

L.A. M.T.A. BDA Line Amplifier User/Maintenance Handbook

For GETS Global Signalling LLC

AWL Works Order Q115342

Product Part Nos. In-Line BDA Wall Mount 80-301401 In-Line BDA Rack Mount 80-301406

AFL and Avitec have merged to form Axell Wireless

AXELL WIRELESS UK Aerial House Asheridge Road Chesham, Buckinghamshire HP5 2QD, United Kingdom Tel: + 44 (0) 1494 777000 Fax: + 44 (0) 1494 777002 info@axellwireless.com www.axellwireless.com AXELL WIRELESS SWEDEN Box 7139 174 07 Sundbyberg Sweden Tel: + 46 (0) 8 475 4700 Fax: + 46 (0) 8 475 4799

Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 1 of 148

Table of Contents

1.	INTRODU	JCTION	7
1.1.	Scope a	and Purpose of Document	7
1.2.	Limitatio	on of Liability Notice	7
2.	SAFETY	CONSIDERATIONS	8
2.1.		g of Equipment	
2.2.		Shock Hazard	
2.3. 2.4.		liation Hazard	
2.4.		and other Health and Safety Recommendationsal Hazard	
2.6.		afety	
2.7.	Emerge	ency Contact Numbers	9
3.	IN-LINE E	BDA WALL MOUNT 80-301401	10
3.1.	In-Line	BDA Wall Mount 80-301401 Specification	11
3.		ine BDA Wall Mount 80-301401 Overall system Diagram	
3.2.	In-Line	BDA Wall Mount 80-301401 List of Major Components	13
3.3.		er 80-301402	
		nbiner 80-301402 System Diagram	
		nbiner 80-301402 Outline Drawing	
		mbiner 80-301402 Specification	
3.	3.4. Cor 3.3.4.1.	nbiner 80-301402 Photographs Front View	
	3.3.4.2.	Underside view showing RF connectors	
	3.3.4.3.	Interior view	
3.3		nbiner 80-301402 Major Sub-Components	
	3.3.5.1.	Bandpass Filter 02-010701	
	3.3.5.2.	Bandpass Filter 02-010901	
	3.3.5.3. 3.3.5.4.	Crossband Splitter/Coupler 550/800MHz (07-004815) Crossband Splitter/Coupler VHF/UHF (07-005754)	
	3.3.5.5.	30dB Directional Coupler (07-018005)	
	3.3.5.6.	30dB Bi-Directional Coupler (07-022005)	
3.4.	VHF/Uł	HF BDA Unit (80-301403)	
3.4	4.1. VH	F/UHF BDA Unit (80-301403) System Diagram	25
3.4		F/UHF BDA Unit (80-301403) Outline Drawing	
•.		F/UHF BDA Unit(80-301403) Specification	
3.4		F/UHF BDA Unit(80-301403) Photographs	
	3.4.4.1. 3.4.4.2.	Front View Underside view showing connectors	28
	3.4.4.3.	Interior view	
3.4		F/UHF BDA Unit(80-301403) Major Sub-components	31
	3.4.5.1.	Bandpass Filter (01-002503)	31
	3.4.5.2.	30dB Directional Coupler (07-002908)	32
	3.4.5.3.	Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)	32
	3.4.5.4. 3.4.5.5.	Low Noise Amplifier (11-005401) TETRA Power Amplifier 20W (12-016301)	33 24
	3.4.5.6.	TETRA Power Amplifier 5W (12-010301)	
	3.4.5.7.	Low Power Amplifier (1Watt) (12-021801)	
	3.4.5.8.	VHF Power Amplifier 5W (12-025602)	37
	3.4.5.9.	Automatic Gain Control	38
	3.4.5.10.	24V Relay Dual Assembly (20-001602)	38
	3.4.5.11. 3.4.5.12.	24V Relay Assembly (80-008902) Dual Diode Assembly (94-100004)	39
	3.4.5.12.	DC/DC Converter, 24V in, 12V 5A out (96-200024)	
35		DA Unit (80-301404)	
		F BDA Unit (80-301404) System Diagram	
		F BDA Unit (80-301404) Outline Drawing	
		Vireless Limited L.A. M.T.A. Remote Sites	

3.5.3. UHF BDA Unit (80-301404) Specification	
3.5.4. UHF BDA Unit (80-301404) Photographs	45
3.5.4.1. Front View	
3.5.4.2. Underside view showing connectors	46
3.5.4.3. Interior view	.47
3.5.5. UHF BDA Unit (80-301404) Major Sub-components	48
3.5.5.1. 30dB Directional Coupler (07-002908)	
3.5.5.2. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)	
3.5.5.3. Low Noise Amplifier (11-005401)	49
3.5.5.4. TETRA Power Amplifier 20W (12-016301)	
3.5.5.5. TETRA Power Amplifier 5W (12-021601)	
3.5.5.6. Low Power Amplifier (12-021801)	
3.5.5.7. DC/DC Converter, 24V in, 12V 8A out (13-003011)	52
3.5.5.7. DC/DC Converter, 24V III, 12V 6A Out (13-003011)	53
3.5.5.8. Automatic Gain Control	
3.5.5.9. 24V Relay Dual Assembly (20-001602)	
3.5.5.10. 24V Relay Assembly (80-008909)	
3.5.5.11. Dual Diode Assembly (94-100004)	
3.6. 800MHz BDA UNIT (80-301405)	56
3.6.1. 800MHz BDA UNIT (80-301405) System Diagram	57
3.6.2. 800MHz BDA UNIT (80-301405) Outline Drawing	
3.6.3. 800MHz BDA UNIT (80-301405) Specification	
3.6.4. 800MHz BDA UNIT (80-301405) Photographs	
3.6.4.1. Front View	
3.6.4.2. Underside view showing connectors	
3.6.4.3. Interior view	
3.6.5. 800MHz BDA UNIT (80-301405) Major Sub-components	
3.6.5.1. Bandpass Filter (02-011601)	62
3.6.5.2. Splitter/Combiner (05-002602)	
3.6.5.3. 30dB Directional Coupler (07-002907)	63
3.6.5.4. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)	64
3.6.5.5. Low Noise Amplifier (11-005902)	
3.6.5.6. 5W Power Amplifier (12-018601)	
3.6.5.7. 20W Power Amplifier (12-020501)	
3.6.5.8. Automatic Gain Control	
3.6.5.9. 24V Relay Dual Assembly (20-001602)	67
3.6.5.10. Dual Diode Assembly (94-100004)	68
3.6.5.11. DC/DC Converter, 24V in, 12V 5A out (96-200024)	68
4. IN-LINE BDA RACK MOUNT 80-301406	69
4.1. In-Line BDA Rack Mount System Diagrams	
4.1.1. Overall System Diagram.	
4.1.2. Combiners System Diagram	
4.2. In-Line BDA Rack Mount 80-301406 Specification	
4.3. In-Line BDA Rack Mount 80-301406 Illustrations	
4.3.1. Rack 1 Front View	74
4.3.2. Rack 1 Rear View	75
4.3.3. Rack 2 Front View	76
4.3.4. Rack 2 Rear View	.77
4.3.5. Rack 1 Top View	78
4.3.6. Rack 2 Top View	79
4.4. In-Line BDA Rack Mount 80-301401 List of Major Components	
4.5. Downlink Input Shelf 80-301407	
4.5.1. Downlink Input Shelf 80-301407 System Schematic	
4.5.2. Downlink Input Shelf 80-301407 Outline Drawing	
4.5.3. Downlink Input Shelf 80-301407 Specification	
4.5.4. Downlink Input Shelf 80-301407 Illustrations	
4.5.4.1. Rear View	
4.5.5. Downlink Input Shelf 80-301407 Major Sub Components	
4.5.5.1. Bandpass Filter (02-010701)	
4.5.5.2. Bandpass Filter 02-010901	84

4.5.5.3. Crossband Splitter/Coupler 550/800MHz (07-004815)	
4.5.5.4. Crossband Splitter/Coupler VHF/UHF (07-005754)	
4.5.5.5. 30dB Bi-Directional Coupler (07-022005)	
4.6. Downlink Output Shelf 80-301408	
4.6.1. Downlink Output Shelf 80-301408 System Schematic4.6.2. Downlink Output Shelf 80-301408 Outline Drawing	
4.6.3. Downlink Output Shelf 80-301408 Specification4.6.4. Downlink Output Shelf 80-301408 Illustrations	
4.6.4. Downlink Output Shelf 80-301408 Illustrations	
4.6.5. Downlink Output Shelf 80-301408 Major Sub Components	
4.6.5.1. 30dB Directional Coupler (07-018005)	
4.7. Uplink Input Shelf 80-301407	
4.7.1. Uplink Input Shelf 80-301407 System Schematic	
4.7.2. Uplink Input Shelf 80-301407 Outline Drawing	
4.7.3. Uplink Input Shelf 80-301407 Specification	
4.7.4. Uplink Input Shelf 80-301407 Illustrations	
4.7.4.1. Rear View	
4.7.5. Uplink Input Shelf 80-301407 Major Sub Components	
4.8. Uplink Output Shelf 80-301407	94
4.8.1. Uplink Output Shelf 80-301407 System Schematic	
4.8.2. Uplink Output Shelf 80-301407 Outline Drawing	
4.8.3. Uplink Output Shelf 80-301407 Specification	
4.8.4. Uplink Output Shelf 80-301407 Illustrations	
4.8.4.1. Rear View	
4.8.5. Uplink Output Shelf 80-301407 Major Sub Components	
4.9. VHF Amplifier Shelf 80-301409	
4.9.1. VHF Amplifier Shelf 80-301409 System Diagram 4.9.2. VHF Amplifier Shelf 80-301409 Outline Drawing	
4.9.2. VHF Amplifier Shelf 80-301409 Outline Drawing4.9.3. VHF Amplifier Shelf 80-301409 Specification	
4.9.4. VHF Amplifier Shelf 80-301409 Specification	
4.9.4.1. Front View	
4.9.4.2. Rear View	
4.9.5. VHF Amplifier Shelf 80-301409 Major Sub Components	101
4.9.5.1. Bandpass Filter (01-002503)	
4.9.5.2. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)	102
4.9.5.3. VHF Power Amplifier 5W (12-025602)	
4.9.5.4. Automatic Gain Control.	104
4.9.5.5. 24V Relay Dual Assembly (20-001602) 4.9.5.6. Dual Diode Assembly (94-100004)	
4.10. UHF Lowband Amplifier Shelf 80-301410	
 4.10.1. UHF Lowband Amplifier Shelf 80-301410 System Diagram 4.10.2. UHF Lowband Amplifier Shelf 80-301410 Outline Drawing 	
4.10.2. UHF Lowband Amplifier Shelf 80-301410 Outline Drawing4.10.3. UHF Lowband Amplifier Shelf 80-301410 Specification	
4.10.4. UHF Lowband Amplifier Shelf 80-301410 Illustrations	
4.10.4.1. Front View	
4.10.4.2. Rear View	
4.10.5. UHF Lowband Amplifier Shelf 80-301410 Major Sub Components	
4.10.5.1. 30dB Directional Coupler (07-002908)	
4.10.5.2. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)	
4.10.5.3. Low Noise Amplifier (11-005401)	112
4.10.5.4. TETRA Power Amplifier 20W (12-016301)	
4.10.5.5. TETRA Power Amplifier 5W (12-021601) 3.10.5.6. Low Power Amplifier (1Watt) (12-021801)	
4.10.5.7. Automatic Gain Control	
4.10.5.8. 24V Relay Dual Assembly (20-001602)	
4.10.5.9. 12V Relay Assembly 80-008909	
4.10.5.10. Dual Diode Assembly (94-100004)	
4.10.5.11. DC/DC Converter, 24V in, 12V 5A out (96-200024)	
4.11. UHF Midband Amplifier Shelf 80-301410	119
Angle Marine Line to all AMTA Domoto Sitop	

4.11.1. UHF Lowband Amplifier Shelf 80-301410 System Diagram	
4.11.2. UHF Midband Amplifier Shelf 80-301410 Outline Drawing 1	
4.11.3. UHF Midband Amplifier Shelf 80-301410 Specification	
4.11.4. UHF Lowband Amplifier Shelf 80-301410 Illustrations	
4.11.4.1. Front View	
4.11.4.2. Rear View	
4.11.5. UHF Midband Amplifier Shelf 80-301410 Major Sub Components	
4.12. UHF Highband Amplifier Shelf 80-3014101	
4.12.1. UHF Highband Amplifier Shelf 80-301410 System Diagram	
4.12.2. UHF Highband Amplifier Shelf 80-301410 Outline Drawing1	
4.12.3. UHF Highband Amplifier Shelf 80-301410 Specification1	
4.12.4. UHF Highband Amplifier Shelf 80-301410 Illustrations	
4.12.4.1. Front View	
4.12.4.2. Rear View	
4.12.5. UHF Highband Amplifier Shelf 80-301410 Major Sub Components	
4.13. 800MHz Amplifier Shelf 80-3014111	
4.13.1. 800MHz Amplifier Shelf 80-301411 System Diagram1	
4.13.2. 800MHz Amplifier Shelf 80-301411 Outline Drawing1	
4.13.3. 800MHz Amplifier Shelf 80-301411 Specification	
4.13.4. 800MHz Amplifier Shelf 80-301411 Illustrations	
4.13.4.1. Front View	
4.13.4.2. Rear View	
4.13.5. 800MHz Amplifier Shelf 80-301411 Major Sub Components	
4.13.5.1. Bandpass Filter (02-011601)1 4.13.5.2. Splitter/Combiner (05-002602)1	
4.13.5.2. Splitter/Combiner (05-002002)1 4.13.5.3. 30dB Directional Coupler (07-002907)1	
4.13.5.4. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)1	
4.13.5.5. Low Noise Amplifier (11-005902)	
4.13.5.6. 5W Power Amplifier (12-018601)1	
4.13.5.7. 20W Power Amplifier (12-020501)	
4.13.5.8. Automatic Gain Control	
4.13.5.9. 24V Relay Dual Assembly (20-001602)1	
4.13.5.10. Dual Diode Assembly (94-100004)1	
4.13.5.11. DC/DC Converter, 24V in, 12V 5A out (96-200024)	
4.14 PSU 96-300064	
5. INSTALLATION1	
5.1 Installation Record	
5.1 Installation Record	
5.3 Electrical Connections	
5.4 RF Connections	
5.5 Optical Connections	
5.6 Commissioning	
6. MAINTENANCE	
6.1 Fault Finding	
6.1.1 Quick Fault Checklist	
6.1.2 Fault Isolation	
6.1.3 Downlink	
6.1.4 Uplink	
6.1.6 Fault repair	
6.1.7 Service Support	
 6.2 Tools & Test Equipment	
6.3.1 General Comments	
6.3.2 Module Removal (LNAs, general procedure)	
 6.3.3 Module Replacement (general)	
6.3.5 Low Power Amplifier Replacement1	
	140

6.3.6	Module Transportation	
	DIX A	
A.1.	Glossary of Terms used in this document	
	Key to Drawing Symbols used in this document	
A.3.	EC Declaration of Conformity	
A.4.	Amendment List Record Sheet	
APPEND	DIX B	
B.1.	INITIAL EQUIPMENT SET-UP CALCULATIONS	

1. INTRODUCTION

1.1. Scope and Purpose of Document

This handbook is for use solely with the equipment identified by the Axell Wireless Limited (AWL) Part Number shown on the front cover. It is not to be used with any other equipment unless specifically authorised by AWL. This is a controlled release document and, as such, becomes a part of the Axell Wireless Total Quality Management System. Alterations and modification may therefore only be performed by Axell Wireless.

AWL recommends that the installer of this equipment familiarise themselves with the safety and installation procedures contained within this document before installation commences.

The purpose of this handbook is to provide the user/maintainer with sufficient information to service and repair the equipment to the level agreed. Maintenance and adjustments to any deeper level must be performed by AWL, normally at the company's repair facility in Chesham, England.

This handbook has been prepared in accordance with BS 4884, and AWL's Quality procedures, which maintain the company's registration to BS EN ISO 9001:2000 and to the R&TTE Directive of the European Parliament. Copies of the relevant certificates and the company Quality Manual can be supplied on application to the Quality Manager.

This document fulfils the relevant requirements of Article 6 of the R&TTE Directive.

1.2. Limitation of Liability Notice

This manual is written for the use of technically competent operators/service persons. No liability is accepted by AWL for use or misuse of this manual, the information contained therein, or the consequences of any actions resulting from the use of the said information, including, but not limited to, descriptive, procedural, typographical, arithmetical, or listing errors.

Furthermore, AWL does not warrant the absolute accuracy of the information contained within this manual, or its completeness, fitness for purpose, or scope.

AWL has a policy of continuous product development and enhancement, and as such, reserves the right to amend, alter, update and generally change the contents, appearance and pertinence of this document without notice.

All AWL products carry a twelve month warranty from date of shipment. The warranty is expressly on a return to base repair or exchange basis and the warranty cover does not extend to on-site repair or complete unit exchange.

2. SAFETY CONSIDERATIONS

2.1. Earthing of Equipment

Equipment supplied from the mains must be connected to grounded outlets and earthed in conformity with appropriate local, national and international electricity supply and safety regulations.

2.2. Electric Shock Hazard

The risk of electrical shocks due to faulty mains driven power supplies whilst potentially ever present in any electrical equipment, would be minimised by adherence to good installation practice and thorough testing at the following stages:

- a) Original assembly.
- b) Commissioning..
- c) Regular intervals, thereafter.

All test equipment must be in good working order prior to its use. High current power supplies can be dangerous because of the possibility of substantial arcing. Always switch off during disconnection and reconnection.

2.3. RF Radiation Hazard

RF radiation, (especially at UHF frequencies) arising from transmitter outputs connected to AWL's equipment, must be considered a safety hazard.

This condition might only occur in the event of cable disconnection, or because a 'spare' output has been left un-terminated. Either of these conditions would impair the

system's efficiency. No investigation should be carried out until <u>all</u> RF power sources have been removed. This would always be a wise precaution, despite the severe mismatch between the impedance of an N type connector at 50Ω , and that of free space at 377Ω , which would severely mitigate against the efficient radiation of RF power. Radio frequency burns could also be a hazard, if any RF power carrying components were to be carelessly touched!

Antenna positions should be chosen to comply with requirements (both local & statutory) regarding exposure of personnel to RF radiation. When connected to an antenna, the unit is capable of producing RF field strengths, which may exceed guideline safe values especially if used with antennas having appreciable gain. In this regard the use of directional antennas with backscreens and a strict site rule that personnel must remain behind the screen while the RF power is on, is strongly recommended.

Where the equipment is used near power lines or in association with temporary masts not having lightning protection, the use of a safety earth connected to the case-earthing bolt is strongly advised.

2.4. Lifting and other Health and Safety Recommendations

Certain items of AWL equipment are heavy and care should be taken when lifting them by hand. Ensure that a suitable number of personnel, appropriate lifting apparatus and appropriate personal protective equipment is used especially when installing Cell Enhancers above ground e.g. on a mast or pole.

2.5. Chemical Hazard

Beryllium Oxide, also known as Beryllium Monoxide, or ThermaloxTM, is sometimes used in devices within equipment produced by Axell Wireless Ltd. Beryllium oxide dust can be toxic if inhaled, leading to chronic respiratory problems. It is harmless if ingested or by contact.

Products that contain beryllium are load terminations (dummy loads) and some power amplifiers. These products can be identified by a yellow and black "skull and crossbones" danger symbol (shown above). They are marked as hazardous in line with international regulations, but pose no threat under normal circumstances. Only if a component containing beryllium oxide has suffered catastrophic failure, or exploded, will there be any danger of the formation of dust. Any dust that has been created will be contained within the equipment module as long as the module remains sealed. For this reason, any module carrying the yellow and black danger sign should not be opened. If the equipment is suspected of failure, or is at the end of its life-cycle, it must be returned to Axell Wireless Ltd. for disposal.

To return such equipment, please contact the Quality Department, who will give you a Returned Materials Authorisation (RMA) number. Please quote this number on the packing documents, and on all correspondence relating to the shipment.

PolyTetraFluoroEthylene, (P.T.F.E.) and P.T.F.E. Composite Materials

Many modules/components in AWL equipment contain P.T.F.E. as part of the RF insulation barrier. This material should never be heated to the point where smoke or fumes are evolved. Any person feeling drowsy after coming into contact with P.T.F.E. especially dust or fumes should seek medical attention.

2.6. Laser safety

General good working practices adapted from EN60825-2: 2004/ EC 60825-2:2004

Do not stare with unprotected eyes or with any unapproved optical device at the fibre

ends or connector faces or point them at other people, Use only approved filtered or attenuating viewing aids.

Any single or multiple fibre end or ends found not to be terminated (for example, matched, spliced) shall be individually or collectively covered when not being worked on. They shall not be readily visible and sharp ends shall not be exposed.

When using test cords, the optical power source shall be the last connected and the first disconnected; use only approved methods for cleaning and preparing optical fibres and optical connectors.

Always keep optical connectors covered to avoid physical damage and do not allow any dirt/foreign material ingress on the optical connector bulkheads.

The optical fibre jumper cable maximum bend radius is 3cm; any smaller radii may result in optical cable breakage or excessive transmission losses.

Caution: The FO units are <u>NOT</u> weather proof.

2.7. Emergency Contact Numbers

The AWL Quality Department can be contacted on:Telephone+44 (0)1494 777000Fax.+44 (0)1494 777002e-mailga@axellwireless.com

3. In-Line BDA Wall Mount 80-301401

The wall mount In Line BDA consists of 4 wall mount enclosures:

80-301402 the Combiner unit. 80-301403 which houses the VHF and UHF Low Band amplification modules. 80-301404 which houses the Mid and High band UHF amplification modules. 80-301405 which houses the 800MHz amplification modules.

Downlink

The downlink signal is received from the leaky feeder and enters the Combiner 80-301402 where by means of crossband splitter/couplers it is split into VHF, UHF and 800MHz paths, the UHF path is further split into Low, Middle and Highband paths.

The VHF and UHF Lowband paths then leave Combiner 80-301402 and enters VHF/UHF BDA Unit 80-301403,

The UHF Mid and Highband paths leaves Combiner 80-301402 and enters UHF BDA Unit 80-301404

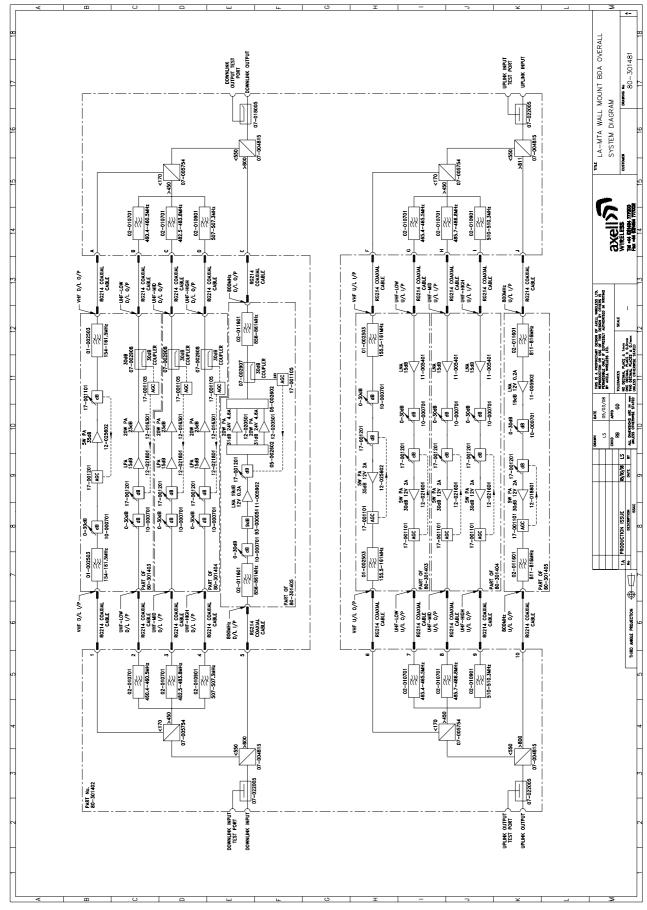
The 800MHz path leaves Combiner 80-301402 and enters 800MHz BDA Unit 80-301405

After being amplified the Downlink signals from the three BDA units then re-enter Splitter/Combiner 80-301402 where they are combined into a single path and fed into the leaky feeder.

Uplink

The Uplink signal signal is received from the leaky feeder and enters the Splitter/Combiner 80-301402 where by means of crossband splitter/couplers it is split into VHF, UHF and 800MHz paths, the UHF path is further split into Low, Middle and Highband paths.

The VHF and UHF Low band paths then leave Splitter/Combiner 80-301402 and enters VHF/UHF BDA Unit 80-301403,


The UHF Mid and Highband paths leaves Splitter/Combiner 80-301402 and enters UHF BDA Unit 80-301404

The 800MHz path leaves Splitter/Combiner 80-301402 and enters 800MHz BDA Unit 80-301405

After being amplified the Uplink signals from the three BDA units then re-enter Splitter/Combiner 80-301402 where they are combined into a single path and fed into the leaky feeder.

3.1. In-Line BDA Wall Mount 80-301401 Specification

ELECTRICAL SPECIFICATION					
	Downlink 154.0 to 161.5 MHz				
	VHF		Uplink	155.5 to 161.0 MHz	
		Low	Downlink	460.4 to 460.5 MHz	
	UHF Low		Uplink	465.4 to 465.5 MHz	
Frequency	UHF Mid		Downlink	482.5 to 483.8 MHz	
Range	UHF	IVIIO	Uplink	485.7 to 486.8 MHz	
		مام	Downlink	507.0 to 507.3 MHz	
	UHFI	⊓ıgn	Uplink	510.0 to 510.3 MHz	
	000	MHz	Downlink	856.0 to 861.0 MHz	
	8001	VIHZ	Uplink	811.0 to 816.0 MHz	
	P	assb	and Ripple	± 1.5dB	
			VHF	5 Watts	
Devention	Davian		UHF Low	20 Watts	
Downlink		UHF Mid		20 Watts	
An	nplifier		UHF High	20 Watts	
			800MHz	40 Watts	
			VHF	5 Watts	
Linlink	Dowor		UHF Low	5 Watts	
Uplink Power Amplifier		UHF Mid		5 Watts	
		UHF High		5 Watts	
			800MHz	5 Watts	
			Gain	30dB	
		Ģ	Gain Adjust	0 - 30dB in 2dB Steps	
Sampling Ports		pling Ports	30dB		
VSWR		VSWR	1.5:1		
			mpedance	50 Ohms	
		Pov	ver Supply	24V DC	
Power Consumption				< 800 Watts	
Environmental/Mechanical Specification					
Mechanical		/lechanical	IP65 Wall Mount		
Dimensions Qty. 4 off,					
(evolutions handles and connectors) 02		620mm x 620mm x 250mm			
(24 X 24 X 10 approx)					
RF Connectors N-Type Female					
				Local Alarms to SCADA	
	ŀ	Alarm	Interfaces	Dry Contact with LED Indication per	
				band path	

3.1.1. In-Line BDA Wall Mount 80-301401 Overall system Diagram Drawing Number 80-301481

Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 12 of 148

3.2. In-Line BDA Wall Mount 80-301401 List of Major Components

Section	Component	Component Part Description	Qty Per
	Part		Assembly
3.3.	80-301402	Combiner	1
3.4.	80-301403	VHF/UHF BDA Unit	1
3.5.	80-301404	UHF BDA Unit	1
3.6.	80-301405	800MHz BDA Unit	1

3.3. Combiner 80-301402

Splitter/Combiner 80-301402 is the main Splitter/Combiner unit. Signals are received from the leaky feeder and are then split into their various separate paths before being amplified by external band specific amplifiers and then the signals are re-combined for onward transmission via the leaky feeder The unit is housed in a wall mount case 600x600x250mm (24" x 24" x 10" approx)

Downlink signals are received at the port labelled "DOWNLINK INPUT" (Annotated AA in the picture in section 3.3.4.2.) and there is a 30dB test port labelled "DOWNLINK INPUT TEST PORT" (Z in section 3.3.4.2.).

Ports labelled 1 to 5 (P to T in section 3.3.4.2.) are the Downlink outputs to the amplification stages and ports labelled A to E (A to E in section 3.3.4.2.) are the Downlink inputs from the amplification stages. These outputs and inputs are further described below.

The Downlink signal leaves the Splitter/Combiner for the leaky feeder via the port labelled "DOWNLINK OUTPUT" (L in section 3.3.4.2.) and there is a 30dB test port labelled "DOWNLINK OUTPUT TEST PORT" (K in section 3.3.4.2.).

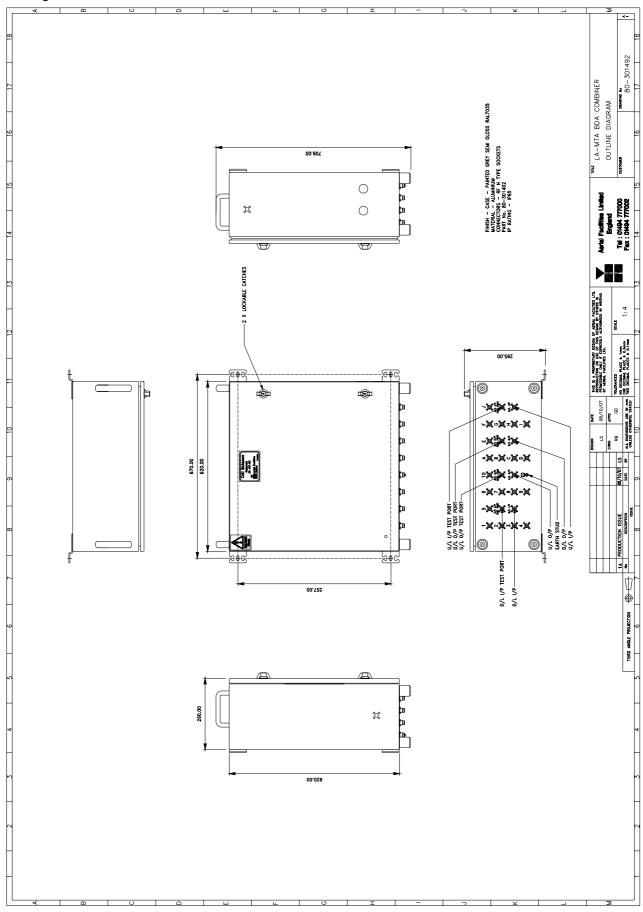
Uplink signals are received at the port labelled "UPLINK INPUT" (N in section 3.3.4.2.) and there is a 30dB test port labelled "UPLINK INPUT TEST PORT" (M in section 3.3.4.2.).

Ports labelled F to J (F to J in section 3.3.4.2.) are the Uplink outputs to the amplification stages and ports labelled 6 to 10 (U to Y in section 3.3.4.2.) are the Uplink inputs from the amplification stages. These outputs and inputs are further described below.

The Uplink signal leaves the Splitter/Combiner for the leaky feeder via the port labelled "UPLINK OUTPUT" (CC in section 3.3.4.2.) and there is a 30dB test port labelled "UPLINK OUTPUT TEST PORT" (BB in section 3.3.4.2.).

Splitter/Combiner 80-301402 also incorporates bandpass filtering for the three UHF bands, the filters are placed in the RF path before the outputs to and after the inputs from the external amplification stages

3.3.1. Combiner 80-301402 System Diagram


Drawing Number 80-301482 ന ш ٩M DOWNLINK OUTPUT പപ ۶ UPLINK INPUT TEST PORT UPLINK INPUT DOWNLINK OUTPUT TEST UHF HIGH DOWNLINK OUTPUT LOW DOWNLINK OUTPUT MID DOWNLINK OUTPUT 800MHz DOWNLINK OUTPUT
 PRODUCTION
 ISSUE
 (ECN4580)
 19/09/07

 PROTOTYPE
 ISSUE
 25/07/07
 PORT DATE UHF LOW UPLINK INPUT UHF MID UPLINK INPUT UHF HIGH UPLINK INPUT DOWNLINK OUTPUT **800MHz UPLINK INPUT** VHF UPLINK INPUT 80-301482 07-018005 07-022005 ISSUE LA-MTA BDA COMBINER DESCRIPTION UHF UHF ΥΗF DRAWING.No <u>କଳିତିରିଜିଜିତି</u>କିକ SYSTEM DIAGRAM 07-004815 07-004815 <550 <550 >850 1⊅ >811 AA 07-005754 07 - 005754٩ <170 <170 U ¢ >450 >450 CUSTOMER TITLE 485.7-486.8MHz 02-010901 482.5-483.8MH 02-010901 465.4-465.5MH 02-010701 510-510.3MHz 460.4-460.5MH 02-010701 507-507.3MHz THIRD ANGLE PROJECTION 02-01070 02-01070 }} }} }} }} \mathcal{H} **Aerial Facilities Limited** Tel : 01494 777000 Fax : 01494 777002 England (F) E (j) E Ξ (r) (01)) (I) (V) E છ <u>e</u> (9) († E (2)(2) (2) (8) 6 460.4-460.5MHz 02-010701 482.5-483.8MHz 02-010901 465.4-465.5MHz 02-010701 485.7-486.8MHz 02-010901 510-510.3MHz 507-507.3MHz 02-010701 02-010701 XX XX }} XX THIS IS A PROPRIETARY DESIGN OF AERIAL FACILITIES LTD. REPRODUCTION OR USE OF THIS DESIGN BY OTHERS IS PERMISSIELE ONLY IF EXPRESSLY AUTHORISED IN WRITING BY AERIAL FACULITIES LTD. >450 1 >450 <170 <170 07-005754 07-005754 SCALE >850 >811 TOLERANCES NO DECIMAL PLACE ± 1mm ONE DECIMAL PLACE ± 0.3mm TWO DECIMAL PLACES ± 0.1mm <550 07-004815 <550 07-004815 UHF HIGH DOWNLINK INPUT UHF LOW DOWNLINK INPUT UHF MID DOWNLINK INPUT UHF HIGH UPLINK OUTPUT UHF LOW UPLINK OUTPUT 07-022005 UHF MID UPLINK OUTPUT 800MHz DOWNLINK INPUT 0) 800MHz UPLINK OUTPUT 07-022005 DOWNLINK INPUT VHF UPLINK OUTPUT ALL DIMENSIONS ARE IN mm UNLESS OTHERWISE STATED 25/07/07 G UPLINK ΟυΤΡυΤ 🔾 DOWNLINK INPUT DOWNLINK INPUT TEST PORT UPLINK OUTPUT TEST PORT DATE APPD ۲HF S BB 687 (2, 4, 3, 5)Ê DRAWN CHKD ш < (Lт

Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 14 of 148

3.3.2. Combiner 80-301402 Outline Drawing Drawing Number 80-301492

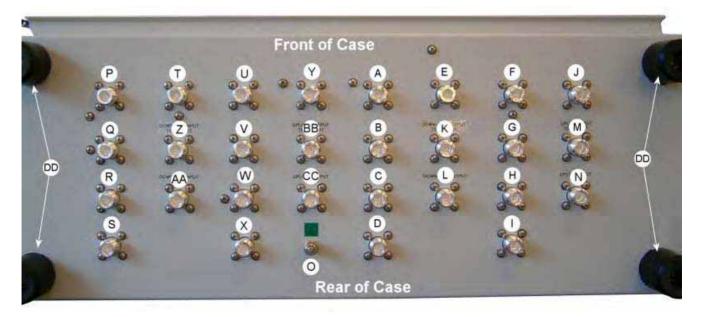
Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 15 of 148

3.3.3. Combiner 80-301402 Specification

Downlink

PARAMETER	SPECIFICATION
Insertion Loss from Downlink Input port to po	rt indicated
VHF Band to port 1	< 1.0dB at 154.0 – 161.3MHz
UHF Low Band to port 2	
UHF Mid Band to port 3	< 3.5dB at 482.5 -483.8MHz
UHF High Band to port 4	< 4.0dB at 507.0 – 507.3MHz
800MHz Band to port 5	< 1.0dB at 856.0 – 861.0MHz
Insertion Loss from port indicated to Downlink	< Input test port
VHF Band	30dB at 154.0 – 161.3MHz
UHF Low Band	30dB at 460.4 – 460.5MHz
UHF Mid Band	30dB at 482.5 – 483.8MHz
UHF High Band	30dB at 507.0 – 507.3MHz
800MHz Band	30dB at 856.0 – 861.0MHz
Insertion Loss from port indicated to Downlink	< Output
VHF Band from port A	< 1.0dB at 154.0 – 161.3MHz
UHF Low Band from port B	< 3.5dB at 460.4 – 460.5MHz
UHF Mid Band from port C	< 3.5dB at 482.5 -483.8MHz
UHF High Band from port D	< 4.0dB at 507.0 – 507.3MHz
800MHz Band from port E	< 1.0dB at 856.0 – 861.0MHz
Insertion Loss from port indicated to Downlink	< Output Test port
VHF Band from port A	31.0dB at 154.0 – 161.3MHz
UHF Low Band from port B	33dB at 460.4 – 460.5MHz
UHF Mid Band from port C	33dB at 482.5 – 483.8MHz
UHF High Band from port D	33dB at 507.0 – 507.3MHz
800MHz Band from port E	31dB at 856.0 – 861.0MHz


Uplink

PARAMETER	SPECIFICATION
Insertion Loss from from Uplink Input port to	port indicated
VHF Band to port F	< 1.0dB at 155.7 – 160.8MHz
UHF Low Band to port G	< 3.5dB at 465.4 – 465.5MHz
UHF Mid Band to port H	< 3.5dB at 485.7 -486.8MHz
UHF High Band to port I	< 4.0dB at 510.0 – 510.3MHz
800MHz Band to port J	< 1.0dB at 811.0 – 816.0MHz
Insertion Loss from port indicated to Uplink In	put test port
VHF Band	31dB at 155.7 – 160.8MHz
UHF Low Band	33dB at 465.4 – 465.5MHz
UHF Mid Band	33dB at 485.7 – 486.8MHz
UHF High Band	33dB at 510.0 – 510.3MHz
800MHz Band	31dB at 811.0 – 816.0MHz
Insertion Loss from port indicated to Uplink O	utput
VHF Band from port 6	< 1.0dB at 155.7 – 160.8MHz
UHF Low Band from port 7	< 3.5dB at 465.4 – 465.5MHz
UHF Mid Band from port 8	< 3.5dB at 485.7 -486.8MHz
UHF High Band from port 9	< 4.0dB at 510.0 – 510.3MHz
800MHz Band from port 10	< 1.0dB at 811.0 – 816.0MHz
Insertion Loss from port indicated to Uplink O	utput Test port
VHF Band from port 6	31dB at 155.7 – 160.8MHz
UHF Low Band from port 7	33dB at 465.4 – 465.5MHz
UHF Mid Band from port 8	33dB at 485.7 – 486.8MHz
UHF High Band from port 9	33dB at 510.0 – 510.3MHz
800MHz Band from port 10	31dB at 811.0 – 816.0MHz

PARAMETER	SPECIFICATION
Mechanical	IP65 Wall Mount
RF connectors	N type female
Dimensions	620mm x 620mm x 250mm
(excludes handles and connectors	(24" x 24" x 10" approx)

3.3.4. Combiner 80-301402 Photographs

A	Port A. Downlink VHF Input from VHF/UHF BDA Unit 80-301403
В	Port B. Downlink UHF Lowband Input from VHF/UHF BDA Unit 80-301403
С	Port C. Downlink UHF Midband Input from UHF BDA Unit 80-301404
D	Port D. Downlink UHF Highband Input from UHF BDA Unit 80-301404
E	Port E. Downlink 800MHz Input from 800MHz BDA Unit 80-301405
F	Port F. Uplink VHF Output to VHF/UHF BDA Unit 80-301403
G	Port G. Uplink UHF Lowband Output to VHF/UHF BDA Unit 80-301403
Н	Port H. Uplink UHF Midband Output to UHF BDA Unit 80-301404
Ι	Port I. Uplink UHF Highband Output to UHF BDA Unit 80-301404
J	Port J. Uplink 800MHz Output to 800MHz BDA Unit 80-301405
K	Downlink Output Test Port (30dB Tap)
L	Downlink Output to Radiating Cable
М	Uplink Input Test Port (30dB Tap)
Ν	Uplink Input from Radiating Cable
0	Earth Connection
Р	Port 1. Downlink VHF Output to VHF/UHF BDA Unit 80-301403
Q	Port 2. Downlink UHF Lowband Output to VHF/UHF BDA Unit 80-301403
R	Port 3. Downlink UHF Midband Output to UHF BDA Unit 80-301404
S	Port 4. Downlink UHF Highband Output to UHF BDA Unit 80-301404
Т	Port 5. Downlink 800MHz Output to 800MHz BDA Unit 80-301405
U	Port 6. Uplink VHF Input from VHF/UHF BDA Unit 80-301403
V	Port 7. Uplink UHF Lowband Input from VHF/UHF BDA Unit 80-301403
W	Port 8. Uplink UHF Midband Input from UHF BDA Unit 80-301404
X	Port 9. Uplink UHF Highband Input from UHF BDA Unit 80-301404
Υ	Port 10. Uplink 800MHz Input from 800MHz BDA Unit 80-301405
Ζ	Downlink Input Test Port (30dB Tap)
AA	Downlink Input from Radiating Cable
BB	Uplink Output Test Port (30dB Tap)
CC	Uplink Output to Radiating Cable
DD	Case feet

	-
Α	Downlink Input 30dB Bi-Directional Coupler 07-022005
В	Downlink Input Crossband Splitter/Coupler 07-004815
С	Downlink Input Crossband Splitter/Coupler 07-005754
D	Downlink Input UHF Lowband Bandpass Filter 02-010701
E	Downlink Input UHF Midband Bandpass Filter 02-010701
F	Downlink Input UHF Highband Bandpass Filter 02-010901
G	Downlink Output UHF Lowband Bandpass Filter 02-010701
Η	Downlink Output UHF Midband Bandpass Filter 02-010701
Ι	Downlink Output UHF Highband Bandpass Filter 02-010901
J	Downlink Output Crossband Splitter/Coupler 07-005754
K	Downlink Output Crossband Splitter/Coupler 07-004815
L	Downlink Output 30dB Coupler 07-018005
Μ	Uplink Input 30dB Bi-Directional Coupler 07-022005
Ν	Uplink Input Crossband Splitter/Coupler 07-004815
0	Uplink Input Crossband Splitter/Coupler 07-005754
Ρ	Uplink Input UHF Lowband Bandpass Filter 02-010701
Q	Uplink Input UHF Midband Bandpass Filter 02-010701
R	Uplink Input UHF Highband Bandpass Filter 02-010901
S	Uplink Output UHF Lowband Bandpass Filter 02-010701
Т	Uplink Output UHF Midband Bandpass Filter 02-01070
U	Uplink Output UHF Highband Bandpass Filter 02-010901
V	Uplink Output Crossband Splitter/Coupler 07-005754
W	Uplink Output Crossband Splitter/Coupler 07-004815
Х	Uplink Output 30dB Bi-Directional Coupler 07-022005

Section	Component	Component Part Description	Qty Per
	Part		Assembly
3.3.5.1.	02-010701	Bandpass Filter	8
3.3.5.2.	02-010901	Bandpass Filter	4
3.3.5.3.	07-004815	Crossband Splitter/Coupler 550/800MHz	4
3.3.5.4.	07-005754	Crossband Splitter/Coupler VHF/UHF	4
3.3.5.5.	07-018005	30dB Directional Coupler	1
3.3.5.6.	07-022005	30dB Bi-Directional Coupler	3

3.3.5. Combiner 80-301402 Major Sub-Components

3.3.5.1. Bandpass Filter 02-010701

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50 Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

02-010701 Specification

PA	RAMETE	२	SPECIFICATION
	UHF Low	Downlink	460.4 to 460.5 MHz
Passband		Uplink	465.4 to 465.5 MHz
Frequency	UHF Mic	Downlink	482.5 to 483.8 MHz
		Uplink	485.7 to 486.8 MHz
Bandw	idth	UHF Low	0.1 MHz
Dalluw		UHF Mid	1.3 MHz
Number of sections			5
Insertion loss			2.4 dB (typical)
		VSWR	better than 1.2:1
		Connectors	SMA
Power Handling			100W max
Temperature		operation	-20°C to +60°C
rar	range st		-40°C to +70°C
		Weight	3 kg (typical)

3.3.5.2. Bandpass Filter 02-010901

Bandpass Filter 02-010901 is a multi-section design with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of helical & combline design respectively, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The body and tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports. Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance.

02-010901 specification

SPECIFICATION		PARAMETER
Passband	Downlink	507.0 to 507.3MHz
Frequency	Uplink	510.0 to 510.3MHz
Bandwidth	Uplink	0.3 MHz
Danuwiuun	Downlink	0.3 MHz
Insertion Loss		2.9 dB (typical)
	Power Rating	50W
Impedance		50Ω
VSWR		Better than 1.2:1
Connectors		SMA
Weight		3Kg (approximately)

3.3.5.3. Crossband Splitter/Coupler 550/800MHz (07-004815)

The purpose of Crossband Splitter/Coupler (07-004815) is to split or combine RF signals from different parts of the frequency spectrum.

It is a 3 port device comprising two filters, one a low pass, the other a high pass, connected to a common input/output. The couplers are housed in a machined aluminium casing having a centre screening wall between the filter sections and lid secured by screws at frequent intervals over its perimeter to obtain a tight seal and to ensure linearity and stability of response.

07-004815 Specification

Parameter		Low Pass Port	High Pass Port
Passband	Frequencies	380 to 550MHz	800 to 960MHz
I	nsertion loss	<0.5dB	<0.5dB
Isolation bet	ween Bands	>50dB	>50dB
VSWR		1.	.3:1
Impedance		50 ohm	
Power rating		5	0W
Temperature	operation	-20°C	to +60°C
range	storage	-40°C	to +70°C
RF Connectors		SMA (female)	
Weight		<	1kg

3.3.5.4. Crossband Splitter/Coupler VHF/UHF (07-005754)

The purpose of Crossband Splitter/Coupler (07-005754) is to split or combine RF signals from different parts of the frequency spectrum.

It is a 3 port device comprising two filters, one a low pass, the other a high pass, connected to a common input/output. The couplers are housed in a machined aluminium casing having a centre screening wall between the filter sections and lid secured by screws at frequent intervals over its perimeter to obtain a tight seal and to ensure linearity and stability of response.

07-005754 Specification

Parameter		Low Pass Port	High Pass Port
Passband	Frequencies	70 to 175 MHz	380 to 500 MHz
I	nsertion loss	<0.5dB	<0.5dB
	Return loss	>14dB typical	>14dB typical
Isolation between Bands		>60dB	>60dB
Impedance		50	ohm
Power rating		5	0W
Temperature	operation	-20°C	to +60°C
range	storage	-40°C	to +70°C
RF Connectors		SMA	(female)
Weight		<	1kg

3.3.5.5. 30dB Directional Coupler (07-018005)

The purpose of these couplers is to tap off known portions (in this case 30dB) of RF signal from transmission lines and to combine them, for example though splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. 07-018005 is a Uni-Directional device and as such will only couple 30dB of signal in one direction.

07-018005 Specification

PARAME	ETER	SPECIFICATION
Freq	uency Range	70 MHz - 1000MHz
Mainline I	nsertion Loss	<0.5
C	oupling Loss	30 dB
VS	WR Mainline	Better than 1.3:1
	Impedance	50 Ω
Power Handling (CW)		100W
Outline (W x D x H)		176mm x 104mm x 24mm (ex. connectors)
Connectors		N (female) on all ports
Case Material		Aluminium
Finish		Iridite NCP
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C
Ingre	ss Protection	IP54

3.3.5.6. 30dB Bi-Directional Coupler (07-022005)

The purpose of these couplers is to tap off known portions (in this case 30dB) of RF signal from transmission lines and to combine them, for example though splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. 07-022005 is a Bi-Directional device and as such will couple 30dB of signal whichever direction the signal is traveling.

07-022005 Specification

PARAMETER	SPECIFICATION
Frequency Range	100kHz – 2.7GHz
Mainline Insertion Loss	< 1.0 dB
Coupling Loss	30 dB
Coupling Loss Tolerance	+/-2.0 dB
VSWR Mainline	Better than 1.4:1
Impedance	50 Ω
Power Handling (CW)	5W
Outline (W x D x H)	44.5mm x 41mm x 27mm (ex. connectors)
Connectors	SMA (female) on all ports
Case Material	Aluminium
Finish	Iridite NCP
Operating Temperature	-20 to +55°C
Ingress Protection	IP54

3.4. VHF/UHF BDA Unit (80-301403)

VHF/UHF BDA Unit (80-301403) provides the amplification stages for the VHF and UHF Lowband paths, The unit is housed in a wall mount case 600x600x250mm (24" x 24" x 10" approx).

The Downlink VHF signal is received at the port labelled "VHF D/L INPUT" (Annotated A in the picture in section 3.4.4.2.). The Downlink VHF path passes through a bandpass filter to remove out of band noise and then a switched attenuator providing 0 to 30 dB of RF signal attenuation.

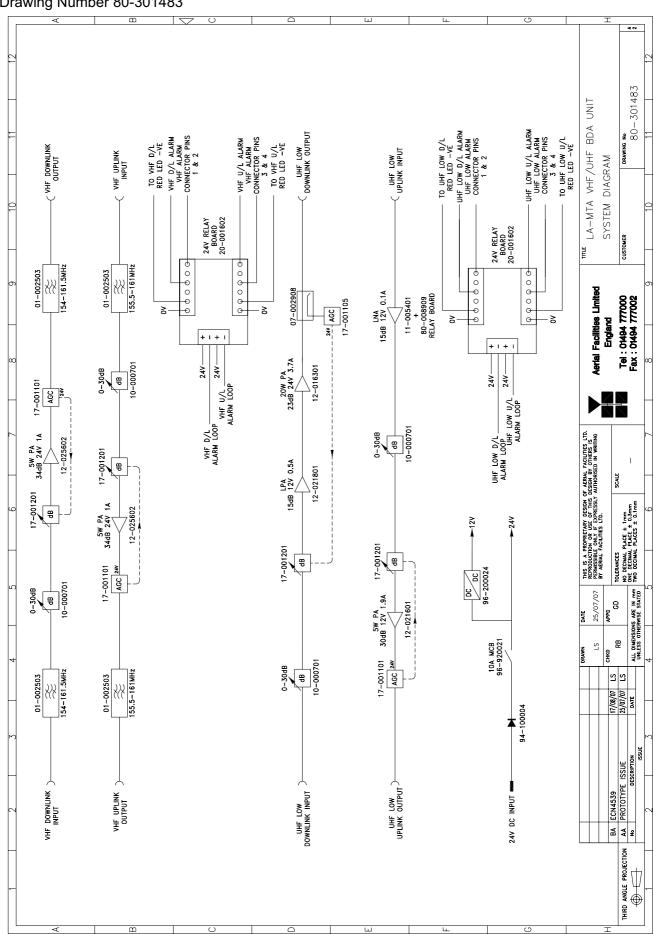
After leaving the attenuator the VHF Downlink signal passes through a 5W amplification stage, this amplification stage is straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

After leaving the Amplification/AGC stage the VHF Downlink signal passes through a second bandpass filter and exits the BDA via the port labelled "VHF D/L OUTPUT" (B in section 3.4.4.2.).

The Uplink VHF Signal is received at the port labelled "VHF U/L INPUT" (C in section 3.4.4.2.). The VHF Uplink path passes through a bandpass filter to remove out of band noise and then a switched attenuator providing 0 to 30 dB of RF signal attenuation.

After leaving the attenuator the VHF Uplink signal passes through a 5W amplification stage, this amplification stage is straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

After leaving the Amplification/AGC stage the VHF Uplink signal passes through a second bandpass filter and exits the BDA via the port labelled "VHF U/L OUTPUT" (D in section 3.4.4.2.).


The Downlink UHF Lowband signal is received at the port labelled "UHF LOW D/L INPUT" (E in section 3.4.4.2.). The signal passes through a switched attenuator providing 0 to 30 dB of RF signal attenuation and then into the amplification stage. The Downlink UHF Lowband amplification stage is provided by tow amplifier modules, the first is a 15dB gain Low Power Amplifier and the second is a 20W, 23dB gain power amplifier. Both amplification stages are straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

The input to the AGC detector is provided by the output of a 30dB tap. After leaving the Amplification/AGC stage the Downlink UHF Lowband signal exits the BDA via the port labelled "UHF LOW D/L OUTPUT" (F in section 3.4.4.2.).

The Uplink UHF Lowband signal is received at the port labelled "UHF LOW U/L INPUT" (G in section 3.4.4.2.). The signal passes into a Low Noise Amplifier providing 15dB of gain and then into a switched attenuator providing 0 to 30 dB of RF signal attenuation. After the attenuator the Uplink UHF Lowband signal passes into a second stage of amplification provided by a 5W, 30dB gain Power Amplifier, this amplification stage is straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

The Uplink UHF Lowband signal exits the BDA via the port labelled "UHF LOW U/L OUTPUT" (H in section 3.4.4.2.).

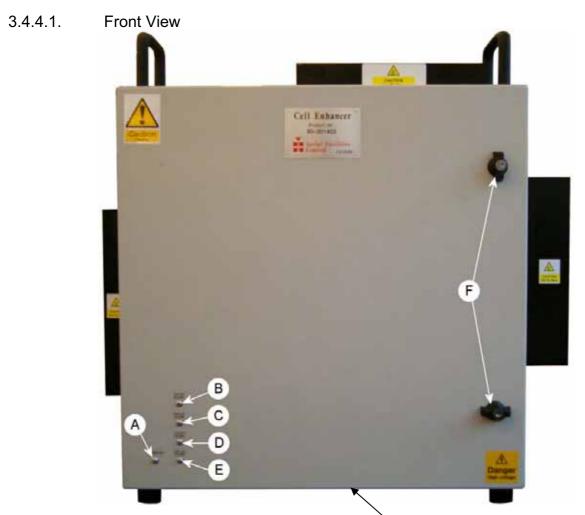
VHF/UHF BDA Unit (80-301403) is provided with a 24V DC input to power the amplifier modules within and those amplifier modules are configured to provide alarm status reports. Separate alarm contact outputs are provided for the VHF and the UHF Lowband paths.



3.4.1. VHF/UHF BDA Unit (80-301403) System Diagram Drawing Number 80-301483

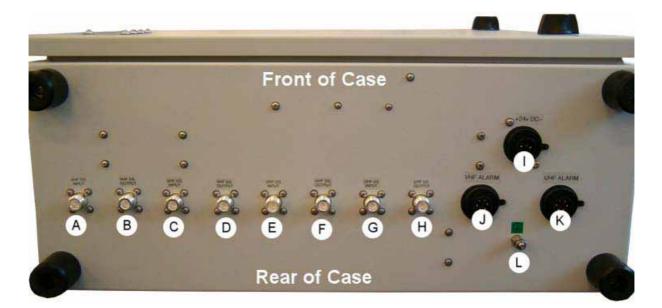
Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 25 of 148

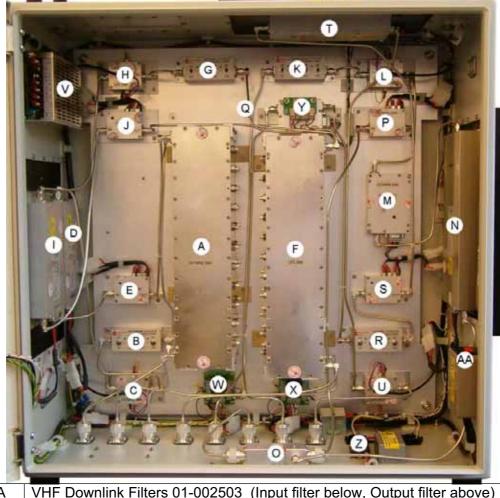


Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 26 of 148


Parameter		Specification	
Downlink		· · · · · · · · · · · · · · · · · · ·	
Downlink Passband	VHF	154.0 to 161.5MHz	
Downlink Passband	UHF Lowband	460.4 to 460.5MHz	
Maximup gain	VHF	30dB	
Maximun gain	UHF Lowband	30dB	
Coin Adjustment	VHF	0 to 30dB in 2dB steps	
Gain Adjustment	UHF Lowband	0 to 30dB in 2dB steps	
1dB Compression Point	VHF	> +34.0dBm	
(P1dB)	UHF Lowband	> +42.5dBm	
ALC setting	VHF	1dB below P1dB	
ALC Setting	UHF Lowband	1dB below P1dB	
3 rd Order Intercept point	VHF	> +45.0dBm	
	UHF Lowband	> +53.5dBm	
Uplink			
Uplink Passband	VHF	155.5 – 161.0MHz	
	UHF Lowband	465.4 – 465.5MHz	
Maximun gain	VHF	30dB	
	UHF Lowband	30dB	
Gain Adjustment	VHF	0 to 30dB in 2dB steps	
	UHF Lowband	0 to 30dB in 2dB steps	
1dB Compression Point	VHF	> +34.0dBm	
(P1dB)	UHF Lowband	> +36.5dBm	
ALC setting	VHF	+27dBm	
/ LO Setting	UHF Lowband	+27dBm	
3 rd Order Intercept point	VHF	> +45.0dBm	
	UHF Lowband	> +48.0dBm	
Noise Figure	VHF	< 10dB	
	UHF Lowband	< 3.0dB	
Environmental/Mechanical			
	Mechanical	IP65 Wall Mount	
	Dimensions	620mm x 620mm x 250mm	
(excludes handles		(24" x 24" x 10" approx)	
	RF Connectors	N-Type Female	
		Local Alarms to SCADA	
· · · · · · · · · · · · · · · · · · ·	Alarm Interfaces	Dry Contact with LED Indication per band path	
	Power Supply	24V DC	

3.4.3. VHF/UHF BDA Unit(80-301403) Specification


Note: All connectors (RF, DC and Alarms) are on the underside

Α	Green LED "Power On"
В	Red LED VHF Downlink Alarm
С	Red LED VHF Uplink Alarm
D	Red LED UHF Lowband Downlink Alarm
Е	Red LED UHF Lowband Uplink Alarm
F	Lockable Door Handles

Α	VHF Downlink Input from port 1 on Combiner 80-301402
В	VHF Downlink Output to port A on Combiner 80-301402
С	VHF Uplink Input from port F on Combiner 80-301402
D	VHF Uplink Output to port 6 on Combiner 80-301402
E	UHF Lowband Downlink Input from port 2 on Combiner 80-301402
F	UHF Lowband Downlink Output to port B on Combiner 80-301402
G	UHF Lowband Uplink Input from port G on Combiner 80-301402
H	UHF Lowband Uplink Output to port 7 on Combiner 80-301402
Ι	24V DC Input
J	VHF Band Alarm Output
K	UHF Lowband Alarm Output
L	Earth Connection

3.4.4.3. Interior view

A VHF Downlink Filters 01-002503 (Input filter below, Output filter above) B VHF Downlink Switched Attenuator 10-000701 C VHF Downlink AGC Attenuator 17-001201 D VHF Downlink AGC Detector 17-001101 F VHF Uplink Filters 01-002503 (Input filter below, Output filter above) G VHF Uplink Switched Attenuator 10-000701 H VHF Uplink SW Power Amplifier 12-025602 J VHF Uplink AGC Attenuator 17-001201 I VHF Uplink AGC Detector 17-001101 K UHF Lowband Downlink Switched Attenuator 10-000701 L UHF Lowband Downlink Switched Attenuator 10-000701 L UHF Lowband Downlink AGC Attenuator 17-001201 M UHF Lowband Downlink AGC Attenuator 17-001201 M UHF Lowband Downlink AGC Detector 17-001105 Q UHF Lowband Downlink AGC Detector 17-001105 Q UHF Lowband Downlink AGC Detector 17-001201 R UHF Lowband Uplink AGC Attenuator 10-000701 S UHF Lowband Uplink AGC Attenuator 10-000701 S UHF Lowband Uplink AGC Attenuator 17-001201 R UHF Lowband Uplink AGC Attenuator 10-000701 S UHF Lowband Uplink AGC Attenuator 10-000701 <		VILE Develop Filters 04.000500. (Less to Siters to Less Outland Siters along)
CVHF Downlink AGC Attenuator 17-001201DVHF Downlink 5W Power Amplifier 12-025602EVHF Downlink AGC Detector 17-001101FVHF Uplink Filters 01-002503 (Input filter below, Output filter above)GVHF Uplink Switched Attenuator 10-000701HVHF Uplink SW Power Amplifier 12-025602JVHF Uplink AGC Attenuator 17-001201IVHF Uplink AGC Detector 17-001101KUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Detector 17-001101QUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink AGC Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	A	VHF Downlink Filters 01-002503 (Input filter below, Output filter above)
DVHF Downlink 5W Power Amplifier 12-025602EVHF Downlink AGC Detector 17-001101FVHF Uplink Filters 01-002503 (Input filter below, Output filter above)GVHF Uplink Switched Attenuator 10-000701HVHF Uplink AGC Attenuator 17-001201IVHF Uplink AGC Detector 17-001101KUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Attenuator 17-001201NUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink AGC Detector 17-001105QUHF Lowband Uplink AGC Attenuator 10-000701SUHF Lowband Uplink AGC Detector 17-001201TUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004		
EVHF Downlink AGC Detector 17-001101FVHF Uplink Filters 01-002503 (Input filter below, Output filter above)GVHF Uplink Switched Attenuator 10-000701HVHF Uplink AGC Attenuator 17-001201IVHF Uplink AGC Detector 17-001101KUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink Switched Attenuator 17-001201MUHF Lowband Downlink AGC Attenuator 17-001201NUHF Lowband Downlink AGC Detector 17-001201NUHF Lowband Downlink AGC Detector 17-00105QUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004		
FVHF Uplink Filters 01-002503 (Input filter below, Output filter above)GVHF Uplink Switched Attenuator 10-000701HVHF Uplink AGC Attenuator 17-001201IVHF Uplink 5W Power Amplifier 12-025602JVHF Uplink AGC Detector 17-001101KUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Detector 17-001201NUHF Lowband Downlink Cow Power Amplifier 12-021801OUHF Lowband Downlink AGC Detector 17-0010301OUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Detector 17-001201TUHF Lowband Uplink AGC Detector 17-001201VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004		
GVHF Uplink Switched Attenuator 10-000701HVHF Uplink AGC Attenuator 17-001201IVHF Uplink SW Power Amplifier 12-025602JVHF Uplink AGC Detector 17-001101KUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink AGC Attenuator 17-001201NUHF Lowband Downlink 20W Power Amplifier 12-021801OUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink AGC Attenuator 10-000701SUHF Lowband Uplink SW Power Amplifier 12-021601UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004		
HVHF Uplink AGC Attenuator 17-001201IVHF Uplink 5W Power Amplifier 12-025602JVHF Uplink AGC Detector 17-001101KUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink Low Power Amplifier 12-021801NUHF Lowband Downlink 20W Power Amplifier 12-016301OUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink AGC Detector 17-001105UUHF Lowband Uplink AGC Attenuator 10-000701SUHF Lowband Uplink AGC Detector 17-001201TUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	F	VHF Uplink Filters 01-002503 (Input filter below, Output filter above)
IVHF Uplink 5W Power Amplifier 12-025602JVHF Uplink AGC Detector 17-001101KUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink Low Power Amplifier 12-021801NUHF Lowband Downlink 20W Power Amplifier 12-016301OUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink AGC Detector 17-001105UUHF Lowband Uplink AGC Detector 17-001201TUHF Lowband Uplink AGC Detector 17-00100701SUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	G	VHF Uplink Switched Attenuator 10-000701
JVHF Uplink AGC Detector 17-001101KUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink Low Power Amplifier 12-021801NUHF Lowband Downlink 20W Power Amplifier 12-016301OUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink AGC Attenuator 17-001201VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	Н	VHF Uplink AGC Attenuator 17-001201
KUHF Lowband Downlink Switched Attenuator 10-000701LUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink Low Power Amplifier 12-021801NUHF Lowband Downlink 20W Power Amplifier 12-016301OUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink AGC Attenuator 17-001201VUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	I	VHF Uplink 5W Power Amplifier 12-025602
LUHF Lowband Downlink AGC Attenuator 17-001201MUHF Lowband Downlink Low Power Amplifier 12-021801NUHF Lowband Downlink 20W Power Amplifier 12-016301OUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink AGC Detector 17-001101UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	J	VHF Uplink AGC Detector 17-001101
MUHF Lowband Downlink Low Power Amplifier 12-021801NUHF Lowband Downlink 20W Power Amplifier 12-016301OUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink SW Power Amplifier 12-021601UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	K	UHF Lowband Downlink Switched Attenuator 10-000701
NUHF Lowband Downlink 20W Power Amplifier 12-016301OUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink SW Power Amplifier 12-021601UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	L	UHF Lowband Downlink AGC Attenuator 17-001201
OUHF Lowband Downlink 30dB Directional Coupler 07-002908PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink SW Power Amplifier 12-021601UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	Μ	UHF Lowband Downlink Low Power Amplifier 12-021801
PUHF Lowband Downlink AGC Detector 17-001105QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink 5W Power Amplifier 12-021601UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	Ν	UHF Lowband Downlink 20W Power Amplifier 12-016301
QUHF Lowband Uplink Low Noise Amplifier 11-005401RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink 5W Power Amplifier 12-021601UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	0	
RUHF Lowband Uplink Switched Attenuator 10-000701SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink 5W Power Amplifier 12-021601UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	Ρ	UHF Lowband Downlink AGC Detector 17-001105
SUHF Lowband Uplink AGC Attenuator 17-001201TUHF Lowband Uplink 5W Power Amplifier 12-021601UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	Q	UHF Lowband Uplink Low Noise Amplifier 11-005401
TUHF Lowband Uplink 5W Power Amplifier 12-021601UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	R	UHF Lowband Uplink Switched Attenuator 10-000701
UUHF Lowband Uplink AGC Detector 17-001101VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	S	UHF Lowband Uplink AGC Attenuator 17-001201
VDC/DC Converter 96-200024W24V Dual Relay Assembly (VHF Alarm output) 20-001602X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	Т	UHF Lowband Uplink 5W Power Amplifier 12-021601
 W 24V Dual Relay Assembly (VHF Alarm output) 20-001602 X 24V Dual Relay Assembly (UHF Lowband output) 20-001602 Y 24V Relay Assembly 80-008902 Z Dual Diode Assembly 94-100004 	U	UHF Lowband Uplink AGC Detector 17-001101
X24V Dual Relay Assembly (UHF Lowband output) 20-001602Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	V	DC/DC Converter 96-200024
Y24V Relay Assembly 80-008902ZDual Diode Assembly 94-100004	W	24V Dual Relay Assembly (VHF Alarm output) 20-001602
Z Dual Diode Assembly 94-100004	Х	24V Dual Relay Assembly (UHF Lowband output) 20-001602
	Υ	24V Relay Assembly 80-008902
AA Main DC 10A Circuit Breaker 96-920021	Ζ	Dual Diode Assembly 94-100004
	AA	Main DC 10A Circuit Breaker 96-920021

3.4.5.	VHF/UHF BDA Unit(80-301403) Major Sub-components
--------	--

Section	Component	Component Part Description	Qty Per
	Part		Assembly
3.4.5.1.	01-002503	Bandpass Filter	4
3.4.5.2.	07-002908	30dB Directional Coupler	1
3.4.5.3.	10-000701	Switched Attenuator 0.25Watt, 0 - 30dB	4
3.4.5.4.	11-005401	Low Noise Amplifier	1
3.4.5.5.	12-016301	TETRA Power Amplifier 20W	1
3.4.5.6.	12-021601	TETRA Power Amplifier 5W	1
3.4.5.7.	12-021801	Low Power Amplifier 1	
3.4.5.8.	12-025602	VHF Power Amplifier 5W 2	
3.4.5.9.	17-001101	AGC Detector Assembly 3	
	17-001105	AGC Detector Assembly (Logarithmic)	1
	17-001201	AGC Attenuator Assembly	4
3.4.5.10.	20-001602	24V Dual Relay Assembly 2	
3.4.5.11.	80-008902	24V Relay Assembly 1	
3.4.5.12.	94-100004	Dual Diode Assembly 1	
3.4.5.13.	96-200024	DC/DC Converter	1

3.4.5.1. Bandpass Filter (01-002503)

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of helical design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50 Ω load at the input and output ports.

Being passive devices, the bandpass filters have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously.

01-002503 Specification

SPECIFICATION		PARAMETER
Bandpass	bownlink	154.0 MHz to 161.5 MHz
Frequency	/ Uplink	155.5 MHz to 161.0 MHz
Bandwidth	Downlink	7.5MHz
Danuwiuu	Uplink	5.5MHz
Nc	. of sections	6
Insertion loss		1.5dB
VSWR		Better than 1.2:1
Connectors		SMA
Pov	ver handling	100W maximum
Temperature	operational	-20°C to +60°C
range store		-40°C to +70°C
	Weight	3 kg
Size		384 x 82.5 x 56.4mm

3.4.5.2. 30dB Directional Coupler (07-002908)

The purpose of these couplers is to tap off known portions of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known as directional couplers as they couple power from the RF mainline in one direction only.

Directional Coupler 07-002908 is configured to tap off 30dB.

07-002908 Specification

PARAMETER		SPECIFICATION
Fre	quency range	50 - 1000MHz
	Insertion loss	<0.3dB
Coupling level		30dB
Rejection		N/A
Weight		<200gms
Connectors		N type, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

3.4.5.3. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)

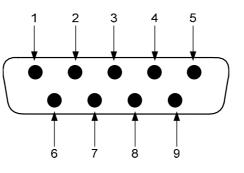
In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER		SPECIFICATION
Attenua	tion Values	0-30dB
Attenu	ation Steps	2, 4, 8 and 16dB
Pow	er Handling	0.25 Watt
Attenuatio	on Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

3.4.5.4. Low Noise Amplifier (11-005401)


The 15dB gain low noise amplifier used in the unit is a double stage solid-state low noise amplifier. Class A circuitry is used throughout the units to ensure excellent linearity over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, the complete amplifier should be replaced. The amplifier is housed in an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.

11-005401 Specification

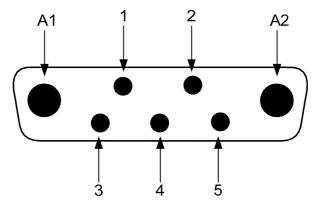
PARAMETER		SPECIFICATION
Fred	quency range	380 - 500MHz
	Bandwidth	<100MHz (as required, tuneable)
1dB comp	ression point	>+20dBm
3rd or	rder intercept	>+33dBm
	Gain	>15.5dB (typical)
	VSWR	better than 1.5:1
Inp	ut return loss	>14dB
	Noise figure	<2.0dB (typical)
	Connectors	SMA female
	Supply	115mA at 12V DC
Temperature	operational	-10°C to +60°C
range	storage	-40°C to +70°C
Size		88 x 50 x 34mm (ex. connectors)
Weight		0.26kg

LNA 'D' Connector Pin-out details		
Connector pin	Signal	
1	+ve input (10-24V)	
2	GND	
3	Alarm relay O/P bad	
4	Alarm relay common	
5	Alarm relay good	
6	No connection	
7	TTL voltage set	
8	TTL alarm/0V (good)	
9	O/C good/0V bad	

9-Way Pin-Out Graphical Representation

3.4.5.5. TETRA Power Amplifier 20W (12-016301)

This amplifier is a Class A 20W power amplifier from 380MHz to 470MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.


It is housed is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. Note the large diameter DC power input pins (1 & 2) fitted to reduce volt-drop/arcing.

12-016301 Specification

PARAMETER		SPECIFICATION
Freq	uency range	380-470MHz
Sma	ll signal gain	23dB
0	Gain flatness	±1.7dB
I/O	Return loss	>18dB
1dB compr	ession point	+43dBm
OIP3		+55dBm
Supply voltage		24V DC
Supply current		3.8Amps (Typical)
Temperature	operational	-10°C to +60°C
range storage		-20°C to +70°C
Weight		<2kg (no heatsink)

7-Way Connector Pin-out details		
Connector Pin	Signal	
A1 (large pin)	+24V DC	
A2 (large pin)	GND	
1	Alarm relay common	
2	TTL alarm/0V good	
3	Alarm relay contact (bad)	
4	Alarm relay contact (good)	
5	O/C good/0V bad (TTL)	

7-Way Connector Graphical Representation

3.4.5.6. TETRA Power Amplifier 5W (12-021601)

Power amplifier 12-021601 is a multi-stage, solid state power amplifier. Class A circuitry is employed throughout the device to ensure excellent linearity over a wide dynamic frequency range. All the semiconductor devices are very conservatively rated to ensure low device junction temperatures and a long, trouble free working lifetime.

The power amplifier should require no maintenance over its operating life. Under no circumstances should the cover be removed or the side adjustments disturbed unless it is certain that the amplifier has failed; since it is critically aligned during manufacture and any re-alignment will require extensive test equipment.


The unit housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-021601 Specification

PARAMETER		SPECIFICATION
Fr	equency range:	380-470MHz (as required)
	Bandwidth:	10-40MHz (typical, tuned to spec.)
Maxir	num RF output:	>5Watts
	Gain:	>30dB
1dB con	npression point:	+37.5dBm
3 rd order intercept point:		+50dBm
VSWR:		better than 1.5:1
Connectors:		SMA female
Supply:		1.9Amps @ 12V DC
Weight:		1kg (excluding heatsink)
Temperature	operational:	-10°C to +60°C
range:	storage:	-20°C to +70°C

7-Way Connector Pin-out details		
Connector Pin	Signal	
A1 (large pin)	+12V DC	
A2 (large pin)	GND	
1	Alarm relay common	
2	TTL alarm/0V good	
3	Alarm relay contact (bad)	
4	Alarm relay contact (good)	
5	O/C good/0V bad (TTL)	

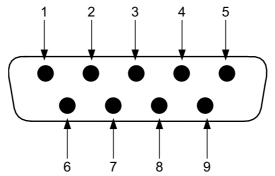
7-Way Pin-Out Graphical Representation

3.4.5.7. Low Power Amplifier (1Watt) (12-021801)

The low power amplifier used is a 1 stage balanced configuration, solid-state amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.


12-021801 Specification

PARAMETER		SPECIFICATION
	Temperature	-20 to +70 °C
	Frequency Range	380 - 500 MHz
	Small Signal Gain	15.5 +/- 0.5 dB
	Gain Flatness	0.7 dB p-p
	∆Gain vs. Temperature	0.7 dB
	In RL	20 dB
	Out RL	20 dB
Output Powe	r @ 1dB Compression Point	+30.5 dBm
	Output 3 rd Order IP	+41.5 dBm
	Noise Figure	6 dB
	DC Supply Voltage	10-15 Vdc
	DC Supply Current	540 mA
Temperature	operational:	-10°C to +60°C
range	storage:	-40°C to +100°C
	Weight:	<0.5 kg
	Size:	110.5 x 66mm x 24.6mm

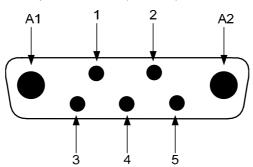
Low Power Amplifier (12-021801) 9-Way Connector Pin-outs

Connector pin	Signal
1	+ve input (10-15V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

3.4.5.8. VHF Power Amplifier 5W (12-025602)

Power amplifier 12-025602 is a multi-stage, solid state power amplifier. Class A circuitry is employed throughout the device to ensure excellent linearity over a wide dynamic frequency range. All the semiconductor devices are very conservatively rated to ensure low device junction temperatures and a long, trouble free working lifetime. There is a Current Fault Alarm Function, which indicates failure of each RF transistor with an open collector of a NPN transistor. A relay is fitted to indicate the failure by voltage free change over the relay contacts.

The power amplifier should require no maintenance over its operating life. Under no circumstances should the cover be removed or the side adjustments disturbed unless it is certain that the amplifier has failed; since it is critically aligned during manufacture and any re-alignment will require extensive test equipment.


The unit housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

PARAME	TER	SPECIFICATION
Fr	equency range	108 to 174 MHz (as required)
Maxir	mum RF output	>5Watts
	Gain	≥ 34 dB
1dB con	npression point	≥ +37 dBm
3rd order	r intercept point	≥ +48 dBm
	In / RL	16 dB
	Out / RL	15 dB
	Noise Figure	≤ 9.5 dB
	Connectors	SMA female
	Supply	24 +/- 0.5 Vdc @ 1040 mA Max
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

12-025602 Specification

7-Way Connector Pin-out details		
Connector Pin	Signal	
A1 (large pin)	+24V DC	
A2 (large pin)	GND	
1	Alarm relay common	
2	TTL alarm/0V good	
3	Alarm relay contact (bad)	
4	Alarm relay contact (good)	
5	O/C good/0V bad (TTL)	

7-Way Connector Graphical Representation

3.4.5.9. Automatic Gain Control

17-001101	AGC Detector Assembly
17-001105	AGC Detector Assembly (Logarithmic)
17-001201	AGC Attenuator Assembly

VHF/UHF BDA UNIT(80-301403) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The Downlink UHF Lowband path is fitted with logarithmic detector (17-001105), and attenuator (17-001201) the Uplink UHF Lowband path and the two VHF paths are each fitted with linear detector (17-001101) and attenuator (17-001201)

The Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path before the amplification stage(s)

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

3.4.5.10. 24V Relay Dual Assembly (20-001602)

The General Purpose 24V Dual Relay Board (20-001602) allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays RL1 and RL2, with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. Its common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001602 Specification

PARAM	ETER	SPECIFICATION
Ope	rating voltage	8 to 30V (floating earth)
Ala	rm Threshold	Vcc - 1.20 volt +15%
	Alarm output re	elay contacts:
Max. s	witch current	1.0Amp
Max	c. switch volts	120Vdc/60VA
Max.	switch power	24W/60VA
Min. switch load		10.0µA/10.0mV
R	elay isolation	1.5kV
Mechanical life		>2x10 ⁷ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

3.4.5.11. 24V Relay Assembly (80-008902)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single, dual pole, change-over relay RL1 with completely isolated wiring, accessed via screw terminals.

The relay is provided with a polarity protection diode and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

Parameter		Specification
Max.	switch current	1.0Amp
Ma	x. switch volts	120Vdc/60VA
Max. switch power		24W/60VA
Min. switch load		10.0µA/10.0mV
Relay isolation		1.5kV
Mechanical life		>2x10 ⁷ operations
Relay approval		BT type 56
Connector details		15-way 0.1" pitch
Temperature	operational	-10°C to +55°C
range	storage	-40°C to +70°C

80-008902 Specification

3.4.5.12. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

3.4.5.13. DC/DC Converter, 24V in, 12V 5A out (96-200024)

This unit it is an O.E.M high power device with a 5 amp @ 12V (60Watts) output capability used to derive a 12V fixed voltage power supply rail from a 24V supply. In the event of failure this unit should not be repaired, only replaced.

96-200024 Specification

PARAMETER		SPECIFICATION
Input Voltage range		18-28V DC
Output voltage		12V±0.5V
Max output current load		5.0 Amps
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C

3.5. UHF BDA Unit (80-301404)

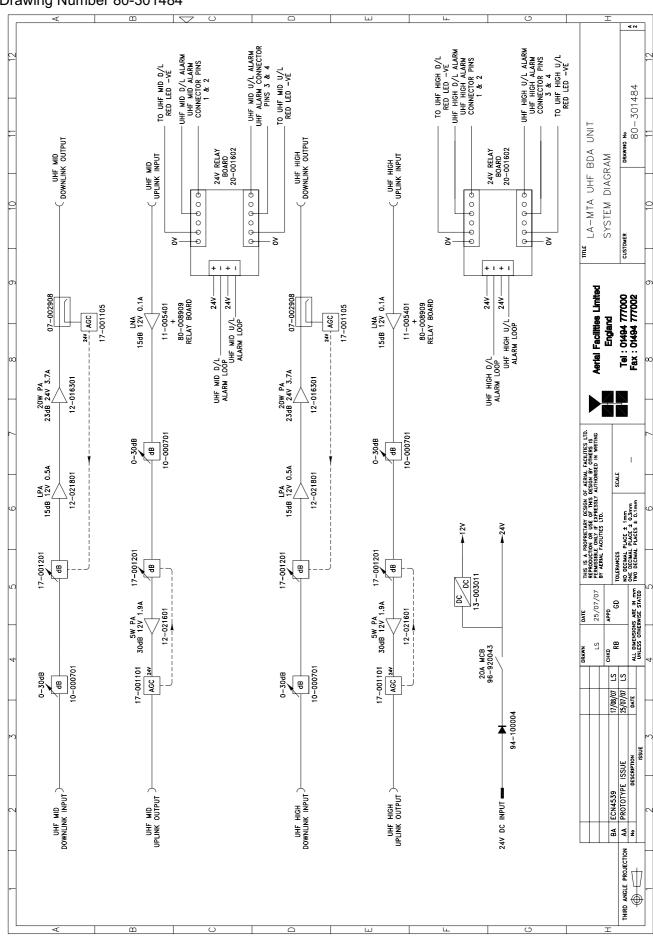
UHF BDA Unit (80-301404) provides the amplification stages for the UHF Midband and UHF Highband paths, The unit is housed in a wall mount case 600x600x250mm (24" x 24" x 10" approx).

The Downlink UHF Midband signal is received at the port labelled "UHF MID D/L INPUT" (Annotated A in the picture in section 3.5.4.2.). The signal passes through a switched attenuator providing 0 to 30 dB of RF signal attenuation and then into the amplification stage. The Downlink UHF Midband amplification stage is provided by two amplifier modules, the first is a 15dB gain Low Power Amplifier and the second is a 20W, 23dB gain power amplifier. Both amplification stages are straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

The input to the AGC detector is provided by the output of a 30dB tap. After leaving the Amplification/AGC stage the Downlink UHF Midband signal exits the BDA via the port labelled "UHF MID D/L OUTPUT" (B in section 3.5.4.2.).

The Uplink UHF Midband signal is received at the port labelled "UHF MID U/L INPUT" (D in section 3.5.4.2.). The signal passes into a Low Noise Amplifier providing 15dB of gain and then into a switched attenuator providing 0 to 30 dB of RF signal attenuation. After the attenuator the Uplink UHF Midband signal passes into a second stage of amplification provided by a 5W, 30dB gain Power Amplifier, this amplification stage is straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

The Uplink UHF Midband signal exits the BDA via the port labelled "UHF MID U/L OUTPUT" (C in section 3.5.4.2.).

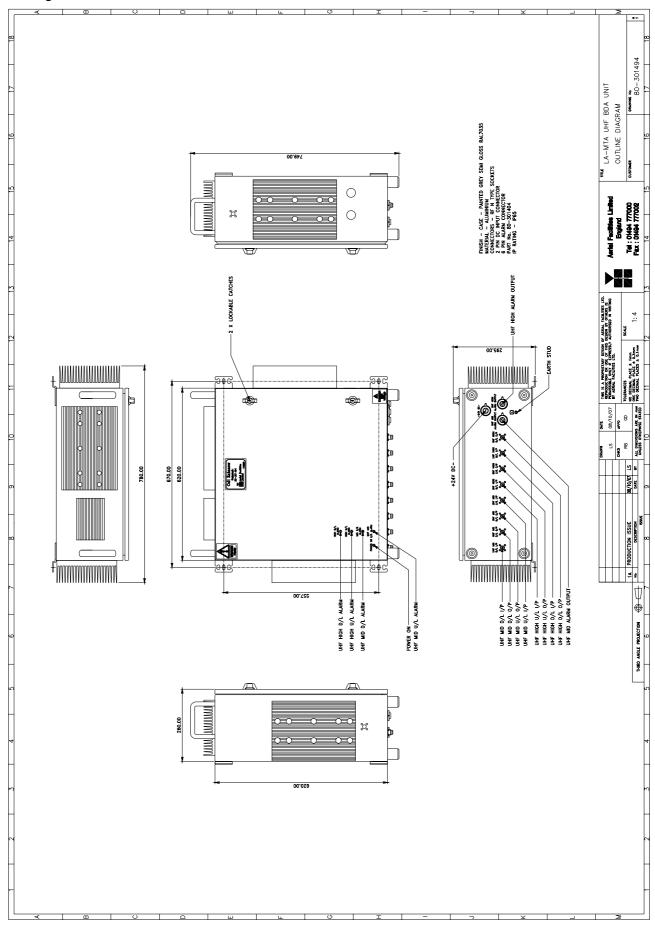

The Downlink UHF Highband signal is received at the port labelled "UHF HIGH D/L INPUT" (Annotated G in the picture in section 3.5.4.2.). The signal passes through a switched attenuator providing 0 to 30 dB of RF signal attenuation and then into the amplification stage. The Downlink UHF Highband amplification stage is provided by two amplifier modules, the first is a 15dB gain Low Power Amplifier and the second is a 20W, 23dB gain power amplifier. Both amplification stages are straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

The input to the AGC detector is provided by the output of a 30dB tap. After leaving the Amplification/AGC stage the Downlink UHF Highband signal exits the BDA via the port labelled "UHF HIGH D/L OUTPUT" (H in section 3.5.4.2.).

The Uplink UHF Highband signal is received at the port labelled "UHF HIGH U/L INPUT" (E in section 3.5.4.2.). The signal passes into a Low Noise Amplifier providing 15dB of gain and then into a switched attenuator providing 0 to 30 dB of RF signal attenuation. After the attenuator the Uplink UHF Highband signal passes into a second stage of amplification provided by a 5W, 30dB gain Power Amplifier, this amplification stage is straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

The Uplink UHF Highband signal exits the BDA via the port labelled "UHF HIGH U/L OUTPUT" (F in section 3.5.4.2.).

UHF BDA Unit (80-301404) is provided with a 24V DC input to power the amplifier modules within and those amplifier modules are configured to provide alarm status reports. Separate alarm contact outputs are provided for the UHF Midband and the UHF Highband paths.


3.5.1. UHF BDA Unit (80-301404) System Diagram

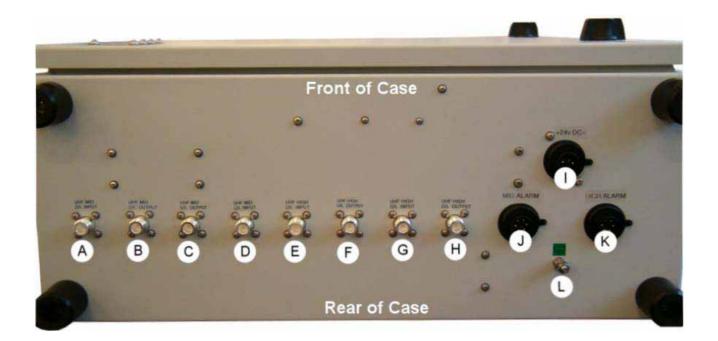
Drawing Number 80-301484

Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

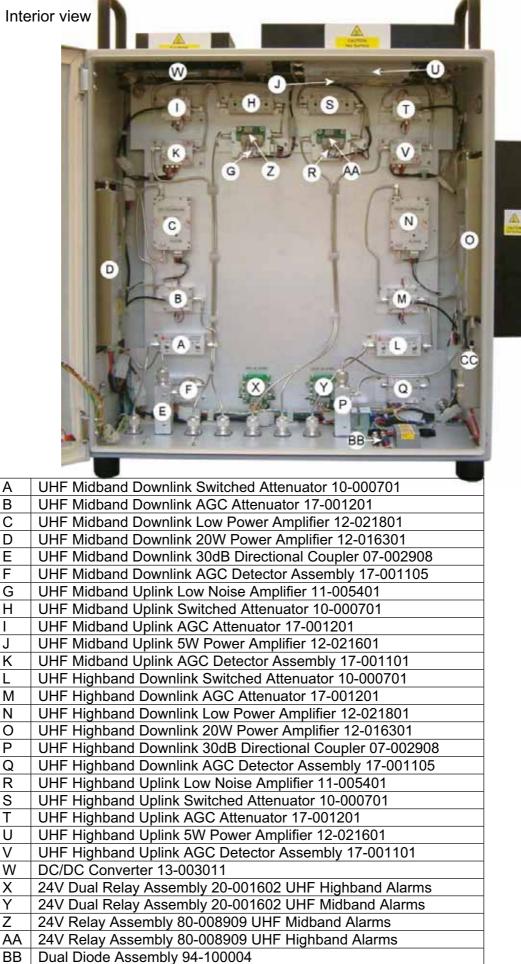
Issue No. 1 Date 13/06/2008 Page 42 of 148

3.5.2. UHF BDA Unit (80-301404) Outline Drawing Drawing Number 80-301494

Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites


Issue No. 1 Date 13/06/2008 Page 43 of 148

Parameter		Specification
Downlink		· · · ·
Downlink Passband	UHF Midband	482.5 to 483.8MHz
Downlink Passband	UHF Highband	507.0 to 507.3MHz
	UHF Midband	30dB
Maximun gain	UHF Highband	30dB
Coin Adjustment	UHF Midband	0 to 30dB in 2dB steps
Gain Adjustment	UHF Highband	0 to 30dB in 2dB steps
1dB Compression Point	UHF Midband	> +42.5dBm
(P1dB)	UHF Highband	> +42.5dBm
ALC potting	UHF Midband	1dB below P1dB
ALC setting	UHF Highband	1dB below P1dB
3 rd Order Intercept point	UHF Midband	> +53.5dBm
5 Order intercept point	UHF Highband	> +53.5dBm
Uplink		
Liplink Deceberd	UHF Midband	485.7 to 486.8MHz
Uplink Passband	UHF Highband	510.0 to 510.3MHz
Movimun goin	UHF Midband	30dB
Maximun gain	UHF Highband	30dB
Gain Adjustment	UHF Midband	0 to 30dB in 2dB steps
Gain Aujustment	UHF Highband	0 to 30dB in 2dB steps
1dB Compression Point	UHF Midband	> +36.5dBm
(P1dB)	UHF Highband	> +36.5dBm
ALC setting	UHF Midband	+27dBm
ALC Setting	UHF Highband	+27dBm
3 rd Order Intercept point	UHF Midband	> +48.0dBm
5 Order intercept point	UHF Highband	> +48.0dBm
Noise Figure	UHF Midband	< 3.0dB
Noise Figure	UHF Highband	< 3.0dB
Environmental/Mechanical Specification		
Mechanical		IP65 Wall Mount
Dimensions		620mm x 620mm x 250mm
(excludes handles and connectors)		(24" x 24" x 10" approx)
RF Connectors		N-Type Female
Alarm Interfaces		Local Alarms to SCADA Dry Contact with LED Indication per band path
	Power Supply	24V DC


Note: All connectors (RF, DC and Alarms) are on the underside

Α	Red LED UHF Highband Downlink Alarm
В	Red LED UHF Highband Uplink Alarm
С	Red LED UHF Midband Downlink Alarm
D	Red LED UHF Midband Uplink Alarm
E	Green LED "Power On"
F	Lockable Door Handles

Α	UHF Midband Downlink Input from port 3 on Combiner 80-301402
В	UHF Midband Downlink Output to port C on Combiner 80-301402
С	UHF Midband Uplink Output to port 8 on Combiner 80-301402
D	UHF Midband Uplink Input from port H on Combiner 80-301402
Е	UHF Highband Uplink Input from port I on Combiner 80-301402
F	UHF Highband Uplink Output to port 9 on Combiner 80-301402
G	UHF Highband Downlink Input from port 4 on Combiner 80-301402
Η	UHF Highband Downlink Output to port D on Combiner 80-301402
Ι	24V DC Input
J	UHF Midband Band Alarm Output
K	UHF Highband Alarm Output
L	Earth Connection

Interior view 3.5.4.3.

DC Circuit Breaker CC

Section	Component	Component Part Description	Qty Per
	Part		Assembly
3.5.5.1.	07-002908	30dB Directional Coupler	2
3.5.5.2.	10-000701	Switched Attenuator 0.25Watt, 0 - 30dB	4
3.5.5.3.	11-005401	Low Noise Amplifier	2
3.5.5.4.	12-016301	TETRA Power Amplifier 20W	2
3.5.5.5.	12-021601	TETRA Power Amplifier 5W	2
3.5.5.6.	12-021801	Low Power Amplifier 2	
3.5.5.7.	13-003011	DC/DC Converter 1	
3.5.5.8.	17-001101	AGC Detector Assembly 2	
	17-001105	AGC Detector Assembly (Logarithmic) 2	
	17-001201	AGC Attenuator Assembly 4	
3.5.5.9.	20-001602	24V Dual Relay Assembly 2	
3.5.5.10.	80-008909	24V Relay Assembly 2	
3.5.5.11.	94-100004	Dual Diode Assembly1	

3.5.5. UHF BDA Unit (80-301404) Major Sub-components

3.5.5.1. 30dB Directional Coupler (07-002908)

The purpose of these couplers is to tap off known portions of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known as directional couplers as they couple power from the RF mainline in one direction only.

Directional Coupler 07-002908 is configured to tap off 30dB.

07-002908 Specification

PARAMETER		SPECIFICATION
Fre	quency range	50 - 1000MHz
	Insertion loss	<0.3dB
Coupling level		-30dB
Rejection		N/A
Weight		<200g
Connectors		N type, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

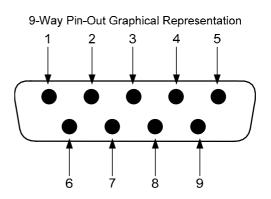
3.5.5.2. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER		SPECIFICATION
Attenua	ation Values	0-30dB
Attenu	ation Steps	2, 4, 8 and 16dB
Pow	er Handling	0.25 Watt
Attenuatio	on Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C


3.5.5.3. Low Noise Amplifier (11-005401)

The 15dB gain low noise amplifier used in the unit is a double stage solid-state low noise amplifier. Class A circuitry is used throughout the units to ensure excellent linearity over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, the complete amplifier should be replaced. The amplifier is housed in an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.

11-005401 Specification

PARAMETER		SPECIFICATION
Frequency range		380 - 500MHz
	Bandwidth	<100MHz (as required, tuneable)
1dB comp	ression point	>+20dBm
3rd oi	der intercept	>+33dBm
	Gain	>15.5dB (typical)
	VSWR	better than 1.5:1
Inp	ut return loss	>14dB
	Noise figure	<2.0dB (typical)
	Connectors	SMA female
	Supply	115mA at 12V DC
Temperature	operational	-10°C to +60°C
range	storage	-40°C to +70°C
	Size	88 x 50 x 34mm (ex. connectors)
Weight		0.26kg

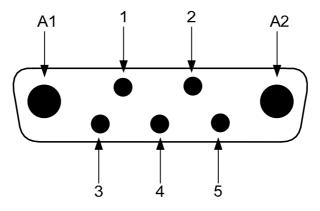
LNA 'D' Connector Pin-out details		
Connector pin	Signal	
1	+ve input (10-24V)	
2	GND	
3	Alarm relay O/P bad	
4	Alarm relay common	
5	Alarm relay good	
6	No connection	
7	TTL voltage set	
8	TTL alarm/0V (good)	
9	O/C good/0V bad	

Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 49 of 148

3.5.5.4. TETRA Power Amplifier 20W (12-016301)

This amplifier is a Class A 20W power amplifier from 380MHz to 470MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.


It is housed is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function. Note the large diameter DC power input pins (1 & 2) fitted to reduce volt-drop/arcing.

12-016301 Specification

PARAMETER		SPECIFICATION
Freq	uency range	380-470MHz
Sma	ll signal gain	23dB
0	Gain flatness	±1.7dB
I/O	Return loss	>18dB
1dB compr	ession point	+43dBm
OIP3		+55dBm
Supply voltage		24V DC
Supply current		3.8Amps (Typical)
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
Weight		<2kg (no heatsink)

7-Way Connector Pin-out details		
Connector Pin	Signal	
A1 (large pin)	+24V DC	
A2 (large pin)	GND	
1	Alarm relay common	
2	TTL alarm/0V good	
3	Alarm relay contact (bad)	
4	Alarm relay contact (good)	
5	O/C good/0V bad (TTL)	

7-Way Connector Graphical Representation

3.5.5.5. TETRA Power Amplifier 5W (12-021601)

Power amplifier 12-021601 is a multi-stage, solid state power amplifier. Class A circuitry is employed throughout the device to ensure excellent linearity over a wide dynamic frequency range. All the semiconductor devices are very conservatively rated to ensure low device junction temperatures and a long, trouble free working lifetime.

The power amplifier should require no maintenance over its operating life. Under no circumstances should the cover be removed or the side adjustments disturbed unless it is certain that the amplifier has failed; since it is critically aligned during manufacture and any re-alignment will require extensive test equipment.


The unit housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-021601 Specification

PARAME	TER	SPECIFICATION
Fr	equency range:	380-470MHz (as required)
	Bandwidth:	10-40MHz (typical, tuned to spec.)
Maxir	mum RF output:	>5Watts
	Gain:	>30dB
1dB con	npression point:	+37.5dBm
3 rd order	intercept point:	+50dBm
VSWR:		better than 1.5:1
	Connectors:	SMA female
Supply:		1.9Amps @ 12V DC
Weight:		1kg (excluding heatsink)
Temperature	operational:	-10°C to +60°C
range:	storage:	-20°C to +70°C

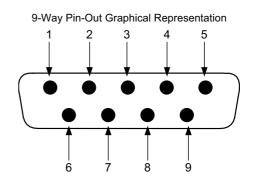
7-Way Connector Pin-out details		
Connector Pin	Signal	
A1 (large pin)	+10-24V DC	
A2 (large pin)	GND	
1	Alarm relay common	
2	TTL alarm/0V good	
3	Alarm relay contact (bad)	
4	Alarm relay contact (good)	
5	O/C good/0V bad (TTL)	

7-Way Pin-Out Graphical Representation

3.5.5.6. Low Power Amplifier (12-021801)

The low power amplifier used is a 1 stage balanced configuration, solid-state amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.


There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

12-021801 Specification

PARAMETER		SPECIFICATION
	Temperature	-20 to +70 °C
	Frequency Range	380 - 500 MHz
	Small Signal Gain	15.5 +/- 0.5 dB
	Gain Flatness	0.7 dB p-p
	∆Gain vs. Temperature	0.7 dB
	In RL	20 dB
	Out RL	20 dB
Output Powe	r @ 1dB Compression Point	+30.5dBm
	Output 3 rd Order IP	+41.5dBm
	Noise Figure	6 dB
	DC Supply Voltage	10-15 Vdc
	DC Supply Current	540 mA Max
Temperature	operational	-10°C to +60°C
range	storage	-40°C to +100°C
	Weight	<0.5 kg
	Size	110.5 x 66mm x 24.6mm

Low Power Amplifier (12-021801) 9-Way Connector Pin-outs

Connector pin	Signal
1	+ve input (10-15V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

The DC/DC converter fitted is a high power PCB unit with an 8 amp at 12V output capability. The circuit is basically an O.E.M semiconductor regulator (one side of which has a heatsink mounting plate, usually bolted to the casing of the unit) and smoothing components built onto a printed circuit board with screw block terminations.

In event of failure this unit should not be repaired, only replaced.

13-003011 Specification

PARAMETER		SPECIFICATION
Input Voltage range		18-28V DC
Ou	tput voltage	12V±0.5V
Max.	current load	8.0Amps
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C
Size(PCB)		190 x 63mm
Weight (Loaded PCB)		291g

3.5.5.8. Automatic Gain Control

- 17-001101 AGC Detector Assembly
- 17-001105 AGC Detector Assembly (Logarithmic)
- 17-001201 AGC Attenuator Assembly

UHF BDA UNIT(80-301404) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The Downlink UHF Midband and Highband paths are each fitted with logarithmic detector (17-001105), and attenuator (17-001201) the Uplink UHF Midband and Highband paths are each fitted with linear detector (17-001101) and attenuator (17-001201) The Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path before the amplification stage(s)

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board. Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit. For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

3.5.5.9. 24V Relay Dual Assembly (20-001602)

The General Purpose 24V Dual Relay Board (20-001602) allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays RL1 and RL2, with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. Its common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001602 Specification

PARAMETER		SPECIFICATION
	rating voltage	8 to 30V (floating earth)
	rm Threshold	Vcc - 1.20 volt +15%
	Alarm output re	elay contacts:
Max. s	witch current	1.0Amp
Max	. switch volts	120Vdc/60VA
Max.	switch power	24W/60VA
Mir	n. switch load	10.0µA/10.0mV
R	elay isolation	1.5kV
Mechanical life		>2x10 ⁷ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

3.5.5.10. 24V Relay Assembly (80-008909)

Relay Board (80-008909) allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system. This relay board also carries an LED to serve as a "Status OK" indicator which is illuminated during normal operation.

80-008909 Specification

PARAMET	ER	SPECIFICATION
Ope	rating voltage	8 to 30V (floating earth)
Al	arm threshold	Vcc - 1.20 volt +15%
AI	arm output re	lay contacts
Max.s	switch current	1.0Amp
Max	k. switch volts	120Vdc/60VA
Max.	switch power	24W/60VA
Mi	n. switch load	10.0µA/10.0mV
F	elay isolation	1.5kV
N	lechanical life	>2x10 ⁷ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

3.5.5.11. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to provide polarity protection for the DC supply input. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source.

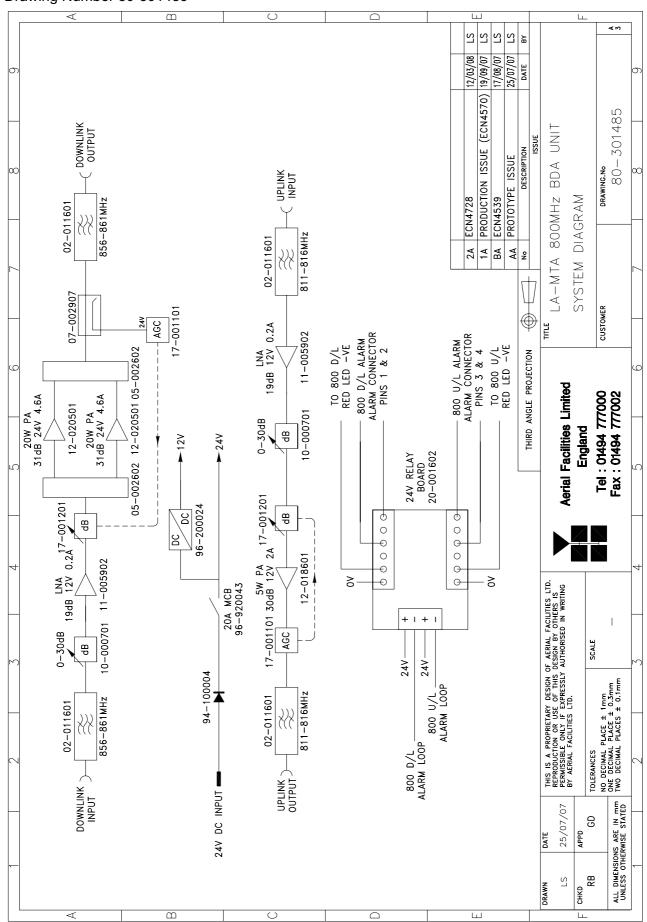
3.6. 800MHz BDA UNIT (80-301405)

800MHz BDA UNIT (80-301405) provides the amplification stages for the 800MHz paths, The unit is housed in a wall mount case 600x600x250mm (24" x 24" x 10" approx).

The Downlink 800MHz signal is received at the port labelled "D/L INPUT" (Annotated A in the picture in section 3.6.4.2.). The Downlink 800MHz path passes through a bandpass filter to remove out of band noise and then a switched attenuator providing 0 to 30 dB of RF signal attenuation, after the Attenuator the signal passes through the first of two amplification stages. This first stage is provided by a low noise amplifier which gives approx. 19dB of gain.

After the Low Noise Amplifier the Downlink 800MHz signal passes through the second amplification stage; the signal is first split into two equal paths and then each path is passed through a 20W power amplifier and then the two signal paths are re-combined. The second stage amplifiers are straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

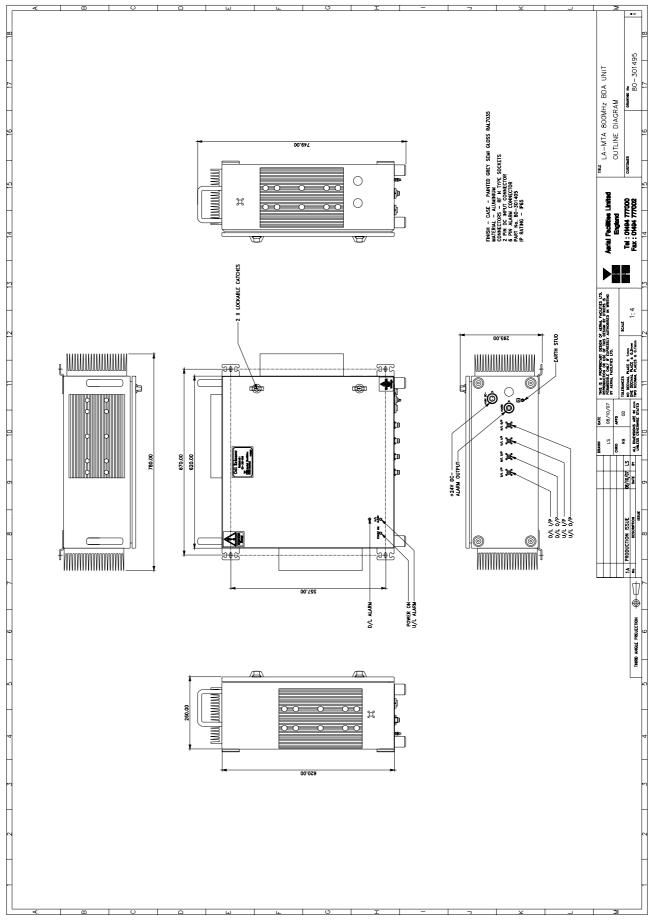
After leaving the second stage amplifiers the Downlink 800MHz signal path passes through a second bandpass filter before exiting the BDA via the port labelled "D/L OUTPUT" (B in section 3.6.4.2.).


The Uplink 800MHz signal is received at the port labelled "U/L INPUT" (C in section 3.6.4.2.). The Uplink 800MHz path passes through a bandpass filter to remove out of band noise and then into the first of two amplification stages, the first stage is provided by a low noise amplifier which gives approx. 19dB of gain; after leaving the Low Noise Amplifier the signal passes through a switched attenuator providing 0 to 30 dB of RF signal attenuation,

After leaving the switched attenuator the Uplink 800MHz path passes through the second stage of amplification which is provided by a 5W power amplifier giving approx. 30db of gain; this second amplification stage is straddled by an Automatic Gain Control assembly providing limiting to the output signals in the case of high input signals.

After leaving the second amplification stage the Uplink 800MHz path passes through a second bandpass filter before exiting the BDA via the port labelled "U/L OUTPUT" (D in section 3.6.4.2.).

800MHz BDA UNIT (80-301405) is provided with a 24V DC input to power the amplifier modules within and those amplifier modules are configured to provide alarm status reports.



Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

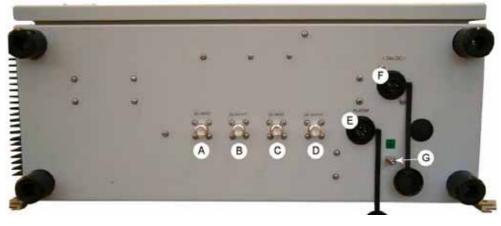
Issue No. 1 Date 13/06/2008 Page 57 of 148

3.6.2. 800MHz BDA UNIT (80-301405) Outline Drawing Drawing Number 80-301495

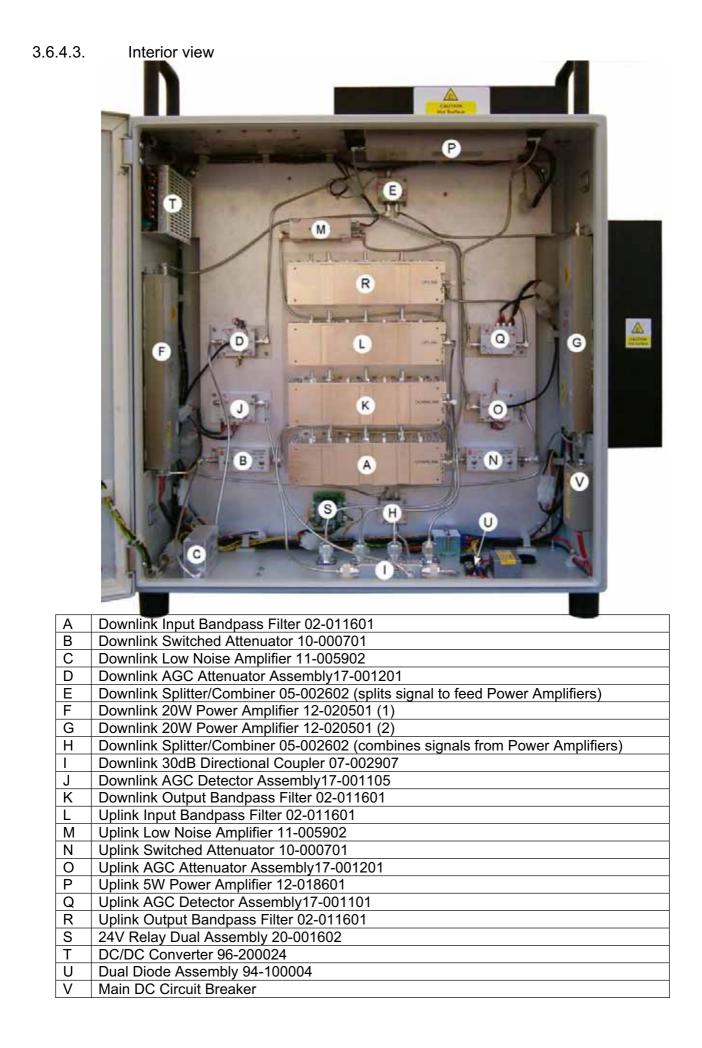
Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 58 of 148

3.6.3. 800MHz BDA UNIT (80-301405) Specification


Parameter	Specification
Downlink	
Downlink Passband	856.0 to 861.0MHz
Maximun gain	30dB
Gain Adjustment	0 to 30dB in 2dB steps
1dB Compression Point (P1dB)	> +45.0dBm
ALC setting	1dB below P1dB
3 rd Order Intercept point	> +55.0dBm
Uplink	
Uplink Passband	811.0 to 816.0MHz
Maximun gain	30dB
Gain Adjustment	0 to 30dB in 2dB steps
1dB Compression Point (P1dB)	> +36.0dBm
ALC setting	
3 rd Order Intercept point	> +46.0dBm
Noise Figure	< 5.0 dB
Environmental/Mechanical Specification	
Mechanical	IP65 Wall Mount
Dimensions	620mm x 620mm x 250mm
(excludes handles and connectors)	(24" x 24" x 10" approx)
RF Connectors	N-Type Female
	Local Alarms to SCADA
Alarm Interfaces	Dry Contact with LED Indication per band
	path
Power Supply	24V DC

Note: All connectors (RF, DC and Alarms) are on the underside


Α	Green LED "Power On"
В	Red LED Uplink Alarm
С	Red LED Downlink Alarm
D	Lockable Door Handles

3.6.4.2. Underside view showing connectors

А	800MHz Downlink Input from port 5 on Combiner 80-301402
В	800MHz Downlink output to port E on Combiner 80-301402
С	800MHz Downlink Input from port J on Combiner 80-301402
D	800MHz Downlink output to port 10 on Combiner 80-301402
Е	Alarm Output
F	24V DC Input
G	Earth Connection

Axell Wireless Limited Technical Literature Document Number 80-301401HBKM

section	Component	Component Part Description Qty Pe	
	Part	Asse	
3.6.5.1.	02-011601	Bandpass FIIter	4
3.6.5.2.	05-002602	Splitter/Combiner	2
3.6.5.3.	07-002907	30dB Directional Coupler	1
3.6.5.4.	10-000701	Switched Attenuator 0.25Watt, 0 - 30dB	2
3.6.5.5.	11-005902	Low Noise Amplifier 2	
3.6.5.6.	12-018601	5W Power Amplifier 1	
3.6.5.7.	12-020501	20W Power Amplifier 2	
3.6.5.8.	17-001101	AGC Detector Assembly 1	
	17-001105	AGC Detector Assembly (Logarithmic) 1	
	17-001201	AGC Attenuator Assembly 2	
3.6.5.9.	20-001602	24V Relay Dual Assembly 1	
3.6.5.10.	94-100004	Dual Diode Assembly 1	
3.6.5.11.	96-200024	DC/DC Converter, 24V in, 12V 5A out 1	

3.6.5. 800MHz BDA UNIT (80-301405) Major Sub-components

3.6.5.1. Bandpass Filter (02-011601)

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50 Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

PARAMETER		SPECIFICATION
Frequency	Downlink	856 to 861MHz
Range	Uplink	811 to 816MHz
Bandwidth	Downlink	5 MHz
Danuwiuun	Uplink	5 MHz
Numbe	r of Sections	8
Ir	sertion Loss	1.2 dB
	VSWR	better than 1.2:1
	Connectors	SMA
Power Handling		100W max
Temperatur	e operation	-10°C to +55°C
rang	e storage	-40°C to +70°C
Weight		3 kg (typical)

02-011601 Specification

3.6.5.2. Splitter/Combiner (05-002602)

The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load.

Being passive devices, the splitters should have an extremely long operational life and require no maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module rather than attempt repair or re-tuning.

05-002602 Specification

PARAMETER		SPECIFICATION
Freq	uency Range	800 – 1000MHz
	Bandwidth	200MHz
	Ports	3
	Insertion loss	3.3dB typical
Return loss i	nput & output	1.3:1
	Impedance	50Ω
Isolation		>20dB
MTFB		>180,000 hours
Power rating	Splitting	20Watts
Fower raung	Combining	0.5Watt
Connectors		SMA female
	Weight	200g (approximately)
Size		54 x 44 x 21mm

3.6.5.3. 30dB Directional Coupler (07-002907)

The purpose of these couplers is to tap off known portions (in this case 30dB) of RF signal from transmission lines inband to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known as directional couplers as they couple power from the RF mainline in one direction only.

07-002907 Specification

PARAMETER		SPECIFICATION
Freq	uency range	800 - 1000MHz
li li	nsertion loss	<0.3dB
Coupling level		-30dB ±0.5dB
Rejection		N/A
Weight		<200g
Connectors		SMA, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

3.6.5.4. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)

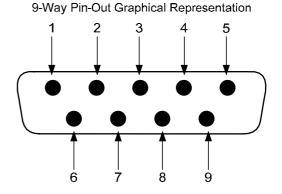
10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER		SPECIFICATION
Attenua	tion Values	0-30dB
Attenu	ation Steps	2, 4, 8 and 16dB
Pow	er Handling	0.25 Watt
Attenuatio	on Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

3.6.5.5. Low Noise Amplifier (11-005902)

The Gallium-Arsenide low noise amplifier used in the unit is a double stage, solid-state low noise amplifier. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced.


This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into any alarm system. There is a Current Fault Alarm Function, which indicates failure of each one or both RF transistors by a various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.

11-005902 Specification

PARAM	ETER	SPECIFICATION
F	requency range	800 – 960MHz
	Bandwidth	<170MHz
	Gain	19.5dB (typical)
1dB cor	mpression point	+21dBm
	OIP3	+33dBm
Input/ou	Itput return loss	>20dB
	Noise figure	1dB (typical)
Pow	er consumption	190mA @ 24V DC
	Supply voltage	10-24V DC
	Connectors	SMA female
Temperature	operational	-10°C to +60°C
range	storage	-40°C to +70°C
	Size	90 x 55 x 30.2mm
	Weight	0.28kg

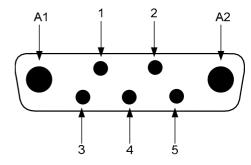
LNA 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

3.6.5.6. 5W Power Amplifier (12-018601)

This amplifier is a Class A 5W power amplifier from 800MHz to 960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.


12-018601 Specification

PARAMETE	R	SPECIFICATION
Frec	luency range	800-960MHz
Sma	III signal gain	30dB
(Gain flatness	±0.5dB
I/C	Return loss	>20dB
1dB comp	ression point	+37dBm
OIP3		+52dBm
Supply voltage		12V DC
S	upply current	2.0Amps (typical)
Temperature operational		-10°C to +60°C
range storage		-20°C to +70°C
Weight		<2kg (no heatsink)

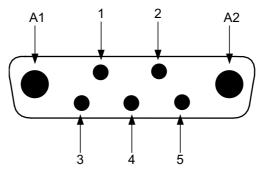
PA 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+12V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

7-Way Connector Graphical Representation

This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.


12-020501 Specification

PARAME	TER	SPECIFICATION
Fre	quency range	800-960MHz
Sm	all signal gain	31.5dB
	Gain flatness	±0.6dB
I/	O Return loss	>18dB
1dB compression point		+43.5dBm
	OIP3	+54dBm
Supply voltage		24V DC
Supply current		4.6Amps @12V(typical)
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
	Weight	<2kg (no heatsink)

PA 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

7-Way Connector Graphical Representation

3.6.5.8. Automatic Gain Control

17-001105 AGC Detector Assembly (Logarithmic)

17-001201 AGC Attenuator Assembly

800MHz BDA UNIT (80-301405) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The Downlink path is fitted with logarithmic detector (17-001105), and attenuator (17-001201) the Uplink path is fitted with linear detector (17-001101) and attenuator (17-001201)

The Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path before the amplification stage(s)

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

3.6.5.9. 24V Relay Dual Assembly (20-001602)

The General Purpose 24V Dual Relay Board (20-001602) allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays RL1 and RL2, with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. Its common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001602 Specification

PARAM	ETER	SPECIFICATION	
Ope	rating voltage	8 to 30V (floating earth)	
Ala	rm Threshold	Vcc - 1.20 volt +15%	
Alarm output relay contacts:			
Max. s	switch current	1.0Amp	
Max	c. switch volts	120Vdc/60VA	
Max.	switch power	24W/60VA	
Mi	n. switch load	10.0µA/10.0mV	
R	elay isolation	1.5kV	
M	lechanical life	>2x10 ⁷ operations	
R	elay approval	BT type 56	
Connector details		Screw terminals	
Temperature	operational	-10°C to +60°C	
range	storage	-20°C to +70°C	
•			

3.6.5.10. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to provide polarity protection for the DC voltage input. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source.

3.6.5.11. DC/DC Converter, 24V in, 12V 5A out (96-200024)

This unit it is an O.E.M high power device with a 5 amp @ 12V (60Watts) output capability used to derive a 12V fixed voltage power supply rail from a 24V supply. In the event of failure this unit should not be repaired, only replaced.

96-200024 Specification

PARAME	TER	SPECIFICATION
Input Vol	tage range	18-28V DC
Output voltage		12V±0.5V
Max. current load		5.0 Amps
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C

4. In-Line BDA Rack Mount 80-301406

The Rack Mount In Line BDA consists of ten, 19" equipment rack mount shelves The function is exactly the same as the Wall Mount unit in section 3 but the construction is different.

The Rack Mount BDA is divided into four main components equivalent to the four Wall Mount cases described in section 3, these are:

- The Splitter Combiner which is comprised of four, 4U 19" rack mount shelves: Downlink Input Shelf 80-301407 Downlink Output Shelf 80-301408 Uplink Input Shelf 80-301407 Uplink Output Shelf 80-301407
- The VHF and UHF Low Band Amplifier which is comprised of two, 4U 19" rack mount shelves: VHF Amplifier Shelf 80-301409 UHF Lowband Amplifier Shelf 80-301410
- The Mid and High Band UHF Amplifier which is comprised of two, 4U 19" rack mount shelves: UHF Midband Amplifier Shelf 80-301410 UHF Highband Amplifier Shelf 80-301410
- The 800MHz Amplifier which is comprised of one, 8U 19" rack mount shelf: 800MHz Amplifier Shelf 80-301411

A 2U 19" rack mount shelf houses the power supply unit that provides 24V DC feeds to the amplifier shelves

The entire arrangement is housed in two, 40U Swing-fame 19" Equipment Mountings Racks,

Rack 1 houses:

Downlink Input Shelf 80-301407 Uplink Input Shelf 80-301407 Uplink Output Shelf 80-301407 UHF Highband Amplifier Shelf 80-301410 UHF Midband Amplifier Shelf 80-301410 UHF Lowband Amplifier Shelf 80-301410 VHF Amplifier Shelf 80-301409 PSU Shelf

Rack 2 houses:

Downlink Output Shelf 80-301408 800MHz Amplifier Shelf 80-301411

Rack interconnections, test ports and connections to the Leaky Feeders are via patch panels in the tops of each rack

Downlink

The downlink signal is received from the radiating cable and enters the Downlink Input Shelf 80-301407 where by means of crossband splitter/couplers it is split into VHF, UHF and 800MHz paths, the UHF path is further split into Low, Middle and Highband paths.

The VHF and UHF LowBand paths leave Downlink Input Shelf 80-301407. The VHF path goes to the Downlink Input of VHF Amplifier Shelf 80-301409 and the UHF Lowband path goes to the Downlink Input of UHF Lowband Amplifier Shelf 80-301410.

The UHF Mid and Highband paths leave Downlink Input Shelf 80-301407 the UHF Midband path goes to the Downlink Input of UHF Midband Amplifier Shelf 80-301410; the UHF Highband path goes to the Downlink Input of UHF Highband Amplifier Shelf 80-301410

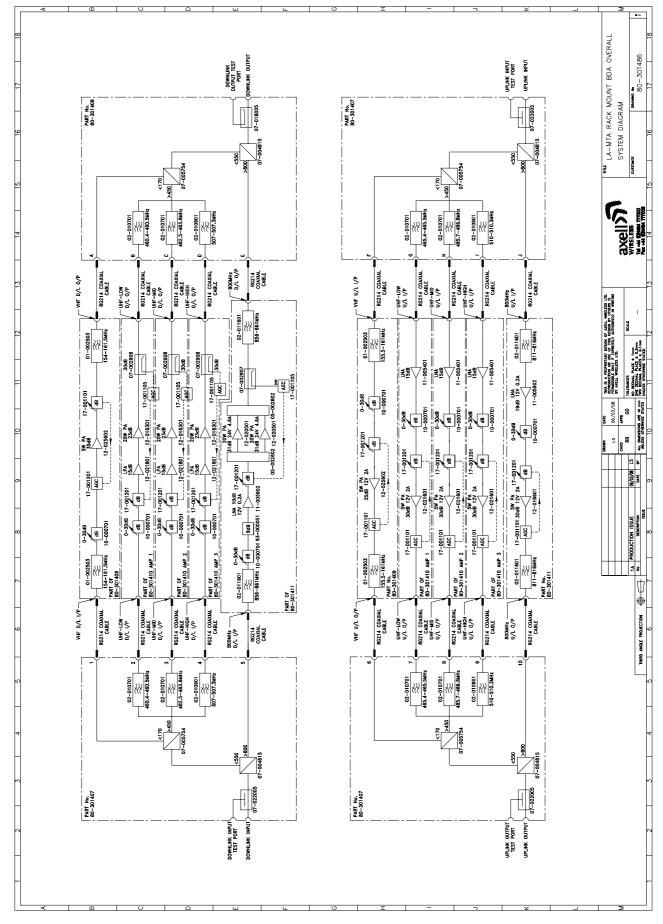
The 800MHz path leaves Downlink Input Shelf 80-301407 and goes to the Downlink Input of 800MHz Amplifier Shelf 80-301411

After their respective amplification stages the signal paths enter Downlink Output Shelf 80-301408 where they are combined into a single path and fed into the radiating cable.

Uplink

The Uplink signal signal is received from the radiating cable and enters Uplink Input Shelf 80-301407 where by means of crossband splitter/couplers it is split into VHF, UHF and 800MHz paths, the UHF path is further split into Low, Middle and High band paths.

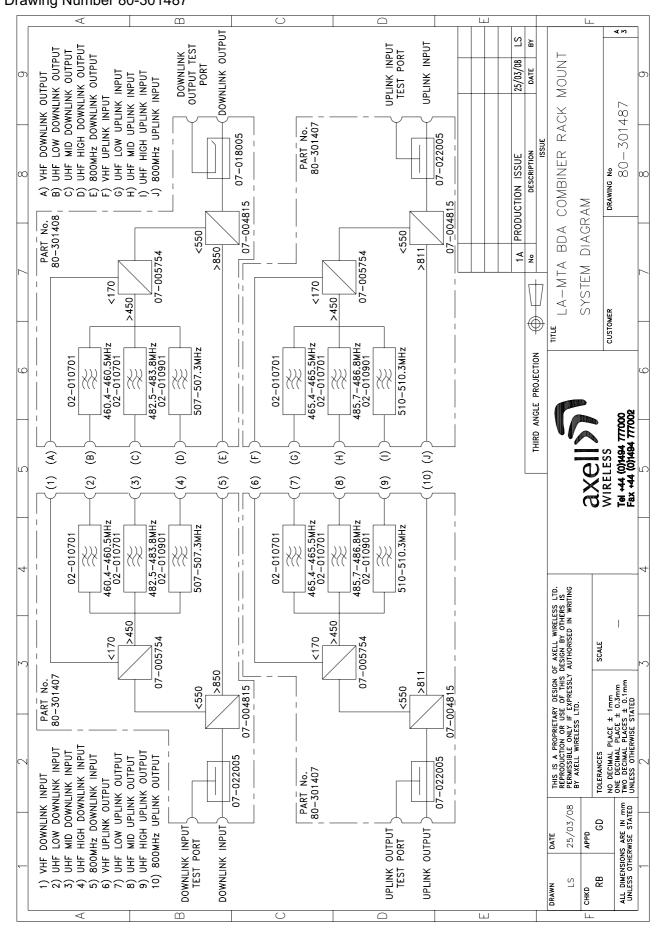
The VHF and UHF LowBand paths leave Uplink Input Shelf 80-301407. The VHF path goes to the Uplink Input of VHF Amplifier Shelf 80-301409 and the UHF Lowband path goes to the Uplink Input of UHF Lowband Amplifier Shelf 80-301410.


The UHF Mid and Highband paths leave Uplink Input Shelf 80-301407 the UHF Midband path goes to the Uplink Input of UHF Midband Amplifier Shelf 80-301410; the UHF Highband path goes to the Uplink Input of UHF Highband Amplifier Shelf 80-301410

The 800MHz path leaves Uplink Input Shelf 80-301407 and goes to the Uplinklink Input of 800MHz Amplifier Shelf 80-301411

After their respective amplification stages the signal paths enter Uplink Output Shelf 80-301407 where they are combined into a single path and fed into the radiating cable.

4.1.1. Overall System Diagram


Drawing Number 80-301486

Axell Wireless Limited Technical Literature Document Number 80-301401HBKM L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 71 of 148

4.1.2. Combiners System Diagram Drawing Number 80-301487

Axell Wireless Limited Technical Literature Document Number 80-301401HBKM

L.A. M.T.A. Remote Sites

Issue No. 1 Date 13/06/2008 Page 72 of 148

4.2. In-Line BDA Rack Mount 80-301406 Specification

ELECTRICAL	ELECTRICAL SPECIFICATION				
			Downlink	154.0 to 161.5 MHz	
	VHF		Uplink	155.5 to 161.0 MHz	
	ш		Downlink	460.4 to 460.5 MHz	
	UHF Low		Uplink	465.4 to 465.5 MHz	
Frequency	UHF Mid		Downlink	482.5 to 483.8 MHz	
Range			Uplink	485.7 to 486.8 MHz	
	UHF High		Downlink	507.0 to 507.3 MHz	
			Uplink	510.0 to 510.3 MHz	
	800	MHz	Downlink	856.0 to 861.0 MHz	
	800		Uplink	811.0 to 816.0 MHz	
	F	Passb	and Ripple	± 1.5dB	
			VHF	5 Watts	
Downlink	Dowor		UHF Low	20 Watts	
-	nplifier		UHF Mid	20 Watts	
All	ipinei	UHF High		20 Watts	
			800MHz	40 Watts	
			VHF	5 Watts	
Linkel: Dever		UHF Low		5 Watts	
	Uplink Power Amplifier		UHF Mid	5 Watts	
	ipinei	UHF High		5 Watts	
			800MHz	5 Watts	
			Gain	30dB	
			Gain Adjust	0 - 30dB in 2dB Steps	
		Sam	pling Ports	30dB	
			VSWR	1.5:1	
Impedance			mpedance	50 Ohms	
		Po۱	ver Supply	24V DC	
Power Consumption			nsumption	< 800 Watts	
Mechanical Specification					
Mechanical			lechanical	Two 40U, 19" Swingframe, 600mm x 600mm Equipment Mounting racks	
RF Connectors			Connectors	N-Type Female	
Alarm Interfaces			Interfaces	Local Alarms to SCADA Dry Contact with LED Indication per band path	