RF Exposure

MPE Calculation

KDB 447498

Prediction of MPE limit at a given distance

Equation from IEEE C95.1

$$
S=\frac{E I R P}{4 \pi R^{2}} \text { re - arranged } R=\sqrt{\frac{E I R P}{S 4 \pi}}
$$

where:
$\mathrm{S}=$ power density
$\mathrm{R}=$ distance to the centre of radiation of the antenna
EIRP = EUT Maximum power

Note:

The EIRP was calculated by addition of the maximum conducted carrier power plus the antenna gain.

OR
The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$
\mathrm{TP}=(\mathrm{FS} \times \mathrm{D})^{2} /(30 \times \mathrm{G})
$$

where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain.

Result

Prediction Frequency (MHz)	Maximum Conducted Power (dBm)	Antenna Gain (dBi)	Maximum EIRP (mW)	Minimum Distance (cm)	Power density at distance $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Power density limit (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$
$500 \#$	24.14	15	8200	44.3	0.332	0.3333

\#Note: The above level is calculated for the maximum ERP 5W part 90.219(e)(1)
The manufacturer states that the installer must ensure that the maximum EIRP must not exceed the value of $8.2 \mathrm{~W}, 5 \mathrm{~W}$ ERP for each transmitted channel.

