

Test Report Prepared By:

Electronics Test Centre 27 East Lake Hill Airdrie, Alberta Canada T2B 2B7 enquire@etc-mpbtech.com phone: (403) 912-0037 fax: (403) 912-0083

MPBT Report No.: t11e2736 Rev: 1

Date: 26 February 2003

Report for Emissions Testing of the Crane Smart System Display In accordance with FCC Part 15, Subpart B (2000).

Test Personnel: David Raynes

Prepared for:

The Load & A2B Company Inc. 4908 - 97 Street Edmonton, Alberta Canada T6E 5S1

Client Acceptance Authorized Signatory

David Raynes

Senior EMC Technologist Electronics Test Centre (Airdrie) Authorized Signatory

TABLE OF CONTENTS

- 1.0 INTRODUCTION
 - 1.1 Scope
 - 1.2 Applicant
 - 1.3 Applicability
 - 1.4 Test Sample Description
 - 1.5 General Test Conditions and Assumptions
 - 1.6 Scope of Testing
 - 1.6.1 Variations in Test Methods
 - 1.6.2 Emissions Measurements
 - 1.6.3 Test Sample Modifications
- 2.0 ABBREVIATIONS
- 3.0 MEASUREMENT UNCERTAINTY
- 4.0 TEST CONCLUSION
 - 4.1 Conducted Emissions
 - 4.2 Radiated Emissions
- 5.0 TEST FACILITY
 - 5.1 Location
 - 5.2 Grounding Plan
 - 5.3 Power
 - 5.4 Emissions Profile
 - 5.5 Test Configuration
 - 5.5.1 Tabletop Equipment
 - 5.5.2 Rack Mount
- 6.0 TEST EQUIPMENT
 - 6.1 Radiated Emissions
 - 6.2 Conducted Emissions
 - 6.3 Calibration

APPENDIX A: Test Sample Description:

Crane Smart System Display

1.0 INTRODUCTION

1.1 SCOPE

The purpose of this report is to present the findings and results of compliance testing performed in accordance with FCC Part 15, Subpart B (2000).

1.2 APPLICANT

This test report has been prepared for The Load & A2B Company Inc., located in Calgary, Alberta, Canada.

1.3 APPLICABILITY

All test procedures, limits, and results defined in this document apply to the The Load & A2B Company Inc. Crane Smart System Display unit, referred to herein as the Equipment Under Test (EUT).

The results contained in this report relate only to the item tested.

This report does not imply product endorsement by AALA, NVLAP, or the Canadian or US governments.

1.4 TEST SAMPLE DESCRIPTION

The test sample provided for testing was a Crane Smart System Display:

Product Type:	display panel, operational monitor
Model Number:	Crane Smart Display
Serial Number:	n/a
Cables:	power
Power	nominal 12 VDC
Requirements:	
Peripheral	sensors for boom position and load
Equipment:	

More detailed information is provided by The Load & A2B Company Inc. in Appendix A.

1.5 GENERAL TEST CONDITIONS AND ASSUMPTIONS

The EUT was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. All inputs and outputs to and from other equipment associated with the EUT were adequately simulated.

Where relevant, the EUT was only tested using the monitoring methods and test criteria defined in this report.

1.6 SCOPE OF TESTING

Testing was performed in accordance with FCC Part 15, Subpart B (2000).

1.6.1 VARIATIONS IN TEST METHODS

There were no variations from the test procedures outlined above.

1.6.2 MARGINAL EMISSIONS MEASUREMENTS

As noted in Section 4, some emissions were measured to be within -6 dB of the specified limit.

1.6.3 TEST SAMPLE MODIFICATIONS

There were no equipment modifications during test performance.

2.0 ABBREVIATIONS

- AP -Average Peak
- CE -Conducted Emissions
- E -Field Electric Field
- H -Field Magnetic Field
- N/T -Not Tested
- N/A -Not Applicable
- PK -Peak
- QP -Quasi Peak
- RE -Radiated Emissions

3.0 MEASUREMENT UNCERTAINTY

For Radiated E-Field Emissions and Conducted Emissions, the uncertainties in the measurements were calculated using the methods outlined in the NAMAS document, NIS81: May 1984.

Frequency	= ± 1 kHz
Amplitude (RE)	= ± 4.01 dB
Amplitude (CE)	= ± 3.25 dB

4.0 TEST CONCLUSION

The EUT was subjected to the following tests. Compliance status is indicated as $\ensuremath{\text{PASS}}$ or $\ensuremath{\text{FAIL}}$.

The following table summarizes the test results in terms of the specification and class or level applied, the unique test sample identification, the EUT modification state, and configuration as applicable.

TEST CASE	TEST TYPE	SPECIFICATION	CLASS/ LEVEL	TEST SAMPLE	MOD. STATE	CONFIGURATION	RESULT
§4.1	Conducted Emissions	FCC Part 15 Subpart B	n/a	Crane Smart System Display	nil	n/a	N/A
§4.2	Radiated Emissions	FCC Part 15 Subpart B	A	Crane Smart System Display	nil	See § 1.6.3	PASS

STATEMENT OF COMPLIANCE

The client equipment referred to in this report was found to comply with the requirements as stated above.

4.1 CONDUCTED EMISSIONS

The was not tested for Conducted Emissions. This is a DC powered device. The power source is provided by the end user, not The Load & A2B Company Inc. There is no direct connection to the AC mains.

Test Lab: Electronics Test Centre (Airdrie) Test Personnel: David Raynes Test Date: n/a	Product: Crane Smart System Display		
Test Result, Crane Smart System Display: Not Applicable			

4.2 RADIATED EMISSIONS

Test Lab: MPI	3 Technologies In	c. Airdrie	Product:		
Test Personne	el: David Raynes		Crane Smart System Display		
Test Date: 18	February 2003				
	Test Re	esult, Crane Sma	rt System Displ	ay: Pass	
Objectives/Cri	teria		Specification:	FCC Part 15 Sul	opart B
	E-Field emissions		Frequency	Class A Clas	s B
	ub-system, measun from the EUT, s		[MHz] C	QP@3m QP@	2 3m
	ne specifications a		30 – 88	49.54 40.00)
	els should meet		88 – 216	53.98 43.52	2
•	with a margin o		216 – 960	56.90 46.02	2
requirements	assessed agains of <u>Class A</u> .	tine	above 960	60.00 53.98	}
Temperature = 19 °C Humidity = 35 %					
Horizontal:		Vertical:			
Frequency [MHz]	Field Strength [dBµV/m]	Delta [dB from limit]	Frequency [MHz]	Field Strength [dBµV/m]	Delta [dB from limit]
184.2719	49.56	-4.42	194.1032	49.70	-4.28
			130.2037	49.51	-4.47
			100.7096	49.34	-4.64
		186.7307	48.53	-5.45	
			184.2734	48.39	-5.59
Th		missions measur o the test data a		of the specified li re detail.	mit.

Radiated Emissions Data:

The emissions data is presented in tabular form, showing the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value(s) of up to 4 limits at the frequency measured, and the margin between the result and the limit(s).

For example:

-	ling	Factor	Transducer Factor [dB]	[dB(uV	2	3	4
			8.5 Vert Mai		43.5 4.3	50.5	40.5 7.3

Test Frequency [MHz}	94.0036	Test Frequency f = 94.0036 MHz
Meter Reading [dB (uV)]	37.1 qp	The reading with Quasi-Peak detector
Gain/Loss Factor [dB]	2.2	Net correction for preamp gain & cable loss
Transducer Factor [dB]	8.5	Correction for antenna loss
Level [dB (uVolts)]	47.8	Corrected value for field strength
Limit: 1	54	The value of Limit 1 at 94.0036 MHz
Margin [dB]	-6.2	The field strength is 6.2 dB below Limit 1
Limit: 2	43.5	The value of Limit 2 at 94.0036 MHz
Margin [dB]	4.3	The field strength is 4.3 dB above Limit 2
Limit: 3	50.5	The value of Limit 3 at 94.0036 MHz
Margin [dB]	-2.7	The field strength is 2.7 dB below Limit 3
Limit: 4	40.5	The value of Limit 4 at 94.0036 MHz
Margin [dB]	7.3	The field strength is 7.3 dB above Limit 4

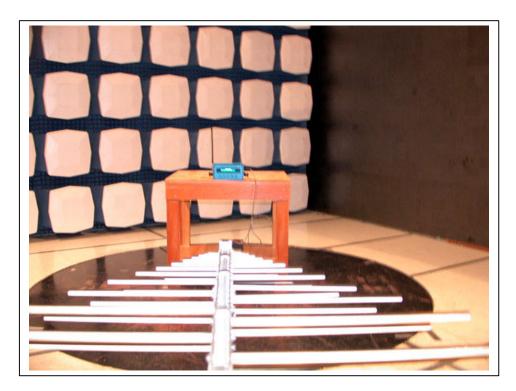
Meter Reading in dBuV + Gain/Loss Factor in dB + Transducer Factor in dB = Corrected Field Strength Note: When a preamp is used, the resulting gain is compensated.

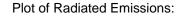
FCC Par Subpart B		Report
Transducer Factor [dB]	↓ Limit:1 lts/meter]	2

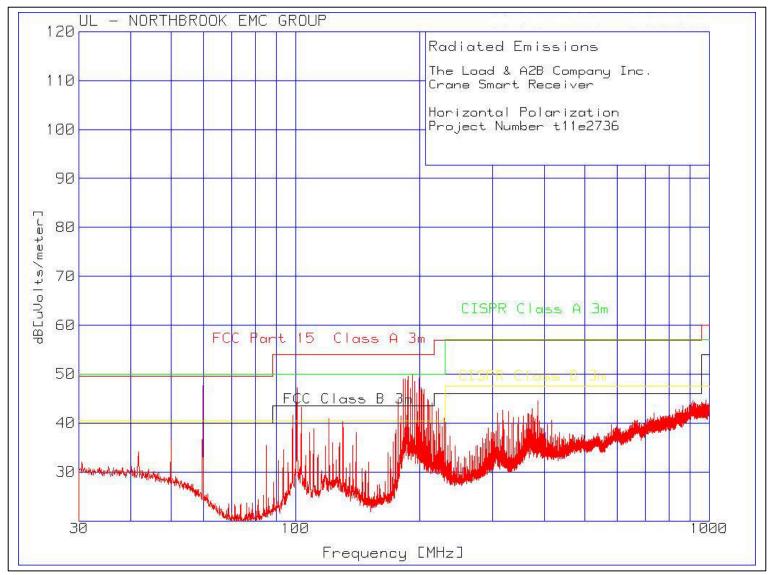
The Load & A2B Company Inc.

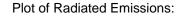
Crane Smart System Display

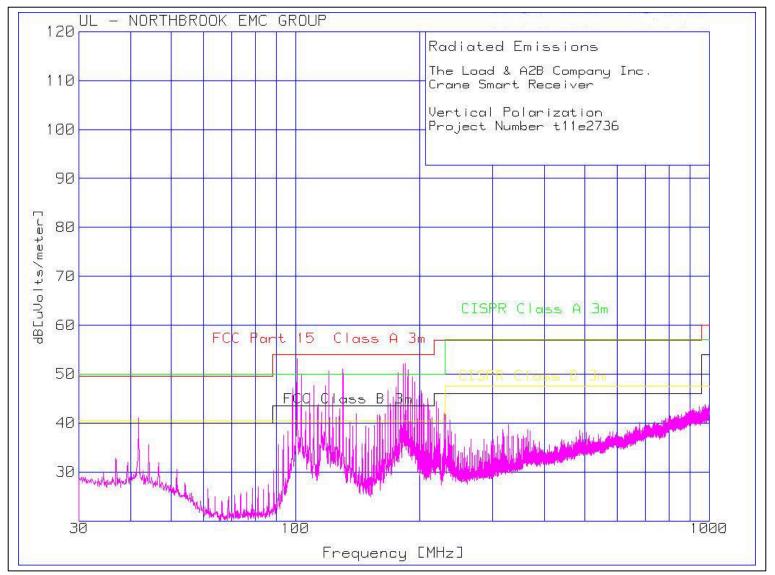
rt No.:t11e2736 rev. 1

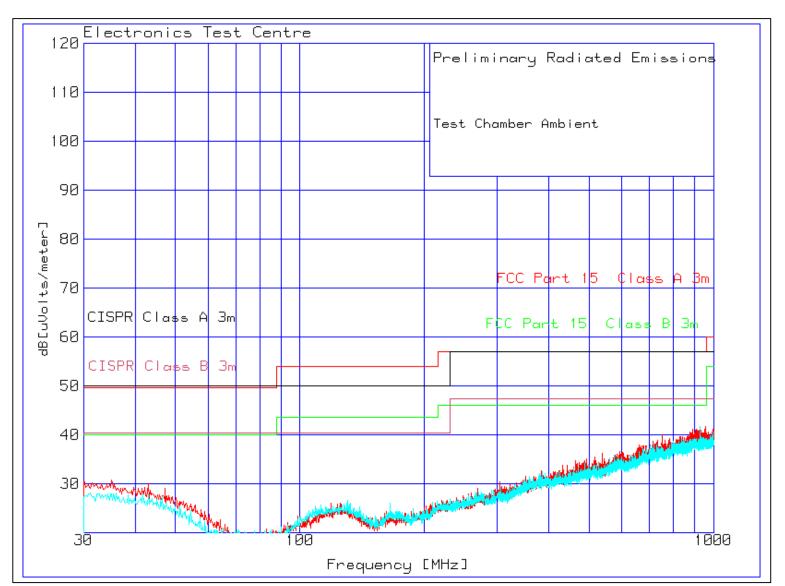

The Load & A2B Company Inc. Crane Smart Receiver Project Number t11e2736	1			
Test Meter Gain/Loss Frequency Reading Factor [MHz] [dB(uV)] [dB]	Transducer Level Limit:1 Factor dB[uVolts/meter [dB]			4
Range: 1 30 - 1000MHz				
56.9617 4.85 qp 2.78 Azimuth: 101 Height:101 Horz	12.68 20.31 49.54 Margin [dB]: -29.23			40.46 -20.15
181.8238 33.16 qp 4.43	10.03 47.62 53.98		43.52	40.46
Azimuth: 159 Height:193 Horz	Margin [dB]: -6.36		4.1	7.16
184.2719 35.16 qp 4.47	9.93 49.56 53.98	50	43.52	40.46
Azimuth: 159 Height:183 Horz	Margin [dB]: -4.42	44	6.04	9.1
186.7304 33.03 qp 4.51	9.97 47.51 53.98	50	43.52	40.46
Azimuth: 159 Height:178 Horz	Margin [dB]: -6.47	-2.49	3.99	7.05
191.6538 32.82 qp 4.48	10.3 47.6 53.98	50	43.52	40.46
Azimuth: 161 Height:171 Horz	Margin [dB]: -6.38	-2.4	4.08	7.14
194.1046 32.54 qp 4.38	10.59 47.51 53.98		43.52	40.46
Azimuth: 162 Height:169 Horz	Margin [dB]: -6.47		3.99	7.05
199.0382 32.09 qp 4.16 Azimuth: 163 Height:164 Horz	11.18 47.43 53.98 Margin [dB]: -6.55			40.46 6.97
Range: 1 30 - 1000MHz				
100.7096 36.16 qp 2.91	10.27 49.34 53.98	50	43.52	40.46
Azimuth: 314 Height:100 Vert	Margin [dB]: -4.64	66	5.82	8.88
103.171 34.25 qp 3.01	10.86 48.12 53.98	50	43.52	40.46
Azimuth: 274 Height:99 Vert	Margin [dB]: -5.86	-1.88	4.6	7.66
120.3714 31.76 qp 3.63	12.21 47.6 53.98	50	43.52	40.46
Azimuth: 225 Height:102 Vert	Margin [dB]: -6.38	-2.4	4.08	7.14
130.2037 33.53 qp 3.6	12.38 49.51 53.98	50	43.52	40.46
Azimuth: 238 Height:100 Vert	Margin [dB]: -4.47	49	5.99	9.05
176.8991 32.19 qp 4.29 Azimuth: 300 Height:100 Vert	10.55 47.03 53.98 Margin [dB]: -6.95			40.46 6.57
181.8258 33.1 qp 4.43	10.15 47.68 53.98	50	43.52	40.46
Azimuth: 298 Height:101 Vert	Margin [dB]: -6.3	-2.32	4.16	7.22
184.2734 33.96 qp 4.47 Azimuth: 283 Height:99 Vert			43.52 4.87	40.46 7.93
186.7307 34.05 qp 4.51	9.97 48.53 53.98		43.52	40.46
Azimuth: 278 Height:99 Vert	Margin [dB]: -5.45		5.01	8.07
191.6564 32.95 qp 4.48 Azimuth: 268 Height:99 Vert			43.52 4.08	40.46 7.14
194.1032 35.06 qp 4.38	10.26 49.7 53.98	50	43.52	40.46
Azimuth: 267 Height:102 Vert	Margin [dB]: -4.28	3	6.18	9.24
LIMIT 1: FCC Part 15 Class A 3 LIMIT 3: FCC Class B 3m	n LIMIT 2: CISPR Class A 3 LIMIT 4: CISPR Class B 3			


qp - Quasi-Peak detector File: QP 30-1000.TXT


Picture of Radiated Emissions test setup:




Picture of Radiated Emissions test setup:



Plot of Radiated Emissions Test Chamber Ambient:

5.0 TEST FACILITY

5.1 LOCATION

The EUT was tested for Electromagnetic Compatibility at the Electronics Test Centre, located in Airdrie, Alberta, Canada.

The RF Anechoic Chamber (RFAC) is identified as Chamber 1, located in the main building complex at the Electronics Test Centre. Its usable working space measures 10.6 m long x 7.3 m wide x 6.5 m high.

This test site is listed with the FCC under Registration Number 99541. Measurements taken at this site are accepted by Industry Canada per file number IC 2046-1.

The floor, walls and ceiling consist of annealed steel panels. The walls and ceiling are covered with ferrite tile, augmented by RF absorbant foam material on the end wall nearest the turntable, and on the adjacent walls and the ceiling. The chamber floor supports a 15 cm high internal floor, constructed of annealed steel panels, that forms the ground plane, and is bonded to the chamber walls.

The 3-m diameter turntable is flush-mounted with the floor. A sub-floor cable-way is provided to route cables between the turntable pit and EUT support equipment. Cables reach the EUT through an opening in the centre of the turntable.

Test instrumentation and EUT support equipment is located in two shielded vestibules located at the side of the main room. Cables are routed through bulkhead panels between the rooms as required. Power feeds are routed into the main room and vestibules through line filters providing at least 100 dB of attenuation between 10 kHz and 10 GHz.

5.2 **GROUNDING PLAN**

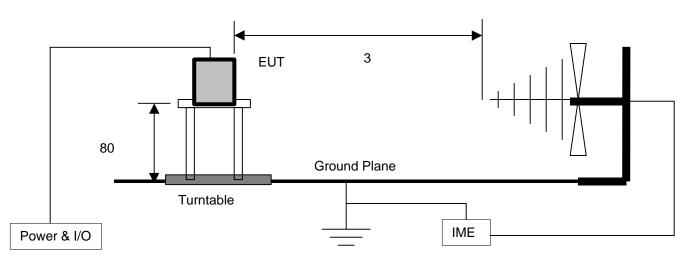
The EUT was located on a wooden table 80 cm above the ground plane. In accordance with The Load & A2B Company Inc. specifications, the EUT was not grounded.

5.3 POWER

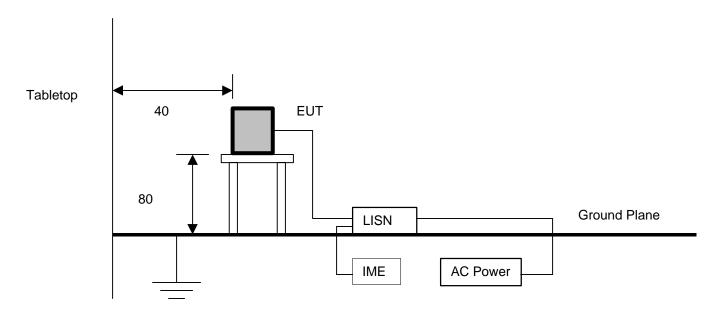
DC power was supplied to the EUT via client-supplied cable connected to a battery positioned beneath the table.

5.4 **EMISSIONS PROFILE**

Ambient radiated electromagnetic emission profiles were generated throughout the tests and are included in the test data.

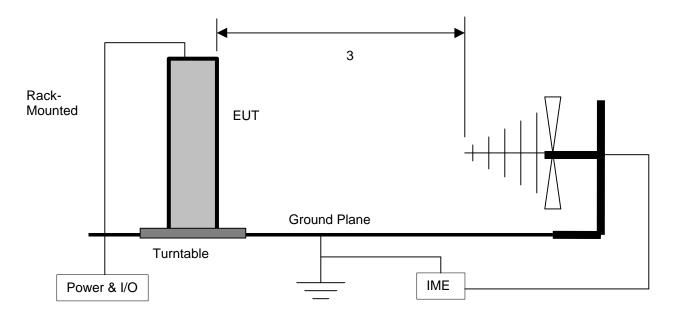

5.5 TEST CONFIGURATION

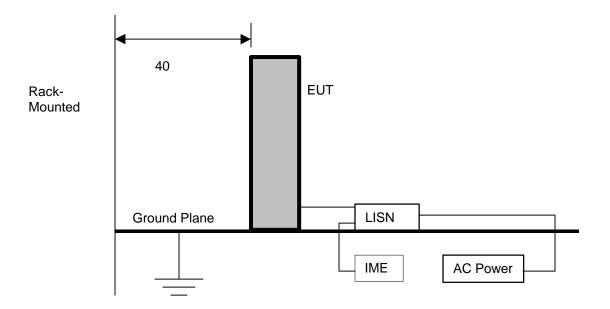
5.5.1 Tabletop Equipment


The following diagrams illustrate the configuration of the EUT test and measurement equipment for Radiated and Conducted Emissions Testing of tabletop equipment.

Radiated Emissions

Tabletop




5.5.2 Rack Mount

The following diagrams illustrate the configuration of the EUT test and measurement equipment for Radiated and Conducted Emissions Testing of rack mounted equipment.

Radiated Emissions

Conducted Emissions

6.0 TEST EQUIPMENT

The following equipment was used for this procedure. All measurement devices are calibrated annually, traceable to NIST.

6.1 RADIATED EMISSIONS

- a) Spectrum Analyzer with RF Preselector
- b) CISPR Quasi-peak Adapter
- c) Power Isolation Transformers
- d) Biconilog antenna (20 MHz to 2 GHz)
- e) Antenna mast positioner, and controller
- f) Flush-mounted turntable, and controller
- g) Personal Computer and EMC software

6.2 CONDUCTED EMISSIONS

- a) Spectrum Analyzer with RF Preselector
- b) Line Impedance Stabilization Network, 50 μH
- c) CISPR Quasi-peak Adapter
- d) Isolation Transformer
- e) Personal Computer and EMC software

6.3 CALIBRATION

All measurement instrumentation conforms to ANSI C63.2. Calibration is maintained in accordance with manufacturer recommendations. Each measurement device is labeled with its ETC asset number and calibration due date.

6.3.1 CALIBRATION ACCURACY

Test equipment used to provide quantitative measurements are calibrated with standards traceable to the National Research Council, National Institute of Standards and Technology or other national standards. Instrumentation systems for emissions measurements have the following accuracies:

Frequency = $\pm 1 \text{ kHz}$ Amplitude (RE) = $\pm 4.01 \text{ dB}$ Amplitude (CE) = $\pm 3.25 \text{ dB}$

6.3.2 TEST EQUIPMENT DESCRIPTION

The equipment used in the tests was selected from the following list.

Instrument	Manufacturer	Model No.	Asset No.	Calibration Due
Spectrum Analyzer	Hewlett Packard	8566B	9565	13 November 2003
Spectrum Analyzer	Hewlett Packard	8566B	9168	10 Deceember 2003
RF Preselector	Hewlett Packard	85685A	9563	14 August 2004
RF Preselector	Hewlett Packard	85685A	9728	30 July 2004
Quasi-Peak Adapter	Hewlett Packard	85650A	9243	7 August 2004
Active monopole	EMCO	3301B	9705	6 August 2004
Biconilog Antenna	ARA	LPB-2520/A	4318	3 August 2004
Dual Ridged Guide Antenna	EMCO	3115	19357	2 August 2004
Low Noise Amplifier	MITEQ	JS43-01001800-21- 5P	4354	14 February 2004

Appendix A

Crane Smart System Display

Test Sample Description

(from data provided by The Load & A2B Company Inc.)

Product Application	Product Category
Commercial 🗸	Telecommunications o Aerospace of
Military o	Information Technology 🖌 Test & Measurement of
	Surface Transportation o Other o
Product Name	Crane Smart Display
Part/Model No.	n/a
Serial Number	n/a
Power Requirements:	12 - 14 VDC, 0.5 A
(Voltage, AC/DC, Hz, Current)	
Typical Installation Instructions or Configuration	See http://www.loada2b.com/CraneSmartCenter.htm
Ground Connection	nil
(in addition to power cord)	
Internally Generated Frequencies	32.768 kHz, 9.834 MHz, 10.240 MHz, 10.245 MHz
Peripheral Support Equipment	Load Cell, Angle Sensor, Anti-2-block Switch,
Description and number of interconnecting Leads & Cables	DC power lead
Brief Functional Description	Crane operational monitor / safety system