

Verification Test Report 21-1-0095401T01a

Number of pages:	22	Date of Report:	2021-Sep-02
Testing company:	CETECOM GmbH Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150	Applicant:	Robert Bosch GmbH
Product: Model:	Electronical Control Unit with Blueto NRCS2P	oth Low Energy and	WLAN
FCC ID:	NF3-NRCS2P	IC:	3887A-NRCS2P
Testing has been carried out in accordance with:	Title 47 CFR, Chapter I FCC Regulations, Subchapter A Subpart C: §15.247 (DTS) , RSS-247, Issue 2 (DTS) RSS-Gen., Issue 5 Deviations, modifications or clarificat in each section under "Test method a		mentioned documents are written
Tested Technology:	BLE		
Test Results:	The EUT complies with the require the test. The test results relate only to devices		
Signatures:			
	DiplIng. Ninovic Perez		Patrick Marzotko
	Test Lab Manager		Test manager
	Authorization of test report		Responsible of test report

Table of Contents

Та	ble	of Annex	3
1		General information	4
	1.1	Disclaimer and Notes	4
	1.2	Attestation	4
	1.3	Summary of Test Results	5
	1.4	Summary of Test Methods	6
2		Administrative Data	7
	2.1	Identification of the Testing Laboratory	7
	2.2	General limits for environmental conditions	7
	2.3	Test Laboratories sub-contracted	7
	2.4	Organizational Items	7
	2.5	Applicant's details	7
	2.6	Manufacturer's details	7
	2.7	EUT: Type, S/N etc. and short descriptions used in this test report	8
	2.8	Auxiliary Equipment (AE): Type, S/N etc. and short descriptions	8
	2.9	Connected cables	8
	2.1	0 Software	8
	2.1	1 EUT set-ups	8
	2.1	2 EUT operation modes	8
3		Equipment under test (EUT)	9
	3.1	General Data of Main EUT as Declared by Applicant	9
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	.10
	3.3	Modifications on Test sample	.10
4		Measurements	.11
	4.1	Duty-Cycle	.11
	4.2	Peak output power	.12
	4.3	Radiated field strength emissions above 1 GHz	.14
	4.4	Radiated Band-Edge emissions	.16
	4.5	Results from external laboratory	.18
	4.6	Opinions and interpretations	.18
	4.7	List of abbreviations	.18
5		Equipment lists	.18
6		· · · Measurement Uncertainty valid for conducted/radiated measurements	
7		Versions of test reports (change history)	

	Table of Annex					
Annex No.	Annex No. Contents Reference Description Tot					
Annex 1	Test result diagrams	CETECOM_TR21-1-0095401T02a-A1	8			
Annex 2 Internal photographs of EUT Please refer to appli		Please refer to applicant's documentation	-			
Annex 3 External photographs of EUT CETECOM_TR21-1-0095401T01		CETECOM_TR21-1-0095401T01a-A3	6			
Annex 4	Annex 4 Test set-up photographs CETECOM_TR21-1-0095401T01a-A4		5			
	The listed attachments are separate documents.					

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

1.3 Summary of Test Results

The EUT integrates a BLE transmitter. Other implemented wireless technologies were not considered within this test report.

Test case	Reference Clause	Reference	Page	Remark	Result
	FCC 🛛	Clause ISED 🛛			
Duty-Cycle	§15.35(c)	RSS-Gen Issue 5, §8.2	11		PASSED
Minimum Emission Bandwidth 6 dB	§15.247 5.2(a)	RSS-247, §5.2(a)		*1)	NP
		RSS-Gen Issue 5,: §6.7			
Occupied Channel Bandwidth 99%	2.1049(h)	RSS-Gen Issue 5, §6.7		*1)	NP
Peak output power (Sweep)	§15.247(b)(3)	RSS-247, §5.4(d)	12		PASSED
Transmitter Peak output power radiated	§15.247(b)(4)(c)(i)	RSS-247, §5.4(d)			NP
Emissions in non-restricted frequency bands	§15.247(d)	RSS-247, §5.5		*1)	NP
Radiated Band-Edge emissions	§15.205(b)	RSS-Gen: Issue 5	16		PASSED
	§15.247(d)	§8.9, §8.10			
		RSS-247, §5.5			
Power spectral density	§15.247(e)	RSS-247, §5.2(b)		*1)	NP
Radiated field strength emissions below 30	§15.205(a)	RSS-Gen: Issue 5		*1)	NP
MHz	§15.209(a)	§8.9 Table 6			
Radiated field strength emissions 30 MHz – 1	§15.209	RSS-Gen: Issue 5		*1)	NP
GHz	§15.247(d)	§8.9 Table 5			
		RSS-247, §5.5			
Radiated field strength emissions above 1 GHz	§15.209(a)	RSS-Gen: Issue 5:	14	*1)	PASSED
	§15.247(d)	§8.9 Table 5+7			
		RSS-247, §5.5			
AC-Power Lines Conducted Emissions	§15.207	RSS-Gen Issue 5:			NP
		§8.8 Table 4			

Remarks:

*1) For FCC and IC test results please refer to report no. "1-8866_19-03-03-A" by CTCadvanced, issued on 2020-07-02.

PASSED FAILED NP The EUT complies with the essential requirements in the standard.

The EUT does not comply with the essential requirements in the standard.

The test was not performed by the CETECOM Laboratory.

*The calculation of the measurement uncertainty shows compliance with the "maximum measurement uncertainties" of the tested standard and therefore for result evaluation the stated uncertainties will not be additionally added to the measured results.

1.4 Summary of Test Methods

Test case	Test method
Duty-Cycle	ANSI C63.10:2013, §11.6(b)
Minimum Emission Bandwidth 6 dB	ANSI C63.10:2013, §6.9.2, §11.8
Occupied Channel Bandwidth 99%	ANSI C63.10:2013, §6.9.3
Peak output power (Sweep)	ANSI C63.10:2013, §11.9
Power spectral density	ANSI C63.10:2013, §11.10
Emissions in non-restricted frequency bands	ANSI C63.10:2013, §11.11, §6.10.5
Radiated Band-Edge emissions	ANSI C63.10-2013; "Marker-Delta method", §6.10.5, §11.13
Transmitter Peak output power radiated	Result calculated with measured conducted RF-power value and
	stated/measured antenna gain for band of interest
Radiated field strength emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4
Radiated field strength emissions 30 MHz- 1 GHz	ANSI C63.4-2014 §8.2.3, ANSI C63.10-2013 §6.3, §6.5
Radiated field strength emissions above 1 GHz	ANSI C63.4-2014 §8.3, ANSI C63.10-2013 §6.3, §6.6
AC-Power Lines Conducted Emissions	ANSI C63.4-2014 §7, ANSI C63.10-2013 §6.2

And reference also to Test methods in KDB558074

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name:	CETECOM GmbH
Address:	Im Teelbruch 116
Address.	
	45219 Essen - Kettwig
	Germany
Responsible for testing laboratory:	Ninovic Perez
Accreditation scope:	DAkkS Webpage: FCC ISED
Test location:	CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name:	

2.4 Organizational Items

Responsible test manager:	M.Sc. Patrick Marzotko
Receipt of EUT:	2021-Jul-08
Date(s) of test:	2021-Aug-02 – 2021-Aug-13
Version of template:	14.7

2.5 Applicant's details

Applicant's name:	Robert Bosch GmbH
Address:	Daimlerstraße 6
	71229 Leonberg
	Baden-Wuerttemberg
	Germany
Contact Person:	Steven Watterott
Contact Person's Email:	steven.watterott@de.bosch.com

2.6 Manufacturer's details

Manufacturer's name:	Robert Bosch GmbH
Address:	Robert-Bosch-Platz 1
	70839 Gerlingen-Schillerhöhe
	Deutschland

2.7 EUT: Type, S/N etc. and short descriptions used in this test report

Short descrip tion*)	PMT Sample No.	Product	Model	Туре	S/N	HW status	SW status
EUT 01	21-1-00954S02_C01	Electronical Control Unit with Bluetooth Low Energy and WLAN	NRCS2P	Y5401-01	C4.1	21/10.14	21/10.14

*) EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

Short descrip tion*)	PMT Sample No.	Auxiliary Equipment	Туре	S/N	HW status	SW status
AE 01	21-1-00954S03_C01	Antenna	RKE223E1GNS	002728	N/A	N/A
AE 02	21-1-00954S05_C01	Lenovo Laptop	ThinkPad T15	PF1TC2GK	N/A	N/A

*) AE short description is used to simplify the identification of the auxiliary equipment in this test report.

2.9 Connected cables

Short descrip tion*)	PMT Sample No.	Cable type	Connectors	Length
CAB 01	21-1-00954S09_C01	FlexRay Dongle	N/A	1.5m
CAB 02	21-1-00954S10_C01	cable harness	Mulitpin	1m
CAB 03	21-1-00954S07_C01	Fakra cable	Fakra	1.5m
	21-1-00954S06_C01	Fakra cable to SMA cable	Fakra to SMA	0.5 m

*) CAB short description is used to simplify the identification of the connected cables in this test report.

2.10 Software

Short descrip tion*)	PMT Sample No.	Software	Туре	S/N	HW status	SW status
SW 01	SW installed on 21-1- 00954S05_C01	Vector CANoe	CAN Simulation SW			V11.0.96 (SP4)

*) SW short description is used to simplify the identification of the used software in this test report.

2.11 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
1	EUT 01 + AE 01 + AE 02 + CAB 01 + CAB 02 + CAB 03	Used for Radiated measurements
2	EUT 01 + AE 02 + CAB 01 + CAB 02 + CAB 03 + CAB 04	Used for Conducted measurements

*) EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.12 EUT operation modes

UT operating mode no.*)	Operating modes	Additional information
op. 1	BLE_TX-Mode	With help of special test firmware TX-mode was set-up. We refer to applicants information/papers for details about necessary commands.

*) EUT operating mode no. is used to simplify the test report.

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Product name	NRCS2P		
Kind of product	Electronical Control Un	it with Bluetooth Low Ener	rgy and WLAN
Firmware	□ for normal use	Special version for	test execution
	AC Mains	-	
	DC Mains	13.5 V DC	
	□ Battery	-	
Operational conditions	T _{nom} = +20 °C	T _{min} = -40 °C	T _{max} = +85 °C
EUT sample type	Production		
Weight	0.7kg		
Size [LxWxH]	240x125x40mm		
Interfaces/Ports	Fakra, CAN		
For further details refer Applicants Decla - 20210222_Radio_type_approv	-		
- Technical Passport NRCS2P			

For further details regarding radio parameters, please refer to Bluetooth Core Specification

3.2 Detailed Technical data of Main EUT as Declared by Applicant

Frequency Band	2.4 GHz ISM Band (2400 N	1Hz - 2483.5 N	1Hz)	
Number of Channels	40 (37 Hopping + 3 Adver	tising)		
(USA/Canada -bands)				
Nominal Channel Bandwidth	1 MHz			
Type of Modulation Data Rate	🖾 GFSK 1 Mbit/s		GFSK 2 Mbit/s	
	GFSK 500 kbit/s	GFSK 125 kbit/s		5
	□ a/n/ac mode			
Other wireless options	⊠ b/g/n mode			
Other wireless options	\Box Bluetooth EDR (not tested within this report)			
	Cellular transceiver (2G	/3G/4G/5G/G	PS, not tested in this	report)
Max. Conducted Output Power	-0.9 dBm			
EIRP Power (Calculated EIRP)	-0.9 dBm + 7.6 dBi = 6.7 dI	Bm		
Antenna Type(s)	External (AE 01)			
Antenna Gain(s)	+7.6 dBi			
FCC label attached	Yes			
Test firmware / software and storage location	Vector CANoe V11.0.96 (SP4) on AE 3			
For further details refer Applicants Decla	ration & following technica	al documents		
Description of Reference Document (sup	plied by applicant)	Version		Total Pages
20210222_Radio_type_approval Testing	_instructions_NRCS2P	14 May 2020		22
Technical Passport NRCS2P		20 May 2020		8

3.3 Modifications on Test sample

-

Additions/deviations or exclusions

4 Measurements

4.1 Duty-Cycle

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

The necessary duty-cycle correction factor is determined on nominal conditions on middle channel only. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

A special firmware program is used for test purposes. In opposite to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on one channel in each operable frequency-band. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions. The Duty-Cycle was constant, means without variations.

Formula to calculate Duty-Cycle:

Duty cycle calculations:	Duty cycle factor: DC=	Regarding power: $10*log(1/\chi)$ dB
$x = \frac{TX_{ON}}{(TX_{ON} + TX_{OFF})}$		Regarding field strength: $20 * log(1/\chi)$ dB

⊠ The results were corrected in order to evaluate for worst-case result each time when average values are necessary for example average radiated emissions or similar

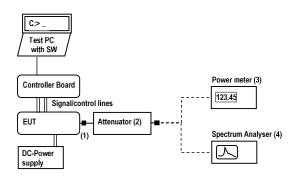
 \Box No correction necessary: Duty-Cycle > 98%

4.1.1 Measurement Location

Test site	120910 - Radio Laboratory 1 (TS 8997)

4.1.2 Result

Duty-Cycle [%]	Duty-Cycle correction Power [dB]	Duty-Cycle correction Field Strength [dB]
65.783	1.819	3.638
65.804	1.817	3.635
66.251	1.788	3.576



4.2 Peak output power

4.2.1 Description of the general test setup and methodology, see below example:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to power meter (3) or spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Measurement is made using Rohde & Schwarz TS8997 test system.

Test method	PKPM1 Peak reading power meter (broadband PK RF-power meter)
Remarks	-

The measurement was performed in non-hopping transmission mode with the carrier set to lowest, middle and highest channel.

EUT settings

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate

4.2.2 Measurement Location

Test site 120910 - Radio Laboratory 1 (TS 8997)	Test site	120910 - Radio Laboratory 1 (18 8997)
---	-----------	---------------------------------------

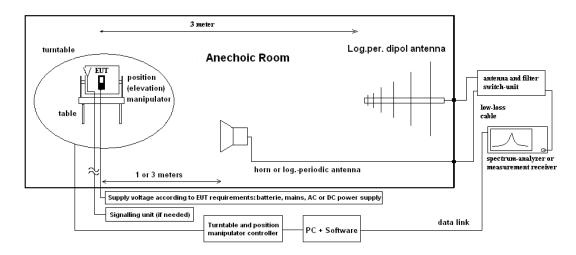
4.2.3 Limit

Frequency Range [MHz]	Limit [W]	Limit [dBm]	Detector	RBW / VBW [MHz]
2400 - 2483.5	1	30	MaxPeak	3/10

4.2.4 Result

Mode	Channel	Frequency [MHz]	Max Peak Power [dBm]	Result
1	01	2402	-1.0	PASSED
1	19	2440	-0.9	PASSED
1	13	2480	-1.6	PASSED

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0095401T02a-A1



4.3 Radiated field strength emissions above 1 GHz

4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and its characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worstcase operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

$E_{C} = E_{R} + A_{F} + C_{L} + D_{F} - G_{A}$ (1)		E _c = Electrical field – corrected value
		E_R = Receiver reading
$M = L_T - E_C$	(2)	M = Margin
		$L_T = Limit$
		A_F = Antenna factor
		C _L = Cable loss
		D _F = Distance correction factor (if used)
		G _A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.3.2 Measurement Location

Test site 2.8 – 15 GHz	120904 - FAC1 - Radiated Emissions
Test site 15 – 18 GHz	120907 - FAC2

4.3.3 Limit

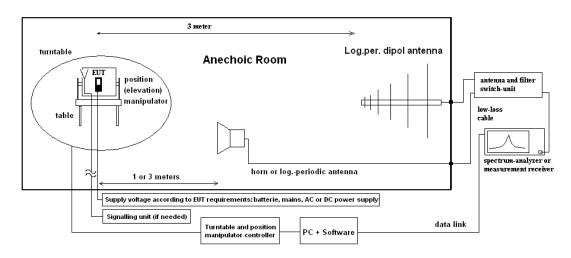
	Radiated emissions limits, (3 meters)				
Frequency Range [MHz]	Limit [µV/m]	Limit [dBµV/m]	Detector	RBW / VBW [kHz]	
Above 1000	500	54	Average	1000 / 3000	
Above 1000	5000	74	Peak	1000 / 3000	

4.3.4 Result

Diagram Chann	el Mode	Maximum Level [dBµV/m] Frequency Range 2.8 – 15 GHz	Result	
<u>4.01a</u> 39	1	59.776 @ 14.392 GHz	PASSED	
Remark: for more information and graphical plot see annex A1 CETECOM TR21-1-0095401T02a-A1				

Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0095401T02a-A1

Diagram	Channel	Mode	Maximum Level [dBµV/m] Frequency Range 15 – 18 GHz	Result
<u>4.01b</u>	39	1	55.280 @ 16.810 GHz	PASSED
<u>4.01c</u>	39	1	55.400 @ 17.926 GHz	PASSED


Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0095401T02a-A1

4.4 Radiated Band-Edge emissions

4.4.1 Description of the general test setup and methodology, see below example:

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

For uncritical results where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For critical results a Marker-Delta marker method was used for showing compliance to restricted bands. The method consists of three independent steps:

- 1. Step: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. Step: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. .Step: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

4.4.2 Measurement Location

Test site	120904 - FAC1 - Radiated Emissions

4.4.3 Limit

Frequency Range [MHz]	Pk Limit [dBc]	Avg Limit [dBc]	Avg Limit [dBµV/m]	Pk Limit [dBµV/m]	Detector	RBW / VBW [kHz]
Below 2390	-	-	54	74	Average / Peak	100 / 300
Above 2483.5	-	-	54	74	Average / Peak	1000 / 3000
2390 - 2400	-20	-	-	-	Peak	100 / 300
2390 - 2400	-	-30	-	-	Average	100 / 300

4.4.4 Result

Non-restricted bands near-by

Diagram	Channel	Mode	Peak [dBc]	Average [dBc]	Result
9.01	01	1	45.259	37.309	PASSED
Remark: for more information and graphical plot see annex A1 CETECOM_TR21-1-0095401T02a-A1					

Restricted bands near-by

Diagram	Channel	Mode	Peak [dBµV/m]	Average [dBμV/m]	Result
9.02	39	1	39.482	51.650	PASSED

Remark1: Average value corrected with Duty Cycle - Factor

Remark2: for more information and graphical plot see annex A1 CETECOM_TR21-1-0095401T02a-A1

4.5 Results from external laboratory

-

None		-
4.6	Oninions and i	nterpretations
4.0	Opinions and i	interpretations
None		-
4.7	List of abbrevi	ations

None

5 Equipment lists

ID	Description	Manufacturer	SerNo	Cal due date	
	120904 - FAC1 - Radiated Emissions				
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	81650455	2022-May- 25	
20489	EMI Test Receiver ESU40	Rohde & Schwarz Messgerätebau GmbH	100030	2022-May- 19	
20254	High Pass Filter 5HC 2600/12750-1.5KK	Trilithic	23042		
20868	High Pass Filter AFH-07000	AtlanTecRF	16071300004		
20291	High Pass Filter WHJ 2200-4EE	Wainwright Instruments GmbH	14		
20020	Horn Antenna 3115 (Subst 1)	EMCO Elektronik GmbH	9107-3699	2024-Aug- 17	
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG	155		
20549	Log. Per. Antenna HL025	Rohde & Schwarz Messgerätebau GmbH	1000060	2024-Aug- 18	
20720	Measurement Software EMC32 [FAC]	Rohde & Schwarz Messgerätebau GmbH	V10.xx		
20512	Notch Filter WRCA 800/960-02/40-6EEK (GSM 850)	Wainwright Instruments GmbH	24		
20290	Notch Filter WRCA 901,9/903,1SS	Wainwright Instruments GmbH	3RR		
20122	Notch Filter WRCB 1747/1748	RCB 1747/1748 Wainwright Instruments GmbH			
20121	Notch Filter WRCB 1879,5/1880,5EE	Wainwright Instruments GmbH 15			
20448	Notch Filter WRCT 1850.0/2170.0-5/40-10SSK	ilter WRCT 1850.0/2170.0-5/40-10SSK Wainwright Instruments GmbH 5			
20066	Notch Filter WRCT 1900/2200-5/40-10EEK	Wainwright Instruments GmbH	5		
20449	Notch Filter WRCT 824.0/894.0-5/40-855K	Wainwright Instruments GmbH	1		
20611	Power Supply E3632A	Agilent Technologies Deutschland GmbH	KR 75305854		
20338	Pre-Amplifier 100MHz - 26GHz JS4-00102600-38-5P	Miteq Inc.	838697		

Test Report

ID Description N		Manufacturer	SerNo	Cal due date	
20484	Pre-Amplifier 2,5GHz - 18GHz AMF-5D-02501800-25-10P	Miteq Inc.	1244554		
20287	Pre-Amplifier 25MHz - 4GHz AMF-2D-100M4G-35-10P	Miteq Inc.	379418		
20670	Radio Communication Tester CMU200	Rohde & Schwarz Messgerätebau GmbH	106833	2022-Jun- 16	
20690	Spectrum Analyzer FSU	Rohde & Schwarz Messgerätebau GmbH	100302/026	2023-May- 20	
20439	Ultrabroadband-Antenna HL562	Rohde & Schwarz Messgerätebau GmbH	100248	2023-Mar- 10	
	120907 - FAC2				
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc.	0001		
20005	AC - LISN 50 Ohm/50μΗ ESH2-Z5	Rohde & Schwarz Messgerätebau GmbH	861741/005	2022-May- 20	
20910	Frequency Multiplier 936VF-10/385	MI-Wave, Millimeter Wave Products Inc.	142		
20911	Frequency Multiplier 938WF-10/387	MI-Wave, Millimeter Wave Products Inc.	141		
20730	FS-Z110	Rohde & Schwarz Messgerätebau GmbH	101468	2023-Jun- 19	
20729	FS-Z140	Rohde & Schwarz Messgerätebau GmbH	101004	2023-May- 26	
20731	FS-Z75	Rohde & Schwarz Messgerätebau GmbH	ebau GmbH 101022		
20733	Harmonic Mixer FS-Z220	RPG-Radiometer Physics GmbH	nysics GmbH 101009		
20734	Harmonic Mixer FS-Z325	RPG-Radiometer Physics GmbH	101005	2024-May- 27	
20133	Horn Antenna 3115 (Meas 1)	EMCO Elektronik GmbH	9012-3629		
20811	Horn Antenna ASY-SGH-124-SMA	Antenna Systems Solutions S.L	29F14182337		
20877	JS42-08001800-16-8P Verstärker	Miteq Inc.	2079991 / 2079992		
20912	Low noise Amplifier Module 0.5-4GHz	RF-Lambda Europe GmbH	19041200083		
20913	Phase Amplitude Stable Cable Assembly DC-40GHz	RF-Lambda Europe GmbH	AC19040001		
20814	Pickett-Potter Horn Antenna FH-PP 140	RPG-Radiometer Physics GmbH	10008		
20767	Pickett-Potter Horn Antenna FH-PP 140-220	RPG-Radiometer Physics GmbH	010011		
20812	Pickett-Potter Horn Antenna FH-PP-325	RPG-Radiometer Physics GmbH	10024		
20816	SGH Antenna SGH-26-WR10		1144		
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH	104023	2022-May- 27	

Test Report

ID	Description Manufacturer		SerNo	Cal due date	
20909	Waveguide Horn Antenna PE9881-24	Pasternack Enterprises, Inc.	37/2016		
20908	Waveguide WR 10 attenuator STA-30-10-M2	SAGE Millimeter Inc.	13256-01		
20907	Waveguide WR-15 attenuator STA-30-15-M2	SAGE Millimeter Inc.	13256-01		
20817	WR-22 Horn / SAR-2309-22-S2	SAGE Millimeter Inc.	13254-01	2023-Jul-29	
	120910 - Radio Laboratory 1 (TS 8997)				
20904	Climatic Chamber ClimeEvent C/1000/70a/5	Weiss Umwelttechnik GmbH	58226223240010	2022-May- 09	
20871	NRP-Z81	Rohde & Schwarz Messgerätebau GmbH	104631	2022-May- 20	
20872	NRX Power Meter	Rohde & Schwarz Messgerätebau GmbH	101831	2022-Jan-28	
20805	Open Switch and control Platform OSP B157WX 40GHz 8Port Switch	Rohde & Schwarz Messgerätebau GmbH	101264	2023-May- 13	
20691	Open Switch and control Platform OSP120	Rohde & Schwarz Messgerätebau GmbH	101056	2023-May- 13	
20866	Signal Analyzer FSV3030	Rohde & Schwarz Messgerätebau GmbH	au GmbH 101247		
20687	Signal Generator SMF 100A	Rohde & Schwarz Messgerätebau GmbH 102073		2022-May- 25	
20559	Vector Signal Generator SMU200A	ctor Signal Generator SMU200A Rohde & Schwarz Messgerätebau GmbH			

- Remarks: *1a: calibrated with system 120901 SAC calibrated with system 120904 - FAC1
 - *1b: *1c: calibrated with system 120907 - FAC2

Pre-m: Check before starting the measurement

6 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

RF-Measurement	Reference	Frequency range	Calculated uncertainty based on a confidence level of 95%			Remarks			
Conducted emissions (U _{CISPR})	-	9 kHz - 150 kHz 150 kHz - 30 MHz	4.0 dB 3.6 dB				-		
Power Output radiated	-	30 MHz - 4 GHz	3.17 dB					Substitution method	
Devuer Outeut een ducted	d -	Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2		
Power Output conducted		9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		
		12.75 GHz - 26.5 GHz	N/A	0.82		N/A	N/A		
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		
on RF-port		2.8 GHz - 12.75 GHz	1.48	N/A	1.51	N/A	1.43		N/A - not
		12.75 GHz – 18 GHz	1.81	N/A	1.83	N/A	1.77		applicable
		18 GHz - 26.5 GHz	1.83	N/A	1.85	N/A	1.79		
Occupied bandwidth	-	9 kHz - 4 GHz	0.1272 ppm (Delta Marker) 1.0 dB				Frequency error Power		
Emission bandwidth	-	9 kHz - 4 GHz	0.1272 ppm (Delta Marker) See above: 0.70 dB				Frequency error Power		
Frequency stability	-	9 kHz - 20 GHz	0.0636 ppm				-		
Radiated emissions		150 kHz - 30 MHz	5.01dB				Magnetic field strength		
Enclosure	-	30 MHz - 1 GHz 1 GHz - 18 GHz	5.83 dB 4.91 dB					Electrical Field	
		18-26.5 GHz	5.06 c	1B					strength

7 Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2021-Sep-02

End Of Test Report