Report No:	CR5CPCCF_MPE_CP21 (FCC_IC)
Date:	04-March-2022
Model:	CR5CPCCF
Ref:	CP21

Robert Bosch GmbH Daimlerstr. 6 71229 Leonberg Germany

Maximum Permissible Exposure (MPE) & Exposure Evaluation

Report number: CR5CPCCF_MPE_CP21 (FCC_IC)

Certification numbers and labeling requirements			
FCC ID	NF3 - CR5CPCCF		
IC number	3887A - CR5CPCCF		
HVIN (Hardware Version Identification Number)	CR5CPCCF		
PMN (Product Marketing Name) Corner Radar 5 Car Plus CAN CAN Fle			
FVIN (Firmware Version Identification Number)	-/-		

Date: 04-March-2022 Place: Leonberg

.....

Robert Binder Certification Engineer, XC-DX/ESR1

Report No:	CR5CPCCF_MPE_CP21 (FCC_IC)
Date:	04-March-2022
Model:	CR5CPCCF
Ref:	CP21

EUT technologies:

EUT technologies:	Max. power (AVG):	Max. antenna gain:	Min. pathloss:
76 GHz Radar	Measured max. EIRP: 19.11 dBm*	n/a	(if applicable)
	Declared max. EIRP: 21.9 dBm	n/a	(if applicable)

^{)*} detailed measurement results in IBL-Lab GmbH test reports No.: 21075997-21425-0 (FCC report) and 21075997-21423-0 (RSS Report)

Prediction of MPE limit at given distance - FCC

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R_2$

where: S = Power density
P = Power input to the antenna

G = Antenna gain

R = Distance to the center of radiation of the antenna

PG = Output Power including antenna gain

The table below is taken from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

Frequency Range (MHz)	Power Density (mW/cm²)	Averaging Time (minutes)	
300 -1500	f/1500	30	
1500 - 100000	1.0	30	

where f = Frequency (MHz)

Prediction: worst case

	Technology	Radar	
	Frequency	76000	MHz
P*G	Measured max. EIRP (avg.)	21.9	dBm
R	Distance	20	Cm
S	MPE limited for uncontrolled exposure	1.0000	mW/cm ²
	Calculated Power Density:	0.0308	mW/cm ²
	Calculated Percentage of Limit:	3.08	%

This prediction demonstrates the following:

The power density levels for FCC at a distance of 20 cm are below the maximum levels allowed by regulations.

Report No:	CR5CPCCF_MPE_CP21 (FCC_IC)
Date:	04-March-2022
Model:	CR5CPCCF
Ref:	CP21

Prediction of MPE limit at given distance - IC

RSS-102, Issue 5, 2.5.2

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49/f_{0.5}W$ (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} f_{0.6834}$ W (adjusted for tune-up tolerance), where f is in MHz:
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

Prediction: worst case

	Technology	Radar	
	Frequency	76000	MHz
P*G	Measured max. EIRP (avg.)	21.9	dBm
R	Distance	20	cm
	Maximum EIRP	154.88	mW
	Exclusion Limit from above	5.00	W
	Calculated Percentage of Limit:	3.1	%

Conclusion: RF exposure evaluation is not required.