24. INTERNATIONAL STATION 700MHZ BDA (80-330558-1)

Rack number C09-CR-09

International Station 700MHz BDA (80-330558-1) List of Major Components

Section	Component Part	Component Part Description	Qty Per Assembly
24.3.1.	$05-003007$	4 Port Hybrid Coupler	1
24.3.2.	$09-000401$	Dummy Load	1
24.3.3.	$50-132105$	700 MHz 5 Cavity Combiner System	1
24.3 .4.	$50-132106$	700 MHz 4 Cavity Combiner System	1

24.1. International Station 700MHz BDA (80-330558-1) Rack Drawing Drawing number 80-330558

24.2. International Station 700MHz BDA (80-330558-1) System Diagram

Drawing number 80-330588-1

24.3. International Station 700MHz BDA (80-330558-1) Major Components

24.3.1. 4 Port Hybrid Coupler (05-003007)

This transmitter hybrid coupler is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load. In this specific instance one port of 4 Port Hybrid Coupler (05-003007) is terminated with Dummy load 09-000401 (see below).

05-003007 Specification

PARAMETER	SPECIFICATION
Frequency range	
Bandwidth	$700-900 \mathrm{MHz}$
Rejection	$>14 \mathrm{~dB}$
Insertion loss	6.5 dB (in band, typical)
Connectors	SMA
Weight	$<1.0 \mathrm{~kg}$
Temperature range	operational
	$-10 \diamond \mathrm{C}$ to $+60 \diamond \mathrm{C}$

24.3.2. Dummy Load (09-000401)

When a combiner system is used to split or combine RF signals, in many cases it is most cost effective to use a standard stock item 4, 6 or 8 port device where, in fact, only a 3-6 port device is needed. In this case the splitter/combiner module has one of its ports terminated (both uplink \& downlink) with an appropriate load in order to preserve the correct impedance of the device over the specified frequency range. This has the advantage of allowing future expansion capability should extra channels or other functions become necessary.

09-000401 Specification

PARAMETER	SPECIFICATION
Frequency Range	$10-1000 \mathrm{MHz}$
Power Rating	60 watts continuous
VSWR	Better than $1.1: 1$
Impedance	50 Ohms
Temperature Range	-20 to $+60^{\circ} \mathrm{C}$
RF Connectors	N Type female
Dimension	$119 \mathrm{~mm} \times 51 \mathrm{~mm} \times 51 \mathrm{~mm}$
Weight	485 grams
Finish	Black Anodised
MTBF	$>180,000$ hours

24.3.3. 700MHz 5 Cavity Combiner System (50-132105)

700MHz 5 Cavity Combiner System (50-132105) consists of 5 Dielectric Cavity Resonators mounted on two 3 U rack mount panels, three on one panel and two on the other

700MHz 5 Cavity Combiner System (50-132105) List of Major Components

section	Component Part	Component Part Description	Qty Per Assembly
20.3.2.3.	$04-003402$	Dielectric Cavity Resonator	5

24.3.3.1. 700 MHz 5 Cavity Combiner System (50-132105) Outline Drawing Drawing number 50-1321105

24.3.3.2. 700 MHz 5 Cavity Combiner System (50-132105) System Diagram Drawing number 50-132185

24.3.3.3. Dielectric Cavity Resonator (04-003402)

Cavity resonators are used in this system for their high Q factor response and power handling characteristics. Being finely tuned items, they can be prone to being de-tuned by mechanical shock or vibration therefore these units should be handled, stored and installed with care.

Note that the cavities are coupled together using critical length harnesses. If any cable is to be changed the exact same length and type of cable should be used for replacement.

04-003402 Specification

*Tuned to Customer's specification
**Height is dependant upon position of tuning plunger

24.3.4. $\quad 700 \mathrm{MHz} 4$ Cavity Combiner System (50-132106)

700MHz 4 Cavity Combiner System (50-132106) consists of 4 Dielectric Cavity Resonators mounted on two 3 U rack mount panels, three on one panel and two on the other

700MHz 4 Cavity Combiner System (50-132106) List of Major Components

section	Component Part	Component Part Description	Qty Per Assembly
20.3.3.3.	$04-003402$	Dielectric Cavity Resonator	4

24.3.4.1. 700MHz 4 Cavity Combiner System (50-132106) Outline Drawing Drawing number 50-1321106

24.3.4.3. Dielectric Cavity Resonator (04-003402

Cavity resonators are used in this system for their high Q factor response and power handling characteristics. Being finely tuned items, they can be prone to being de-tuned by mechanical shock or vibration therefore these units should be handled, stored and installed with care.

Note that the cavities are coupled together using critical length harnesses. If any cable is to be changed the exact same length and type of cable should be used for replacement.

04-003402 Specification

Specification	Parameter
Frequency Range	764 to $776 \mathrm{MHz}^{*}$
Bandwidth	25 kHz
Insertion Loss	$<1.0 \mathrm{~dB}$
Return Loss	$>15 \mathrm{~dB}$ (at both ports)
Attenuation	$>10 \mathrm{~dB}$ at $\mathrm{Fc} \pm 1 \mathrm{MHz}$
Power Handling (CW)	20 W
Environmental	IP54
Size	$124 \mathrm{~mm} \times 158 \mathrm{~mm} \times 157 \mathrm{~mm} *$
Weight	1.5 kg
	Connectors

*Tuned to Customer's specification
**Height is dependant upon position of tuning plunger

25. INTERNATIONAL STATION 700MHz BDA (80-330558-2)

Rack number C09-CR-10

International Station 700MHz BDA (80-330558-2) List of Major Components

Section	Component Part	Component Part Description	Qty Per Assembly
25.3.1.	$50-132102$	700 MHz Channelised Amplifier	9
25.3 .2.	$50-132107$	700 MHz Uplink Amplifier	1
25.3 .3.	$50-132108$	700 MHz Downlink Splitter	1

25.1. International Station 700MHz BDA (80-330558-2) Rack Drawing Drawing number 80-330558

25.2. International Station 700MHz BDA (80-330558-2) System Diagram

Drawing number 80-330588-2

25.3. International Station 700MHz BDA (80-330558-2) Major Components

25.3.1. $\quad 700 \mathrm{MHz}$ Channelised Amplifier (50-132102)

3 U rack mount shelf
700MHz Channelised Amplifier (50-132102) List of major Components

Section	Component Part	Component Part Description	Qty Per Assembly
25.3.1.3.	$09-000902$	Dummy Load	1
25.3.1.4.	$10-000901$	Switched Attenuator 0.25W, 0-15dB	1
25.3.1.5.	$11-006702$	Low Noise Amplifier	1
25.3.1.6.	$12-020804$	Power Amplifier	1
25.3.1.7.	$13-003412$	DC/DC Converter	1
25.3.1.8.	$17-009127$	Channel Selectivity Module	1
25.3.1.9.	$17-011501$	Channel Control Module	1
25.3.1.10.	$80-008902$	24V Relay Board	1
25.3.1.11.	$93-910048$	Dual Isolator	1
25.3.1.12.	$94-100004$	Dual Diode Assembly	1
25.3.1.13.	$96-300060$	PSU 24V	1

25.3.1.1. 700 MHz Channelised Amplifier (50-132102) Outline Drawing Drawing number 50-1321102

25.3.1.2. 700 MHz Channelised Amplifier (50-132102) System diagram Drawing number 50-132182

25.3.1.3. Dummy load 09-000902

Dual Isolator (770MHz) (93-910048) has one of its ports terminated with Dummy load 09-000902 in order to achieve the correct power rating to absorb the reflected power levels that can be reasonably expected within the system.

09-000902 specification

PARAMETER	SPECIFICATION
Frequency Range	$0-2500 \mathrm{MHz}$
Power Rating	25 Watts continuous
VSWR	Better than 1.1:1
Impedance	50 Ohms
Temperature Range	-20 to $+60^{\circ} \mathrm{C}$
RF Connectors	N Type female
Dimension	$110.3 \mathrm{~mm} \times 38.1 \mathrm{~mm} \times$
Weight	485 grams
Finish	Black Anodised
RF Connector	N Type male
Environmental	IP66
MTBF	$>180,000$ hours

25.3.1.4. Switched Attenuator 0.25W, 0-15dB (10-000901)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

10-000901 provides attenuation from $0-15 \mathrm{~dB}$ in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000901 Specification

PARAMETER	SPECIFICATION
Attenuation Values	$0-15 \mathrm{~dB}$
Attenuation Steps	$1,2,4$ and 8 dB
Power Handling	0.25 Watt
Attenuation Accuracy	$\pm 1.0 \mathrm{~dB}$
Frequency Range	DC to 1 GHz
Impedance	50Ω
Connectors	SMA
VSWR	$1.3: 1$
	Weight
	0.2 kg
Temperature range:	operation
	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

25.3.1.5. Low Noise Amplifier (11-006702)

The Gallium-Arsenide low noise amplifiers used in 800 MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system.

11-006702 Specification

PARAMETER		SPECIFICATION
Frequency range		$800-1000 \mathrm{MHz}$
Bandwidth		<200MHz
Gain		29dB (typical)
1dB Compression point		20 dBm
OIP3		33 dBm
Input/Output return loss		$>18 \mathrm{~dB}$
Noise figure		1.3dB (typical)
Power consumption		180mA @ 24V DC
Supply voltage		10-24V DC
Connectors		SMA female
Temperature range	operational	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Size		$90 \times 55 \times 30.2 \mathrm{~mm}$
Weight		290gms (approximately)

Low Noise Amplifier (11-006702) 'D’ Connector Pin-out details

Connector pin	Signal
1	+ Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/OV (good)
9	O/C good/OV bad

9-Way Pin-Out Graphical Representation

25.3.1.6 Power Amplifier (12-020804)

This amplifier is a Class AB 40 W power amplifier from 860 MHz to 960 MHz in balanced configuration. The amplifier demonstrates a very good input/output return loss (RL) and it has a built-in Current Fault Alarm Function.
The unit housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-020804 specification

Specification		Parameter
Frequency Range		860-960MHz
Gain		≥ 28.0 dB
Gain Flatness		1.0dB p-p Max
Δ Gain vs. Temperature		2.5 dB Max
Input RL		15dB Min
Output RL		15 dB Min
Output Power @ P1dB		46.0 dBm Min
DC Supply Voltage		$24 \pm 0.5 \mathrm{Vdc}$
RF Input Power		25 dBm
$\begin{aligned} & \text { DC Supply } \\ & \text { Current } \end{aligned}$	At P1dB	6000mA Max
	With no RF input (Iqc)	1700mA Max
Temperature range	operational	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	storage	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

7-Way Connector Pin-outs

Connector Pin	Signal
A1	$+24 V$ DC
A2	GND
1	Alarm relay common
2	TTL alarm/OV good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/OV bad (TTL)

25.3.1.7. DC/DC Converter 13-003412

$13-003412$ is based upon an O.E.M. DC/DC Converter module with a wide input range and and is used to derive a 12 V fixed voltage power supply rail from a higher voltage supply, in this case 24 V . In the event of failure this unit should not be repaired, only replaced.

13-003412 Specification

PARAMETER	SPECIFICATION
Operating voltage	$18-75 \mathrm{~V}$ DC
Output voltages	12 V (typical)
Output current	$5.0 \mathrm{~A}(\mathrm{Max})$
Temperature range	operational
	$-10 \rightleftharpoons \mathrm{C}$ to $+60 \rightleftharpoons \mathrm{C}$

25.3.1.8. Channel Selectivity Module (17-009127)

Channel Selectivity Module (17-009127) is employed when requirement dictates that very narrow bandwidths (single operating channels), must be selected from within the operating passband. One channel selectivity module is required for each channel.

The Channel Selectivity Module is an Up/Down frequency converter that mixes the incoming channel frequency with a synthesised local oscillator, so that it is down-converted to an Intermediate Frequency (IF) in the upper HF range. An eight pole crystal filter in the IF amplifier provides the required selectivity to define the operating passband of the Cell Enhancer to a single PMR channel. The same local oscillator then converts the selected IF signal back to the channel frequency.

Selectivity is obtained from a fixed bandwidth block filter operating at an intermediate frequency (IF) in the low VHF range. This filter may be internal to the channel selectivity module (Crystal or SAW filter) or an externally mounted bandpass filter, (LC or Helical Resonator). Various IF bandwidths can therefore be accommodated. A synthesized Local Oscillator is employed in conjunction with high performance frequency mixers, to translate between the signal frequency and IF.

The operating frequency of each channel selectivity module is set by the programming of channel selectivity module frequencies and is achieved digitally, via hard wired links, banks of DIP switches, or via an onboard RS232 control module, providing the ability to remotely set channel frequencies.

Automatic Level Control (ALC) is provided within each channel selectivity module such that the output level is held constant for high level input signals. This feature prevents saturation of the output mixer and of the associated amplifiers.

Alarms within the module inhibit the channel if the synthesised frequency is not locked. The synthesiser will not usually go out of lock unless a frequency far out of band is programmed.

The channel selectivity module is extremely complex and, with the exception of channel frequency programming within the design bandwidth, it cannot be adjusted or repaired without extensive laboratory facilities and the necessary specialised personnel. If a fault is suspected with any channel selectivity module it should be tested by substitution and the complete, suspect module should then be returned to AFL for investigation.

25.3.1.9. Channel Control Module (17-011501)

The operating frequency for each channel in each repeater is programmed by 16 DIL (Dual In Line) switches. The programming switches are mounted in the Channel Control Module. The Channel Selectivity Modules are connected to the Channel Control Module via multi-way ribbon cables.

Adjacent to the DIL switches for each channel is a toggle switch to turn on and off individual channels as required. A green LED indicates the power status of each channel.

A red LED shows the alarm condition for each channel. An illuminated alarm LED indicates that the synthesiser has not achieved phase lock and that the module is disabled. There is a problem which requires investigation, often a frequency programmed outside the operating frequency range.

The following information is necessary before attempting the programming procedure.
7. operating frequency
8. synthesiser channel spacing (step size)
9. synthesiser offset (IF)

Programming Procedure
Check that the required frequency falls within the operational frequency limits of the Cell Enhancer.
For each channel required, subtract the synthesiser offset from the required operating frequency and record the resulting local oscillator frequency.

Divide each local oscillator frequency by the channel spacing and check that the result is an integer (i.e: no remainder).

If the synthesiser division ratio is not an integer value, check the required operational frequency and repeat the calculation checking for mistakes.

Convert the required local oscillator frequency to synthesiser programming switch state patterns according to the following table. Note: the frequency of the passband will dictate the switch steps used.

Switch Functions		
Switch Number	Synthesiser offset added when switch in UP position	
	12.5 kHz step size	25 kHz step size
1	+12.5 kHz	+25 kHz
2	+25 kHz	+50 kHz
3	+50 kHz	+100 kHz
4	+100 kHz	+200 kHz
5	+200 kHz	+400 kHz
6	+400 kHz	+800 kHz
7	+800 kHz	+1.6 MHz
8	+1.6 MHz	+3.2 MHz
9	+3.2 MHz	+6.4 MHz
10	+6.4 MHz	+12.8 MHz
11	+12.8 MHz	+25.6 MHz
12	+25.6 MHz	+51.2 MHz
13	+51.2 MHz	+102.4 MHz
14	+102.4 MHz	+204.8 MHz
15	+204.8 MHz	+409.6 MHz
16	+409.6 MHz	+819.2 MHz

Frequency required: 454.000 MHz
Channel spacing: $\quad 12.5 \mathrm{kHz}$
Synthesiser offset: $\quad-21.4 \mathrm{MHz}$
The Local Oscillator frequency is therefore:
$454.000-21.4=432.600 \mathrm{MHz}$
Dividing the Local Oscillator frequency by the channel spacing of 0.0125 MHz :

$$
\frac{432.600}{0.0125}=34608
$$

This is an integer value, therefore it is OK to proceed.

Local Oscillator Frequency	Switch settings															
	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
432.600 MHz	1	0	0	0	0	1	1	1	0	0	1	1	0	0	0	0

Switch setting: $\quad 0=$ switch DOWN (ON, frequency ignored)
1 = switch UP (OFF, frequency added)

17-011501 Controller Module DIP Switch Connector Data

17-011501 Controller Module DIP Switch Connector Data			
IDC PIN	25-way Connector	Function $(12.5 \mathrm{kHz}$ steps $)$	Function (25 kHz steps)
1	13	Freq. bit 1 (12.5kHz)	Freq. bit $1(25 \mathrm{kHz})$
2	25	Freq. bit 2 (25kHz)	Freq. bit 2 (50 kHz)
3	12	Freq. bit 3 (50kHz)	Freq. bit 3 (100kHz)
4	24	Freq. bit 4 (100kHz)	Freq. bit 4 (200kHz)
5	11	Freq. bit 5 (200kHz)	Freq. bit 5 (400kHz)
6	23	Freq. bit 6 (400kHz)	Freq. bit 6 (800kHz)
7	10	Freq. bit 7 (800 kHz)	Freq. bit 7 (1.6MHz)
8	22	Freq. bit $8(1.6 \mathrm{MHz})$	Freq. bit 8 (3.2MHz)
9	9	Freq. bit 9 (3.2MHz)	Freq. bit 9 (6.4MHz)
10	21	Freq. bit 10 (6.4MHz)	Freq. bit 10 (12.8MHz)
11	8	Freq. bit 11 (12.8MHz)	Freq. bit 11 (25.6MHz)
12	20	Freq. bit 12 (25.6MHz)	Freq. bit 12 (51.2 MHz)
13	7	Freq. bit 13 (51.2MHz)	Freq. bit 13 (102.4MHz)
14	19	Freq. bit 14 (102.4MHz)	Freq. bit 14 (204.8MHz)
15	6	Freq. bit 15 (204.8MHz)	Freq. bit 15 (409.6MHz)
16	18	Freq. bit 16 (409.6MHz)	Freq. bit 16 (819.2MHz)
17	5	Module alarm	Module alarm
18	17	Gain bit 1	Gain bit 1
19	4	Gain bit 2	Gain bit 2
20	16	Gain bit 3	Gain bit 3
21	3	Gain bit 4	Gain bit 4
22	15	(5V	(5V
23	2	OV	OV
24	14	Switched 12V	Switched 12V
25	1	OV	OV
26	---	---	---

25.3.1.10. 24V Relay Board (80-008902)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single, dual pole, change-over relay RL1 with completely isolated wiring, accessed via screw terminals.

The relay is provided with a polarity protection diode and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008902 Technical Specification

Parameter	Specification
Max. switch current	1.0 Amp
Max. switch volts	$120 \mathrm{Vdc} / 60 \mathrm{VA}$
Max. switch power	$24 \mathrm{~W} / 60 \mathrm{VA}$
Min. switch load	$10.0 \mu \mathrm{~A} / 10.0 \mathrm{mV}$
Relay isolation	1.5 kV
Mechanical life	$>2 \times 10^{7}$ operations
Relay approval	BT type 56
Connector details	
$15-$ way $0.1^{\prime \prime}$ pitch	
Temperature range	operational
	storage
	$-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

25.3.1.11. Dual Isolator (770MHz) ($93-910048$)

The purpose of fitting an isolator to the output of a transmitter in a multi-transmitter environment is so that each output is afforded a degree of isolation from every other. Without the addition of Isolators, simultaneous transmissions could interfere to create intermodulation products and spurious transmissions would be created which would cause interference.

Dual Isolator (93-910048) is a ferro-magnetic RF device, which has directional properties. In the forward direction, RF arriving at the input is passed to the output with minimal attenuation. In the reverse direction, RF arriving at the output due to reflected power from a badly matched load, or due to coupling with another transmitter, is routed into an RF load where it is absorbed. The isolator therefore functions to prevent reflected RF energy reaching the output port of an amplifier where it could cause intermodulation products or premature device failure.

Dual Isolator (93-910048) is as its name suggests a two stage device, essentially two isolators in one casing. One isolator stage has an internal 10W load fitted, the second stage needs an external load fitted of sufficient rating to absorb the reflected power levels that can be reasonably expected within the system. In this instance Dual Isolator (93-910048) is fitted with external load 09-000902.

93-910048 Specification

Parameter	Specification
Frequency Range	$760-780 \mathrm{MHz}$
Insertion Loss	0.4 dB max.
Isolation	50 dB min.
Return Loss	23 dB min.
Power Handling	10 W (internally fitted load)
RF Connectors	N female

25.3.1.12. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

25.3.1.13. PSU 24V (96-300060)

The power supply unit is a switched-mode type capable of supplying 24 V DC at 6.25 Amps continuously. Equipment of this type typically requires approximately $2-2.5 \mathrm{Amps}$ at 24 V DC, so the PSU will be used conservatively ensuring a long operational lifetime.

No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 24.5 V . The output voltage may be varied using a multi-turn adjustment potentiometer mounted close to the DC output terminals.

The line input voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300060 Specification

AC Input Supply	
	110 or 220 V nominal
Voltage	90 to 132 or 180 to 264 V (absolute limits)
Frequency	47 to 63 Hz
DC Output Supply:	
Voltage	24V DC (nominal)
	22 to 26 V (absolute limits)
Current	6.25A

25.3.2. 700 MHz Uplink Amplifier (50-132107)

2 U rack mount tray

700MHz Uplink Amplifier (50-132107) List of major Components

Section	Component Part	Component Part Description	Qty Per Assembly
25.3.2.3.	$10-000701$	Switched Attenuator 0.25Watt, 0-30dB	1
25.3.2.4.	$11-006702$	Low Noise Amplifier	1
25.3.2.5.	$12-021901$	Low Power Amplifier	1
25.3 .2 .6.	$13-003412$	DC/DC Converter	1
25.3 .2 .7.	$17-001109$	AGC Detector Assembly (Logarithmic)	1
	$17-001201$	AGC Detector Assembly	1
25.3 .2 .8.	$80-008901$	12V (Single) Relay Board	1
25.3 .2 .9.	$94-100004$	Dual Diode Assembly	1
25.3 .2 .10.	$96-300052$	12V Switch-Mode PSU	1

25.3.2.1. 700 MHz Uplink Amplifier (50-132107) Outline Drawing Drawing number 50-1321107

25.3.2.2. 700MHz Uplink Amplifier (50-132107) System Diagram Drawing number 50-132187

25.3.2.3. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

Switched Attenuator 10-000701 provides attenuation from 0 to 30 dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER	SPECIFICATION
Attenuation Values	$0-30 \mathrm{~dB}$
Attenuation Steps	$2,4,8$ and 16 dB
Power Handling	0.25 Watt
Attenuation Accuracy	$\pm 1.0 \mathrm{~dB}$
Frequency Range	DC to 1 GHz
Impedance	50Ω
Connectors	SMA
VSWR	$1.3: 1$
Weight	0.2 kg
Temperature range	operation
	storage
	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

25.3.2.4. Low Noise Amplifier (11-006702)

The Gallium-Arsenide low noise amplifiers used in 700 MHz Line Amplifier (55-165704) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system.

11-006702 Specification

PARAMETER	SPECIFICATION
Frequency range	$800-1000 \mathrm{MHz}$
Bandwidth	<200MHz
Gain	29 dB (typical)
1 dB Compression point	20 dBm
OIP3	33 dBm
Input/Output return loss	>18dB
Noise figure	1.3 dB (typical)
Power consumption	180mA @ 24V DC
Supply voltage	10-24V DC
Connectors	SMA female
Temperature ${ }^{\text {operational }}$	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
range storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Size	$90 \times 55 \times 30.2 \mathrm{~mm}$
Weight	290gms (approximately)

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/OV (good)
9	O/C good/OV bad

9-Way Pin-Out Graphical Representation

25.3.2.5. Low Power Amplifier (12-021901)

The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

Low Power Amplifier (12-021901) Specification

PARAMETER		SPECIFICATION
Frequency range		800-960MHz*
Maximum RF output		20 MHz *
		>1.0 Watt
Gain		15dB
1dB compression point		+30.5dBm
$3{ }^{\text {rd }}$ order intercept point		$+43 \mathrm{dBm}$
Noise Figure		<6dB
VSWR		better than 1.5:1
Connectors		SMA female
Supply		500mA @ 10-15V DC
Temperature range	operational	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight		0.5 kg
Size		$167 \times 52 \times 25 \mathrm{~mm}$

* Tuned to Customer's specification

Connector Pin	Signal
A1 (large pin)	$+24 V$ DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/OV good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/OV bad (TTL)

25.3.2.6. DC/DC Converter 13-003412

$13-003412$ is based upon an O.E.M. DC/DC Converter module with a wide input range and and is used to derive a 12 V fixed voltage power supply rail from a higher voltage supply, in this case 24 V . In the event of failure this unit should not be repaired, only replaced.

13-003412 Specification

PARAMETER		SPECIFICATION
Operating voltage		18-75V DC
Output voltages		12V (typical)
Output current		5.0A (Max)
Temperature range	operational	$-10 \bigcirc C$ to $+60 \bigcirc C$
	storage	-200 C to $+70 \bigcirc \mathrm{C}$

25.3.2.7. AGC System

AGC Detector Unit (17-001109)
AGC Attenuator Unit (17-001201)
Equipment 700MHz Uplink Amplifier (50-132107) is fitted with a wide dynamic range Automatic Gain Control (AGC) system. This is fitted in the Uplink path to avoid overloading the amplifiers (with the associated performance degradation) should a mobile be operated very close to the unit.

The AFL wide dynamic range Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The logarithmic detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1 dB below the Enhancer 1 dB compression point. Some adjustment of this AGC threshold level is possible, a 10 dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12 V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.
The AGC onset level is adjusted by the choice of sampler resistor R1 and by the setting of potentiometer VR1, (factory set at the time of system test) do not adjust unless able to monitor subsequent RF levels. The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30 dB . The attenuation is controlled by a DC voltage which is derived from the associated AGC detector unit.

Wide Dynamic Range AGC Specification

PARAMETER		SPECIFICATION
	Frequency Range	up to 1000MHz
	Attenuation Range	3 to 30 dB
	Attenuation Steps	continuously variable
	VSWR	better than 1.2:1
Power	RF Connectors	SMA female
Handling	attenuator	1 W
Temperature	operation	$>30 \mathrm{~W}$ (or as required)
Range	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	
	storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Size	attenuator pcb	$50 \times 42 \times 21 \mathrm{~mm}$
	detector/amp pcb	$54 \times 42 \times 21 \mathrm{~mm}$
Weight	attenuator	90 gm
	detector/amp	100 gm

25.3.2.8. 12V (Single) Relay Board (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector.

The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

PARAMETER		SPECIFICATION
	Operating voltage	8 to 30V (floating earth)
	Alarm threshold	Vcc - 1.20 volt +15\%
Alarm output relay contacts:		
Max. switch current		1.0Amp
Max. switch volts		120Vdc/60VA
Max. switch power		24W/60VA
Min. switch load		$10.0 \mu \mathrm{~A} / 10.0 \mathrm{mV}$
Relay isolation		1.5 kV
Mechanical life		$>2 \times 10^{7}$ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature range	e operational	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	e storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

25.3.2.9. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

25.3.2.10. 12V Switch-Mode PSU (96-300052)

No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2 V . The adjustment potentiometer will be found close to the DC output terminals.

All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220 V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300052 Specification

AC Input Supply	
Voltage	110 or 220V nominal
	$85-265 \mathrm{~V} \mathrm{AC}$
(absolute limits)	

25.3.3. $\quad 700 \mathrm{MHz}$ Downlink Splitter (50-132108)

2U rack mount tray

700MHz Downlink Splitter (50-132108) List of Major Components

Section	Component Part	Component Part Description	Qty Per Assembly
25.3.3.3.	$05-003302$	Four Way Splitter/Combiner	5
25.3.3.4.	$10-000901$	Switched Attenuator 0.25W, $0-15 \mathrm{~dB}$	1
25.3.3.5.	$80-007401$	Dummy Load	7

25.3.3.1. 700 MHz Downlink Splitter (50-132108) Outline Drawing Drawing number 50-1321108

25.3.3.2. 700MHz Downlink Splitter (50-132108) System Diagram Drawing number 50-132188

25.3.3.3. Four Way Splitter/Combiner (05-003302)

The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load.

Four Way Splitter (05-003302) Specification

PARAMETER		SPECIFICATION
Frequency range:		$700-980 \mathrm{MHz}$
	Bandwidth:	180 MHz
	Rejection:	$>14 \mathrm{~dB}$
Insertion loss:		$<7.0 \mathrm{~dB}$ (in band)
Connectors:		N type, female
Weight:		$<1.5 \mathrm{~kg}$
Temperature range:	operational	$-20 ॰ \mathrm{C}$ to $+60{ }^{\circ} \mathrm{C}$
	storage	$-40 \rightleftharpoons \mathrm{C}$ to $+70 \rightleftharpoons \mathrm{C}$

25.3.3.4. Switched Attenuator 0.25W, 0-15dB (10-000901)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

10-000901 provides attenuation from $0-15 \mathrm{~dB}$ in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000901 Specification

PARAMETER	SPECIFICATION
Attenuation Values	$0-15 \mathrm{~dB}$
Attenuation Steps	$1,2,4$ and 8 dB
Power Handling	0.25 Watt
Attenuation Accuracy	$\pm 1.0 \mathrm{~dB}$
Frequency Range	DC to 1 GHz
Impedance	50Ω
Connectors	SMA
VSWR	$1.3: 1$
	Weigh
	0.2 kg
Temperature range	operation
	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

25.3.3.5. Dummy Load (80-007401)

When a combiner system is used to split or combine RF signals, in many cases it is most cost effective to use a standard stock item 4, 6 or 8 port device where, in fact, only a 3 or 6 port device is needed. In this case seven of the outputs from the Four Way Splitter/Combiner (05-003302) have their ports terminated with Dummy Load (80-007401) in order to preserve the correct impedance of the devices over the specified frequency range. This also has the advantage of allowing future expansion capability should extra channels or other functions become necessary.

Dummy Load (80-007401) Specification

Parameter		Specification
Frequency Range	0 to 1000 MHz	
Power Rating	1.6 Watts	
VSWR	$0-500 \mathrm{MHz}$	$1.2: 1$
(Max)	$500-1000 \mathrm{MHz}$	$1.3: 1$
	Temperature	-20 to $+55^{\circ} \mathrm{C}$
Connector	'N' type Male	
	Nominal Impedance	50 Ohms

