# **Lucky Plastic Factory Limited**

Application
For
Certification
(FCC ID: NEX-9344-49RX)

Superregenerative Receiver

Sample Description: R/C Mini Cooper, Model: 9344

### 0307125 WN/at June 2, 2003

- The test results reported in this report shall refer only to the sample actually tested and shall not refer or be deemed to refer to bulk from which such a sample may be said to have been obtained.
- This report shall not be reproduced except in full without prior authorization from Intertek Testing Services Hong Kong Limited
- The evaluation data of the report will be kept for 3 years from the date of issuance.

FCC ID: NEX-9344-49RX

## LIST OF EXHIBITS

### **INTRODUCTION**

EXHIBIT 1: General Description

EXHIBIT 2: System Test Configuration

EXHIBIT 3: Emission Results

EXHIBIT 4: Equipment Photographs

EXHIBIT 5: Product Labelling

EXHIBIT 6: Technical Specifications

EXHIBIT 7: Instruction Manual

EXHIBIT 8: Miscellaneous Information

### MEASUREMENT/TECHNICAL REPORT

## Lucky Plastic Factory Limited - MODEL: 9344 FCC ID: NEX-9344-49RX

June 2, 2003

| This report concerns (check one:)  Orig                    | rinal Grant <u>X</u> | Class II Char             | nge        |  |
|------------------------------------------------------------|----------------------|---------------------------|------------|--|
| Equipment Type: Superregenerative Receiver                 | (example: computer   | r, printer, mod           | lem, etc.) |  |
| Deferred grant requested per 47 CFR 0.457(d)               | o(1)(ii)?            | Yes                       | No_X_      |  |
| If yes, defer until:                                       |                      |                           |            |  |
|                                                            | ir yes, derer and    |                           | date       |  |
| Company Name agrees to notify the Commiss                  | ion by:              |                           |            |  |
|                                                            | date                 |                           |            |  |
| Transition Rules Request per 15.37?                        |                      | Yes                       | No_X_      |  |
| If no, assumed Part 15, Subpart B for intentional radiator |                      |                           |            |  |
| Report prepared by:                                        | Wilbur               | Ng                        |            |  |
|                                                            |                      | Intertek Testing Services |            |  |
|                                                            |                      | 2/F., Garment Center,     |            |  |
|                                                            | 576, Ca              | 576, Castle Peak Road,    |            |  |
|                                                            | HONG KONG            |                           |            |  |
|                                                            |                      |                           | 2173-8502  |  |
|                                                            | Fax:                 | 057                       |            |  |
|                                                            | rax.                 | 632-                      | 2742-9149  |  |

## **Table of Contents**

| 1.0 General Description                        | 2  |
|------------------------------------------------|----|
| 1.1 Product Description                        | 2  |
| 1.2 Related Submittal(s) Grants                | 2  |
| 1.3 Test Methodology                           | 3  |
| 1.4 Test Facility                              | 3  |
| 2.0 System Test Configuration                  | 5  |
| 2.1 Justification                              | 5  |
| 2.2 EUT Exercising Software                    | 5  |
| 2.3 Support Equipment List and Description     | 5  |
| 2.4 Equipment Modification                     | 6  |
| 2.5 Special Accessories                        | 6  |
| 3.0 Emission Results.                          | 8  |
| 3.1 Field Strength Calculation                 | 9  |
| 3.2 Radiated Emission Configuration Photograph | 10 |
| 3.3 Radiated Emission Data                     | 11 |
| 4.0 Equipment Photographs                      | 14 |
| 5.0 Product Labelling                          | 16 |
| 6.0 <u>Technical Specifications</u>            | 18 |
| 7.0 <u>Instruction Manual</u>                  | 20 |
| 8.0 Miscellaneous Information                  | 22 |
| 8.1 Stabilization Waveform                     | 23 |
| 8.2 Emissions Test Procedures                  | 24 |
| 8.2 Emissions Test Procedures (cont'd)         | 25 |

## List of attached file

| Exhibit type          | File Description           | filename            |
|-----------------------|----------------------------|---------------------|
| Test Report           | Test Report                | report.pdf          |
| Operation Description | Technical Description      | descri.pdf          |
| Test Setup Photo      | Radiated Emission          | radiated photos.pdf |
| Test Report           | Bandwidth Plot             | bw.pdf              |
| External Photo        | External Photo             | external photos.pdf |
| Internal Photo        | Internal Photo             | internal photos.pdf |
| Block Diagram         | Block Diagram              | block.pdf           |
| Schematics            | Circuit Diagram            | circuit.pdf         |
| ID Label/Location     | Label Artwork and Location | label.pdf           |
| User Manual           | User Manual                | manual.pdf          |

## **EXHIBIT 1**

## **GENERAL DESCRIPTION**

#### 1.0 **General Description**

#### 1.1 Product Description

The equipment under test (EUT) is a receiver for a RC Car operating at 49.860 MHz. The EUT is powered by three AA batteries. The EUT has a switch which controls the EUT to power on or off. The EUT can be controlled to move forward or backward and to turn left or right by the controller.

The Model: 9356 and 9376 are the same as the tested Model: 9344 in hardware and software aspect. The models are difference in upper cabinet outlook only.

The brief circuit description is saved with filename: descri.pdf

### 1.2 Related Submittal(s) Grants

This is a single application for certification of a receiver. The transmitter for this receiver is authorized by Certification procedure with FCC ID: NEX-9344-49TX.

### 1.3 Test Methodology

The radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

#### 1.4 Test Facility

The open area test site and conducted measurement facility used to collect the emission data is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC.

### **EXHIBIT 2**

## **SYSTEM TEST CONFIGURATION**

#### 2.0 **System Test Configuration**

#### 2.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in ANSI C63.4 (1992.)

The EUT was powered by three new AA size batteries during test.

For maximizing emissions, the EUT was rotated through 360°, the antenna height was varied from 1 meter to 4 meters above the ground plane, and the antenna polarization was changed. This step by step procedure for maximizing emissions led to the data reported in Exhibit 3.0.

The unit was operated standalone and placed in the center of the turntable.

The equipment under test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). The EUT was placed on the turntable, which enabled the engineer to maximize emissions through its placement in the three orthogonal axes.

### 2.2 EUT Exercising Software

There was no special software to exercise the device.

#### 2.3 Special Accessories

There are no special accessories necessary for compliance of this product.

### 2.4 Equipment Modification

Any modifications installed previous to testing by Lucky Plastic Factory Limited will be incorporated in each production model sold/leased in the United States.

No modifications were installed by Intertek Testing Services.

### 2.5 Support Equipment List and Description

This product was tested in a standalone configuration.

All the items listed under section 2.0 of this report are

June 2, 2003

Confirmed by:

Wilbur Ng Manager Intertek Testing Services Agent for Lucky Plastic Factory Limited

| Wiltenda |           |
|----------|-----------|
|          | Signature |

Date

### **EXHIBIT 3**

## **EMISSION RESULTS**

### 3.0 **Emission Results**

Data is included worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

#### 3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

where  $FS = Field Strength in dB\mu V/m$ 

RA = Receiver Amplitude (including preamplifier) in  $dB\mu V$ 

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

$$FS = RR + LF$$

where  $FS = Field Strength in dB\mu V/m$ 

 $RR = RA - AG \text{ in } dB\mu V$ 

LF = CF + AF in dB

Assume a receiver reading of 52.0 dB $\mu$ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB are added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB $\mu$ V/m. This value in dB $\mu$ V/m was converted to its corresponding level in  $\mu$ V/m.

 $RA = 52.0 \text{ dB}\mu\text{V/m}$ 

 $AF = 7.4 dB RR = 23.0 dB\mu V$ 

 $CF = 1.6 dB \qquad \qquad LF = 9.0 dB$ 

AG = 29.0 dB

FS = RR + LF

 $FS = 23 + 9 = 32 \text{ dB}\mu\text{V/m}$ 

Level in mV/m = Common Antilogarithm [(32 dB $\mu$ V/m)/20] = 39.8  $\mu$ V/m

## 3.2 Radiated Emission Configuration Photograph

Worst Case Radiated Emission

50.325 MHz

For electronic filing, the worst case radiated emission configuration photograph is saved with filename: radiated photos.pdf

### 3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 7.4 dB

**TEST PERSONNEL:** 

Signature

Anthony K. M. Chan, Compliance Engineer *Typed/Printed Name* 

June 2, 2003 Date

FCC ID: NEX-9344-49RX

Company: Lucky Plastic Factory Limited Date of Test: May 16, 2003

Model: 9344

Radiated Emissions

Table 1

| Polarization | Frequency | Reading | Antenna | Pre- | Net       | Limit         | Margin |
|--------------|-----------|---------|---------|------|-----------|---------------|--------|
|              | (MHz)     | (dBµV)  | Factor  | Amp  | at 3m     | at 3m         | (dB)   |
|              |           |         | (dB)    | Gain | (dBµV/ m) | $(dB\mu V/m)$ |        |
|              |           |         |         | (dB) |           |               |        |
| V            | 46.075    | 36.8    | 11.0    | 16.0 | 31.8      | 40.0          | -8.2   |
| V            | 46.475    | 35.9    | 11.0    | 16.0 | 30.9      | 40.0          | -9.1   |
| V            | 48.738    | 36.7    | 11.0    | 16.0 | 31.7      | 40.0          | -8.3   |
| V            | 50.325    | 37.6    | 11.0    | 16.0 | 32.6      | 40.0          | -7.4   |
| V            | 51.608    | 34.5    | 11.0    | 16.0 | 29.5      | 40.0          | -10.5  |
| V            | 52.739    | 34.7    | 11.0    | 16.0 | 29.7      | 40.0          | -10.3  |

Notes: 1. Negative sign in the column shows value below limit.

- 2. Peak Detector Data unless otherwise stated.
- 3. All measurements were made at 3 meter. Harmonic emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other harmonic emissions than those reported were detected at a test distance of 0.3-meter.

Test Engineer: Anthony K. M. Chan

## **EXHIBIT 4**

# **EQUIPMENT PHOTOGRAPHS**

## 4.0 **Equipment Photographs**

For electronic filing, the photographs are saved with filename: external photos.pdf and internal photos.pdf

## **EXHIBIT 5**

## PRODUCT LABELLING

## 5.0 **Product Labelling**

For electronic filing, the FCC ID label artwork and the label location are saved with filename: label.pdf

## **EXHIBIT 6**

## TECHNICAL SPECIFICATIONS

## 6.0 <u>Technical Specifications</u>

For electronic filing, the block diagram and schematics are saved with filename: block.pdf and circuit.pdf respectively.

## EXHIBIT 7

## **INSTRUCTION MANUAL**

## 7.0 **Instruction Manual**

For electronic filing, a preliminary copy of the Instruction Manual is saved with filename: manual.pdf

This manual will be provided to the end-user with each unit sold/leased in the United States.

## **EXHIBIT 8**

## MISCELLANEOUS INFORMATION

## 8.0 Miscellaneous Information

This miscellaneous information includes details of the stabilizing process (including a plot of the stabilized waveform) and the test procedure.

### 8.1 Stabilization Waveform

Previous to the testing, the superregenerative receiver was stabilized as outlined in the test procedure. The plot saved on the filename: bw.pdf shows the fundamental emission when a signal generator was used to stabilize the receiver. Please note that the antenna was placed as close as possible to the EUT for clear demonstration of the waveform and that accurate readings are not possible from this plot.

#### 8.2 Emissions Test Procedures

The following is a description of the test procedure used by Intertek Testing Services Hong Kong Ltd. in the measurements of superregenerative receivers operating under the Part 15, Subpart B rules.

The test set-up and procedures described below are designed to meet the requirements of ANSI C63.4 - 1992. Superregenerative receivers are stabilized prior to measurement by generating a signal well above the receiver threshold whose frequency is tuned until the emissions stabilize into a line spectrum. The signal is usually generated as CW with a Marconi 2022D signal generator and a short whip antenna and is at a level of several hundred to several thousand mV/m. Plots of the stabilized signal will be shown. If a modulated signal is used, it will be noted.

The equipment under test (EUT) is placed on a wooden turntable which is four feet in diameter and approximately one meter in height above the groundplane. During the radiated emissions test, the turntable is rotated and any cables leaving the EUT are manipulated to find the configuration resulting in maximum emissions. The antenna height and polarization are also varied during the testing to search for maximum signal levels. The height of the antenna is varied from one to four meters.

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. For line conducted emissions, the range scanned is 450 kHz to 30 MHz.

### 8.2 Emissions Test Procedures (cont)

The EUT is warmed up for 15 minutes prior to the test.

AC power to the unit is varied from 85% to 115% nominal and variation in the fundamental emission field strength is recorded. If battery powered, a new, fully charged battery is used.

Conducted measurements were made as described in ANSI C63.4 - 1992.

The IF bandwidth used for measurement of radiated signal strength was 100 kHz or greater below 1000 MHz. Where pulsed transmissions of short enough pulse duration warrant, a greater bandwidth is selected according to the recommendations of Hewlett Packard Application Note 150-2. A discussion of whether pulse desensitivity is applicable to this unit is included in this report (See Exhibit 8.2). Above 1000 MHz, a resolution bandwidth of 1 MHz is used.

Measurements are normally conducted at a measurement distance of three meters. All measurements are extrapolated to three meters using inverse scaling, unless otherwise reported. Measurements taken at a closer distance are so marked.

When determining the test result, the Measurement Uncertainty of the test has been considered.