna Factor of 7.2 dBuV and a Cable Factor of 1.1 dBuV. Then:

1. The Correction Factor will be calculated by

$$\mathbf{Correction Factor = AF + CF - AG = 7.2 + 1.1 - 0 = 8.3 \text{ (dBuV)}}$$

as shown in the data tables' Correction Factor column.

2. The Field Strength will be calculated by

$$\mathbf{FS = RA + Correction Factor = 23.7 + 8.3 = 32 \text{ (dBuV).}}$$

FS is the value shown in the data tables' Corrected Reading column and RA is the value shown in

the data tables' Receiver Reading column. The 32 dBuV/m value was mathematically converted to its corresponding level in uV/m as:

$$\mathbf{Log^{-1} [(32.0 \text{ dBuV/m})/20] = 39.8 \text{ (uV/m)}}$$

7-3. Correction Factor VS Frequency

Frequency (MHz)	Antenna Factor (dB)	Cable Loss (dB)
30.00	11.10	0.90
35.00	10.80	0.50
40.00	11.20	1.00
45.00	11.50	0.80
50.00	11.30	1.00
55.00	10.50	1.30
60.00	9.90	1.00
65.00	8.70	1.50
70.00	7.60	1.20
75.00	6.40	1.40
80.00	6.10	1.30
85.00	7.00	1.40
90.00	8.00	1.70
95.00	10.00	1.50
100.00	11.20	1.90
110.00	12.60	2.00
120.00	13.00	1.80
130.00	12.50	1.80
140.00	12.00	2.00
150.00	12.00	2.20
160.00	13.20	2.40
170.00	14.80	2.50
180.00	16.30	2.50
190.00	17.00	2.50
200.00	17.30	2.40
225.00	10.50	2.70
250.00	11.70	3.10
275.00	12.80	3.70
300.00	14.50	4.00
325.00	14.00	4.50
350.00	14.20	4.50
375.00	14.60	4.60
400.00	15.10	4.80
450.00	16.20	5.40
500.00	17.60	6.50
550.00	17.80	7.00
600.00	18.40	7.10
650.00	19.50	7.10
700.00	20.80	7.20
750.00	20.50	7.50
800.00	21.10	8.00
850.00	22.40	8.60
900.00	23.50	8.90
950.00	24.00	9.70
1000.00	24.80	10.30

8. Photos of Tested EUT:

1. Photo # 1. Front View
- 2.
2. Photo # 2. Rear View
3. Photo # 3. Unit Partially Disassembled
4. Photo # 4. Unit Partially Disassembled
5. Photo # 5. Front View Rear View
6. Photo #6. Unit Partially Disassembled
7. Photo #7. Unit Partially Disassembled
8. Photo #8. Front View
9. Photo #9. Rear View
10. Photo #10. Unit Partially Disassembled
11. Photo #11. Unit Partially Disassembled
12. Photo #12. Unit Partially Disassembled
13. Photo #13. Unit Partially Disassembled