







# Maximum Permissible Exposure (MPE) & Exposure evaluation

Report identification number: 1-7548/18-01-08 MPE (FCC\_IC)

| Certification numbers and labeling requirements |                                        |  |
|-------------------------------------------------|----------------------------------------|--|
| FCC ID                                          | NF3-FR5CPCCF                           |  |
| IC number                                       | 3887A-FR5CPCCF                         |  |
| HVIN (Hardware Version Identification Number)   | FR5CPCCF                               |  |
| PMN (Product Marketing Name)                    | Front Radar 5 Car Plus CAN CAN Flexray |  |
| FVIN (Firmware Version Identification Number)   | -/-                                    |  |
| HMN (Host Marketing Name)                       | -/-                                    |  |

This report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

| Document authorised:                   |                                            |
|----------------------------------------|--------------------------------------------|
|                                        |                                            |
| Alexander Hnatovskiy                   | Marco Scigliano                            |
| Lab Manager Radio Communications & EMC | Testing Manager Radio Communications & EMC |

Report no.: 1-7548/18-01-08



### **EUT technologies:**

| Technologies:  | Max. EIRP: (AVG)              |  |
|----------------|-------------------------------|--|
| 76.5 GHz Radar | Measured max. EIRP: 17.3 dBm* |  |

)\* detailed measurement results in CTC advanced test report 1-7548/18-01-03

# Prediction of MPE limit at given distance - FCC

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG / 4\pi R^2$ 

where: S = Power density

P = Power input to the antenna

G = Antenna gain

R = Distance to the center of radiation of the antenna

PG = Output Power including antenna gain

The table below is excerpted from Table 1B of 47 CFR 1.1310 titled "Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure"

| Frequency Range (MHz) | Power Density (mW/cm <sup>2</sup> ) | Averaging Time (minutes) |  |
|-----------------------|-------------------------------------|--------------------------|--|
| 300 -1500             | f/1500                              | 30                       |  |
| 1500 - 100000         | 1.0                                 | 30                       |  |

where f = Frequency (MHz)

Prediction: worst case

|     | Technology                              | RADAR                     |
|-----|-----------------------------------------|---------------------------|
|     | Frequency                               | 76500 MHz                 |
| P-G | Declared max power input to the antenna | 17.3 dBm                  |
| R   | Distance                                | 20 cm                     |
| S   | MPE limit for uncontrolled exposure     | $1.0000 \text{ mW/cm}^2$  |
|     | Calculated Power density:               | 0.0107 mW/cm <sup>2</sup> |
|     | Calculated percentage of limit:         | 1.07%                     |

# This prediction demonstrates the following:

The power density levels for FCC at a distance of 20 cm are below the maximum levels allowed by regulations.

Report no.: 1-7548/18-01-08



### Prediction of MPE limit at given distance - IC

RSS-102, Issue 5, 2.5.2

RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

- below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);
- at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than  $4.49/f^{0.5}$ W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);
- at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x  $10^{-2} f^{0.6834}$  W (adjusted for tune-up tolerance), where f is in MHz;
- at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

#### Prediction: worst case

|     |                                 | 76.5 GHz |     |
|-----|---------------------------------|----------|-----|
|     | Frequency                       | 76500    | MHz |
| R   | Distance                        | 20       | cm  |
| P-G | Maximum EIRP (avg.)             | 17.3     | dBm |
| P-G | Maximum EIRP (avg.)             | 53.7     | mW  |
|     | Exclusion Limit from above:     | 5.00     | W   |
|     | Calculated percentage of Limit: | 1.07%    |     |

**Conclusion:** RF exposure evaluation is not required.

For applications where minimum distance to radiating element is 20cm Annex C of RSS-102 should be filled out.