3. MASTER SITE 60-212701

The Master Site Shelf is a 3 U Rack mount shelf and provides two separate RF paths, uplink and downlink with provision to vary the gain of either path using a switched variable attenuator, one in each path. The active Fibre Optic modules in the unit are powered from an internal 12V PSU which runs from a mains feed of 110 V AC

The downlink signal is received from the antenna and enters the master site via the port labelled "TX", the signal passes through a switched variable attenuator (10-000801) providing up to 30 dB of attenuation 2 dB steps. After leaving the attenuator the signal is split into two equal paths by a 3 dB splitter/combiner (05-002603) and each path is passed into a Fibre Optic Transmitter (20-005401) where the signal is modulated onto a laser as an optical signal for transmission to the remote site via fibre optic cable. The fibre optic signal leaves the master site via the ports labelled "F/O DL" (Fibre Optic Downlink). Only one "F/O DL" port is used, the second one being available for future expansion.

Uplink signals are received at the master site as optical signals sent from the remote site, the fibre optic cable carrying the optical signals enter the master site via the ports labelled "F/O UL" (Only one "F/O UL" port is used, the second one being available for future expansion). Upon entering the master site the optical signal is passed to a fibre optic receiver (20-005501) where the signal is demodulated into an RF signal. After leaving the fibre optic receivers the two RF signal paths are combined by a 3 dB splitter/combiner (05-002603) to produce a single path which then passes through a switched variable attenuator (10-000701) providing up to 30 dB of attenuation 2 dB steps. After leaving the attenuator the RF signal leaves the master site via the port labelled " $R X$ "

3.1. $\quad \mathbf{6 0 - 2 1 2 7 0 1}$ Parts List (Major Components)

Component Part	Component Part Description	Qty Per Assembly
$05-002603$	UHF 3dB Splitter/Combiner	2
$10-000701$	Switched Attenuator 0-30dB 0.25W	1
$10-000801$	Switched Attenuator 0-30dB 1W	1
$20-005401$	Fibre Optic Transmitter (2.7GHz)	1
$20-005501$	Fibre Optic Receiver (2.7GHz)	1
$80-008901$	12V Relay Assembly	1
$96-300048$	PSU 50W (12V 5A)	1
$96-920022$	Circuit Breaker (3A)	1

The individual fibre optic TX and RX units are fitted with a pair of status indicators on their front panels. One is a green LED, which indicates that the unit is connected to a 12 Volt DC power supply. This indicator is common to both transmit and receive units. The second LED on the TX module indicates that the laser is operating (transmitting). On the RX unit the second LED indicates that a laser-light signal is being received.

When all the fibre connections are completed and power to each site is connected each fibre unit must show two illuminated indicators.

3.2. 60-212701 Diagrams

Master Site 60-212701 Front Panel (Not to scale)

F

Master Site 60-212701 Rear Panel (Not to scale)

3.4. 60-212701 Major Sub Components

3.4.1. UHF 3dB Splitter/Combiner (05-002603)

The 3dB Splitter/Combiner (05-002603) is a device for accurately matching two RF signals to a single port or splitting an RF signal to two ports whilst maintaining an accurate 50 load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum.

05-002603 Specification

PARAMETER	SPECIFICATION
Frequency range	380-520 MHz
Bandwidth	140 MHz
Ports As Combiner	2 inputs 1 output
Ports As Splitter	1 input 2 outputs
Insertion loss	3.5 dB (typical)
Isolation	$>18 \mathrm{~dB}$
Return Loss (VSWR) - Input	Better than 1.3:1
Return Loss (VSWR) - Output	Better than 1.3:1
Impedance	50 s
Power Rating - Combiner	0.5 Watt
Power Rating - Splitter	20 Watts
Connectors	SMA female
Size	$54 \times 44 \times 21 \mathrm{~mm}$
Weight	200 gm (approximately)

3.4.2. Switched Attenuator 0-30dB 0.25W (10-000701)

$10-000701$ provides attenuation from $0-30 \mathrm{~dB}$ in 2 dB steps, the attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER	SPECIFICATION
Attenuation Values	$0-30 \mathrm{~dB}$
Attenuation Steps	$2,4,8$ and 16 dB
Power Handling	0.25 Watt
Attenuation Accuracy	$\pm 1.0 \mathrm{~dB}$
Frequency Rang	DC to 1 GHz
Impedance	50Ω
Connectors	SMA
VSWR	$1.3: 1$
Weigh	0.2 kg
Temperature range	operation
	storage
	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

3.4.3. Switched Attenuator 0-30dB 1W (10-000801)

$10-000801$ provides attenuation from $0-30 \mathrm{~dB}$ in 2 dB steps, the attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000801 Specification

PARAMETER		SPECIFICATION
Attenuation Values		0-30dB
Attenuation Steps		2, 4, 8 and 16dB
Power Handling		1 Watt
Attenuation Accuracy		$\pm 1.0 \mathrm{~dB}$
Frequency Rang		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weigh		0.2 kg
Temperature range	operation	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

3.4.4. Fibre Optic Transmitter (2.7GHz) (20-005401)

The transmitter modulates the RF signal on to a laser, which is then transmitted over a fibre optic cable to a receiver. The laser current is monitored and compensated for constant optical out put power against temperature variation and aging. Laser over-current alarm function is provided as LED output as well as open collect and voltage-free relay contacts on 9 way D-type connector.

20-005401 specification

PARAMETER	SPECIFICATION
Frequency Range (RF path)	$70-3000 \mathrm{MHz}$
Frequency Range (Data path)	$20-35 \mathrm{MHz}$
Available Link Gain (RF Path)	18 dB
Link Gain (DATA Path)	0 dB
Gain Flatness (entire frequency range)	$\pm 1.5 \mathrm{~dB} \mathrm{p-p}$
Δ Gain vs. Temperature -20 to 70 $^{\circ} \mathrm{C}$	3.5 dB
Gain adjustment range (RF Path)	30 dB
In/Out Return Loss (RF path)	10 dB Min
Output IP3 @ max gain *	37 dBm
In/Output IP3 @ OdB Gain *	33 dBm
RF impedance	50 Ohm
Noise Figure @ OdB gain (400MHz)	36 dB
Optical Transmit Power	$2.7 \pm 0.3 \mathrm{dBm}$
Optical return loss	$>50 \mathrm{~dB}$
Received Power Alarm Threshold	$-10 \mathrm{dBm}($ optic)
Optical wavelength	1310 nm
DC Supply Voltage	$10-12 \mathrm{Vdc}$
DC Supply Current	120 mA
Operating Temperature	-20 to $70^{\circ} \mathrm{C}$
Storage Temperature	-30 to $855^{\circ} \mathrm{C}$
RF Connector type	SMA
Sibre optic connector type	FC/APC

Fibre Optic Transmitter (20-005401) 'D' Type Female Connector Pinouts

Pin No.	Signal Description
1	$+10-12 \mathrm{~V}$ DC Power
2	OV DC, Power Ground
3	OV DC, Power Ground
4	No Connection
5	No Connection
6	TTL Alarm, (0V=good, open coll.= fail)
7	Relay Alarm Contact (N.C)
8	Relay Alarm Contact (Common)
9	Relay Alarm Contact (N.O)

3.4.5. Fibre Optic Receiver (2.7GHz) (20-005501)

The receiver demodulates RF signals from the laser with a typical gain of 18 dB and with 30 dB adjustability in the RF domain. The received optical power is monitored for alarm function in case of fibre damage.

20-005501 Specification

PARAMETER	SPECIFICATION
Frequency Range (RF path)	$70-3000 \mathrm{MHz}$
Frequency Range (Data path)	$20-35 \mathrm{MHz}$
Available Link Gain (RF Path)	18 dB
Link Gain (DATA Path)	0 dB
Gain Flatness (entire frequency range)	$\pm 1.5 \mathrm{~dB} \mathrm{p}-\mathrm{p}$
Δ Gain vs. Temperature -20 to 70 ${ }^{\circ} \mathrm{C}$	3.5 dB
Gain adjustment range (RF Path)	30 dB
In/Out Return Loss (RF path)	10 dB Min
Output IP3 @ max Gain	37 dBm
In/Output IP3 @ OdB Gain	33 dBm
RF impedance	50 Ohm
Noise Figure @ OdB gain (400MHz)	36 dB
Optical Transmit Power	$2.7 \pm 0.3 \mathrm{dBm}$
Optical return loss	$>50 \mathrm{~dB}$
Received Power Alarm Threshold	$-10 \mathrm{dBm}($ optic)
Optical wavelength	1310 nm
DC Supply Voltage	$10-12 \mathrm{Vdc}$
DC Supply Current	350 mA
Operating Temperature	-20 to $70^{\circ} \mathrm{C}$
Storage Temperature	$-30 \mathrm{to} 85^{\circ} \mathrm{C}$
RF Connector type	SMA
SMA	
Fibre optic connector type	FC/APC

Fibre Optic Receiver (20-005501) 'D' Type Female Connector Pinouts

Pin No.	Signal Description
1	$+10-12 \mathrm{~V}$ DC Power
2	OV DC, Power Ground
3	OV DC, Power Ground
4	No Connection
5	No Connection
6	TTL Alarm, (0V= good, open coll.= fail)
7	Relay Alarm Contact (N.C)
8	Relay Alarm Contact (Common)
9	Relay Alarm Contact (N.O)

3.4.6. 12 V Relay Assembly (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector.

The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. Its common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008901 Specification

PARAMETER	SPECIFICATION
Operating voltage	8 to 30V (floating earth)
Alarm threshold	Vcc - 1.20 volt +15\%
Alarm output relay contacts	
Max. switch current	1.0Amp
Max. switch volts	$120 \mathrm{Vdc} / 60 \mathrm{VA}$
Max. switch power	24W/60VA
Min. switch load	$10.0 \mu \mathrm{~A} / 10.0 \mathrm{mV}$
Relay isolation	1.5 kV
Mechanical life	$>2 \times 10^{7}$ operations
Relay approval	BT type 56
Connector details	Screw terminals
Temperature ${ }^{\text {o }}$ operational	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
range storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

3.4.7. PSU 50W (12V 5A) (96-300048)

The power supply unit is a switched-mode type capable of supplying 12V DC at 5Amps continuously. No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2 V . The adjustment potentiometer will be found close to the DC output terminals.

All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220 V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300048 Specification

AC Input Supply	
Voltage:	110 or 220V nominal
	90 to 132 or 180 to 264 V (absolute limits)
Frequency:	47 to 63Hz
DC Output Supply	
Voltage:	12 V DC (nominal)
	$10.5-13.8 \mathrm{~V}$ (absolute limits)
Current:	5.0 A

4. REMOTE SITE 60-212801

The Remote Site 60-212801 is composed of two rack mount chassis, one containing the filtering, and amplification modules along with the fibre optic transmitter and receiver (60-212802), the second tray is a 100 W amplifier ($80-245101$), part of the Downlink signal path.

60-212801 sub components

section	Component Part	Component Part Description	Qty Per Assembly
4.1.	$80-245101$	100W Linearised Amplifier	1
4.2.	$60-212802$	Remote Uplink/Downlink Tray	1

4.1. \quad 100W Linearised Amplifier (80-245101)

100W Linearised Amplifier (80-245101) shelf is a Class A 100W TETRA Linearised Class A amplifier where 4 linearised power amplifiers are combined together in a 'phased-parallel' arrangement. Its housing is a 4 U 19 " Rack-mount shelf with SMA connectors for the RF input/output, 2 D-Type connectors for the alarm function and 2 DC connectors with fuses for the 24 DC supplies. Cooling is effected by fans mounted on the front panel.

It has a built in Current Fault Alarm Function with the four amplifiers in two summary alarm paths. The summary alarm on ' D ' connector ' A ' will show an alarm for the two amplifiers mounted on the top of the shelf (amplifier pair "A"). The summary alarm on ' D ' connector ' B ' will show an alarm for the two amplifiers mounted at the bottom of the shelf (amplifier pair " B ")

4.1.1. 80-245101 Specification

PARAMETER		SPECIFICATION
Frequency range:		$440-500 \mathrm{MHz}$
Small signal gain:		37dB
Gain flatness:		$\pm 0.5 \mathrm{~dB}$
I/O Return loss:		$>18 \mathrm{~dB}$
1dB compression point:		$+50 \mathrm{dBm}$
OIP3:		$+69 \mathrm{dBm}$
Supply voltage:		24V DC (x2)
Supply current:		18-19Amps
Impedance:		50Ω
Environmental protection rating:		IP44
Temperature range	operational:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage:	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Weight:	<5kg

4.1.2. $\quad \mathbf{8 0 - 2 4 5 1 0 1}$ Parts List (Major Components)

AFL Part No.	Part Description	Qty.
$05-002603$	UHF 3dB Splitter/Combiner	6
$12-026902$	25W Linearised Amplifier Module	4
$80-008902$	24V Relay PCB Assembly	2
$96-400002$	Cooling Fan	4

4.1.3. $\quad \mathbf{8 0 - 2 4 5 1 0 1}$ Photographs

100W Linearised Amplifier (80-245101) rear view

A	Amplifier pair "A"
B	Amplifier pair "B"
C	Earthing connections

100W Linearised Amplifier (80-245101) front view

A	Green LED "Power On" Amplifier pair "A"	H	Green LED "Power On" Amplifier pair "B"
B	Red LED "Alarm" Amplifier pair "A"	I	Red LED "Alarm" Amplifier pair "B"
C	RF input from 60-212802	J	RF output to 60-212802
D	Alarm output Amplifier pair "A"	K	Alarm output Amplifier pair "B"
E	DC input Amplifier pair "A"	L	DC input Amplifier pair "B"
F	Fuse holder Amplifier pair "A"	M	Fuse holder Amplifier pair "B"
G	Earth connection for 80-245101	N	Cooling fans

4.1.6. $\quad \mathbf{8 0 - 2 4 5 1 0 1}$ Major Sub Components

4.1.6.1. $\quad 25 W$ Linearised Amplifier Module (12-026902)

Linearised Power Amplifier (12-026902) is a multi-stage, solid state power amplifier. Class A circuitry is employed throughout the device to ensure excellent linearity over a wide dynamic frequency range. All the semi-conductor devices are very conservatively rated to ensure low device junction temperatures and a long, trouble free working lifetime.

The power amplifier should require no maintenance over its operating life. Under no circumstances should the cover be removed or the side adjustments disturbed unless it is certain that the amplifier has failed; since it is critically aligned during manufacture and any re-alignment will require extensive test equipment. The module housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-026902 Specification

PARAMETER		SPECIFICATION
Frequency range:		$440-500 \mathrm{MHz}$ (tuned to spec.)
Maximum RF output:		<60MHz (typical)
		>25Watt
Small signal gain:		37.5 dB (typical)
1dB compression point:		+44dBm
$3^{\text {rd }}$ order intercept point:		+61dBm
Noise figure:		N/A
Return input loss:		$>15 \mathrm{~dB}$
Return output loss:		$>15 \mathrm{~dB}$
VSWR:		better than 1.5:1
Connectors:		SMA female
Supply:		4.6Amps @ 24V DC
Temperature range:	operation:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage:	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Weight:	1.5 kg

PA 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	$+24 V$ DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/OV good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/OV bad (TTL)

4.1.6.2. UHF 3dB Splitter/Combiner (05-002603)

The 3dB Splitter/Combiner (05-002603) is a device for accurately matching two RF signals to a single port or splitting an RF signal to two ports whilst maintaining an accurate 50 load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum.

05-002603 Specification

PARAMETER		SPECIFICATION
Frequency range		$380-520 \mathrm{MHz}$
Bandwidth	140 MHz	
Ports	As Combiner	2 inputs 1 output
	As Splitter	1 input 2 outputs
	Insertion loss	3.5 dB (typical)
Isolation	$>18 \mathrm{~dB}$	
Return Loss (VSWR) - Input	Better than 1.3:1	
Return Loss (VSWR) - Output	Better than 1.3:1	
Impedance	50ς	
Power Rating - Combiner	0.5 Watt	
Power Rating - Splitter		20 Watts
Connectors	SMA female	
Size	$54 \times 44 \times 21$ mm	
Weight	200 gm (approximately)	

4.1.6.3. $\quad 24 \mathrm{~V}$ Relay PCB Assembly (80-008902)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single, dual pole, change-over relay RL1 with completely isolated wiring, accessed via screw terminals.

The relay is provided with a polarity protection diode and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. Its common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008902 Technical Specification

Parameter	Specification
Max. switch current	1.0 Amp
Max. switch volts	$120 \mathrm{Vdc} / 60 \mathrm{VA}$
Max. switch power	$24 \mathrm{~W} / 60 \mathrm{VA}$
Min. switch load	$10.0 \mu \mathrm{~A} / 10.0 \mathrm{mV}$
Relay isolation	1.5 kV
Mechanical life	$>2 \times 10^{7}$ operations
Relay approval	BT type 56
Connector details	

4.2. Remote Uplink/Downlink Shelf (60-212802)

The Remote Uplink/Downlink Shelf is an 8U Rack mount shelf and provides two separate RF paths, uplink and downlink with provision to vary the gain of either path using a switched variable (0 to 30dB) attenuator, one in each path. Each path is also fitted with an Automatic Gain Control (AGC) circuit which consists of two units, a detector/amplifier and an attenuator. Normally the attenuators in the AGC circuit are at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold; therefore overloading of the amplifiers is avoided.

The downlink signal is received from the master site as an optical signal which is demodulated into an RF signal. The RF signal is then passed through a bandpass filter (tuned to pass the downlink bandwidth 502.4 MHz to 502.8 MHz) to reject out-of-band noise and then passes through the downlink AGC attenuator and into the Downlink Switched Attenuator. From the Switched Attenuator the Downlink signal passes through two low power amplifiers (1W, 15dB gain and 2W, 15dB gain) and then exits 60-212802 to go to the 100W Linearised Amplifier (80-245101). After leaving 60-212802 the downlink signal re-enters 60-212802, passing through the downlink AGC detector and a second bandpass filter before exiting the shelf via the D/L Output port

The uplink RF path enters 60-212802 at the U/L Input port and the signal passes through a bandpass filter (tuned to pass the uplink bandwidth 505.4 MHz to 505.8 MHz) to reject out-of-band noise. After the bandpass filter the signal passes through a 30 dB Low Noise Amplifier and then into the uplink Switched Attenuator followed by the uplink AGC attenuator. After the AGC attenuator the signal passes through a second bandpass filter and then through a low power amplifier (1W, 37dB gain) followed by the uplink AGC detector. From the AGC detector the uplink signal passes into a fibre optic transmitter where the RF signal is modulated into an optical signal for transmission via fibre optic cable to the master site.

All the amplifier modules in this shelf are alarmed and the summary terminates at the rear panel mounted 9-way 'D' alarm connector.

4.2.1. 60-212802 Parts List (Major Components)
Component Part Component Part Description Qty Per Assembly $02-010901$ Bandpass Filter 3 $02-011204$ Bandpass Filter 1 $10-000701$ Switched Attenuator 0-30dB 0.25W 1 $10-000801$ Switched Attenuator 0-30dB 1W 1 $11-007402$ Low Noise Amplifier 1 $11-007901$ Low Power Amplifier (1W) 1 $12-021801$ Low Power Amplifier (1W) 1 $12-021802$ Low Power Amplifier (2W) 1 $13-003011$ DC-DC Converter 24V -12V 1 $13-003301$ Mains Filter (8 Amp) 1 $17-001109$ AGC Logarithmic Detector /Amplifier 1 $17-001117$ AGC Detector /Amplifier 1 $17-001201$ AGC Attenuator 2 $20-001601$ $12 V$ Relay Board 1 $20-001602$ $24 V$ Relay Board 1 $20-005401$ Fibre Optic Transmitter (2.7GHz) 1 $20-005501$ Fibre Optic Receiver (2.7GHz) 1 $80-008901$ $12 V$ Relay Assembly 1 $93-510077$ 0R02 50W Resistor Aluminium Clad 2 $94-100004$ $60 A$ Dual Diode 1 $96-300067$ PSU 600W (24V 23A) 2 $96-920026$ Circuit Breaker 10A 1

4.2.2. 60-212802 Photographs

Remote Uplink/Downlink Tray (60-212802) front view

A	RF output to 100W Linearised Amplifier 80-245101
B	Alarm input from amplifier pair "A" in $80-245101$
C	DC output to amplifier pair "A" in $80-245101$
D	Fuse on DC output to amplifier pair "A" in 80-245101
E	RF input from 100W Linearised Amplifier 80-245101
F	Alarm input from amplifier pair "B" in 80-245101
G	DC output to amplifier pair "B" in 80-245101
H	Fuse on DC output to amplifier pair " B " in 80-245101
I	Green LED "Power On"
J	Red LED "Alarm"
K	Power On LED, Alarm LED and Gain Adjust for Fibre Optic Receiver 20-005501
L	Power On LED and Alarm LED for Fibre Optic Transmitter 20-005401

A	Uplink Fibre Optic output to Master site
B	Uplink RF input from mobile antenna
C	Downlink Fibre Optic input from Master site
D	Downlink RF output to mobile antenna
E	Uplink switched attenuator 10-000701
F	Downlink switched attenuator 10-000801
G	Alarm Output
H	AC Trip switch
I	AC Input (110V)
J	DC Fuse
K	12V DC Auxiliary Output
L	Earth connection
M	AC power cord
N	DC, RF and Alarm interconnections for Amplifier 80-245101

4.2.4. $\quad \mathbf{6 0 - 2 1 2 8 0 2}$ Major Sub Components

4.2.4.1. Bandpass Filter (02-010901)

Bandpass Filter (02-010901) is a multi-section design with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1 dB . The filters are of helical \& combline design respectively, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The body and tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.
Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance.

02-010901 specification

SPECIFICATION	PARAMETER	
Passband Frequency	Uplink	505.4 to $505.8 \mathrm{MHz}^{* *}$
	Downlink	502.4 to $502.8 \mathrm{MHz}{ }^{* *}$
Bandwidth	Uplink	$400 \mathrm{kHz}^{* *}$
	Downlink	$400 \mathrm{kHz}{ }^{* *}$
Insertion Loss	1.2 dB (typical)	
Power Rating	50 W	
Impedance	50Ω	
VSWR	Better than $1.2: 1$	
Connectors	SMA	
Weight	3Kg (approximately)	

**as tuned for use in 60-212802 uplink and downlink paths

4.2.4.2. Bandpass Filter (02-011204)

Bandpass Filter 02-011204 is a multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1 dB . The filters are of combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The cases and tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning. No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously.

02-011204 Specification

Passband Frequency	502.4 to 502.8 MHz **
Bandwidth	$400 \mathrm{kHz}{ }^{* *}$
Insertion Loss	$<1.0 \mathrm{~dB}$
Power Rating	100 W
Impedance	50Ω
VSWR	$1.2: 1$ (typical)
Connectors	SMA
Weight	3Kg (approximately)
*as tuned for use in 60-212802 uplink path	

4.2.4.3. \quad Switched Attenuator 0-30dB 0.25W (10-000701)

$10-000701$ provides attenuation from $0-30 \mathrm{~dB}$ in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER	SPECIFICATION
Attenuation Values	$0-30 \mathrm{~dB}$
Attenuation Steps	$2,4,8$ and 16 dB
Power Handling	0.25 Watt
Attenuation Accuracy	$\pm 1.0 \mathrm{~dB}$
Frequency Rang	DC to 1 GHz
Impedance	50Ω
Connectors	SMA
VSWR	$1.3: 1$
Weigh	0.2 kg
Temperature range	operation
	storage
	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

4.2.4.4. \quad Switched Attenuator 0-30dB 1W (10-000801)

10-000801 provides attenuation from $0-30 \mathrm{~dB}$ in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000801 Specification

PARAMETER	SPECIFICATION
Attenuation Values	$0-30 \mathrm{~dB}$
Attenuation Steps	$2,4,8$ and 16 dB
Power Handling	1 Watt
Attenuation Accuracy	$\pm 1.0 \mathrm{~dB}$
Frequency Rang	DC to 1 GHz
Impedance	50Ω
Connectors	SMA
VSWR	$1.3: 1$
	Weigh
Temperature range	0.2 kg
	operation
	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

The 30 dB gain low noise amplifier used is a double stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The two active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced. The amplifier features a dedicated, in-built alarm monitoring system which gives a TTL 'open collector' type switched signal on alarm, this is then integrated using a built-in relay to give a volt-free contact for summation into the main alarm system.

11-007402 Specification

PARAMETER		SPECIFICATION
Frequency range		380-500MHz
	Bandwidth	<140MHz
	Gain	30-32dB
1dB Compression point		+22dBm (typical)
3rd order intercept		+34-35dBm (typical)
Input/Output return loss		$>20 \mathrm{~dB}$
	Noise figure	$<1.3 \mathrm{~dB}$
Connectors		SMA female
Supply		300-330mA @ 24V DC
Temperature range	operational	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

LNA 'D' Connector Pin-out details	
Connector pin	Signal
1	+ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/OV (good)
9	O/C good/OV bad

9-Way Pin-Out Graphical Representation

4.2.4.6. Low Power Amplifier (1W) (11-007901)

This amplifier is dedicated to be a 1.0 W driver from 380 MHz to 470 MHz . It is a 2 stage amplifier where each stage is in balanced configuration. It demonstrates very high linearity and good input/output VSWR. There is a Current Fault Alarm Function, which indicates failure of each one of the RF transistors by various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a 9way D-type connector for DC and alarm outputs.

11-007901 Specifications

PARAMETER	SPECIFICATION
Frequency range:	$380-470 \mathrm{MHz}$
Small signal gain:	37.5 dB
Gain flatness:	$\pm 0.5 \mathrm{~dB}$
Gain vs. temperature:	1.5 dB
Temperature range:	operational:
	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
storage:	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Input/output return loss:	18 dB
Maximum output power:	$30.4 \mathrm{dBm}(@$ 1dB comp. point)
OIP3:	43 dBm
Supply voltage:	$10-15 \mathrm{~V}$ DC
Current consumption:	780 mA (typical)
Noise Figure:	$<1.75 \mathrm{~dB}$

LNA ‘D' Connector Pin-out details	
Connector pin	Signal
1	+ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/OV (good)
9	O/C good/OV bad

The low power amplifier used is a 1 stage balanced configuration, solid-state amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

12-021801 Specification

PARAMETER	SPECIFICATION
Temperature	-20 to $+70^{\circ} \mathrm{C}$
Frequency Range	$380-500 \mathrm{MHz}$
Small Signal Gain	$15.5+/-0.5 \mathrm{~dB}$
Gain Flatness	0.7 dB p-p Max
Δ Gain vs. Temperature	0.7 dB Max
In RL	20 dB Min
Out RL	20 dB Min
Output Power @ 1dB Compression Point	30.5 dBm Min
Output 3 ${ }^{\text {rd }}$ Order IP	41.5 dBm Min
Noise Figure	6 dB Max
DC Supply Voltage	10-15 Vdc
DC Supply Current	540 mA Max
Temperature \quad operational:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
range: storage:	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight:	$<0.5 \mathrm{~kg}$
Size:	$110.5 \times 66 \mathrm{~mm} \times 24.6 \mathrm{~mm}$

Low Power Amplifier (12-021801) 9-Way Connector Pin-outs

Connector pin	Signal
1	+ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/OV (good)
9	O/C good/OV bad

The low power amplifier used is a 1 stage balanced configuration, solid-state amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.
Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.
There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

12-021802 Specification

PARAMETER	SPECIFICATION
Temperature	-20 to $+70^{\circ} \mathrm{C}$
Frequency Range	$380-500 \mathrm{MHz}$
Small Signal Gain	$15.5+/-0.5 \mathrm{~dB}$
Gain Flatness	0.7 dB p-p Max
Δ Gain vs. Temperature	0.7 dB Max
In RL	20 dB Min
Out RL	20 dB Min
Output Power @ 1dB Compression Point	33 dBm Min
Output $3^{\text {rd }}$ Order IP	46 dBm Min
Noise Figure	6 dB Max
DC Supply Voltage	10-15 Vdc
DC Supply Current	850 mA Max
Temperature operational	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
range storage	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Weight	$<0.5 \mathrm{~kg}$
Size	$110.5 \times 66 \mathrm{~mm} \times 24.6 \mathrm{~mm}$

Low Power Amplifier (12-021802) 9-Way Connector Pin-outs

Connector pin	Signal
1	+ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/OV (good)
9	O/C good/OV bad

The DC/DC converter fitted is an AFL assembled, high power PCB unit with an 8 amp at 12 V output capability. The circuit is basically an O.E.M semiconductor regulator (one side of which has a heatsink mounting plate, usually bolted to the casing of a Cell Enhancer) and smoothing components built onto a printed circuit board with screw block terminations.
In event of failure this unit should not be repaired, only replaced.

13-003011 Specification

PARAMETER		SPECIFICATION
Input Voltage range:		18-28V DC
Output voltage:		$12 \mathrm{~V} \pm 0.5 \mathrm{~V}$
Max. current load:		8.0Amps
Temperature range:	operation:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage:	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Size(PCB):	$190 \times 63 \mathrm{~mm}$
Weight (Loaded PCB):		291 gms

4.2.4.10. Mains Filter (8 Amp) (13-003301)

The 8A Mains Filter Assembly (13-003301) has been designed to remove mains-borne interference caused by external electrical radiation.
Many filters exist which partially satisfy the criteria needed for cell enhancer power supplies (the main criteria being high continuous current) but a more cost efficient solution was realized using AFL's own manufacturing capability.

13-003301 Specification

PARAMETER	SPECIFICATION
Maximum surge current:	$6.5 \mathrm{kA}(8 / 20)$
Maximum leakage current:	$<0.3 \mathrm{~mA}(@$ working voltage
Maximum continuous current:	8 A
Maximum continuous voltage:	253 V
Working voltage:	230 V (nominal)
Impulse energy absorption:	420 J
Ambient temperature limits:	$-25 \rightleftharpoons \mathrm{C}$ to $+85 \approx \mathrm{C}$
Humidity:	$5-95 \%$ RHNC
Case material:	ABS plastic (IP50 rated)
Maximum attenuation:	$70 \mathrm{~dB} \mathrm{(common} \mathrm{mode} 50-60 \mathrm{~Hz}$)

4.2.4.11. Downlink AGC Components

AGC Detector /Amplifier (17-001117)
AGC Attenuator (17-001201)
The Remote Site Uplink/Downlink Tray (60-212802) Downlink path is fitted with an Automatic Gain Control (AGC) system. The AGC system consists of two units, a detector/amplifier (part No. 17001117) and an attenuator (part No. 17-001201). The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF before 1st stage of amplification.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1 dB below the amplifier 1 dB compression point. Adjustment of this AGC threshold level is possible to reduce the maximum power; a 10 dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1 dB compression point as system degradation and signal distortion will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12 V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.
The AGC onset level is adjusted by the choice of sampler resistor R1 and by the setting of potentiometer VR1.

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30 dB . The attenuation is controlled by a DC voltage which is derived from the associated AGC detector unit.

Technical Specifications

PARAMETER		SPECIFICATION
	Frequency range	up to 1000 MHz
	Attenuation range	3 to 30 dB
	Attenuation steps	continuously variable
	VSWR	better than $1.2: 1$
Power	RF Connectors	SMA female
Attenuator	1 W	
Handling	Detector/amp	$>30 \mathrm{~W}$ (or as required)
Temperature	operation	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
range	storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Size	attenuator pcb	$50 \times 42 \times 21 \mathrm{~mm}$
	detector/amp pcb	$54 \times 42 \times 21 \mathrm{~mm}$
Weight	attenuator	90 gm
	detector/amp	100 gm

4.2.4.12. Uplink AGC Components

AGC Logarithmic Detector /Amplifier (17-001109)
AGC Attenuator (17-001201)
The Remote Site Uplink/Downlink Tray (60-212802) Uplink path is fitted with a wide dynamic range Automatic Gain Control (AGC) system. This is fitted in the Uplink path to avoid overloading the amplifiers (with the associated performance degradation) should a mobile be operated very close to the unit.

The AFL wide dynamic range Automatic Gain Control system consists of two units, a logarithmic detector/amplifier (17-001109) and an attenuator (17-001201). The logarithmic detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1 dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible; a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1 dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal. This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12 V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.
The AGC onset level is adjusted by the choice of sampler resistor R1 and by the setting of potentiometer VR1, (factory set at the time of system test) do not adjust unless able to monitor subsequent RF levels. The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30 dB . The attenuation is controlled by a DC voltage which is derived from the associated AGC detector unit.

Wide Dynamic Range AGC Specification

PARAMETER		SPECIFICATION
	Frequency Range	up to 1000MHz
	Attenuation Range	3 to 30 dB
	Attenuation Steps	continuously variable
	VSWR	better than $1.2: 1$
Power	RF Connectors	SMA female
attenuator	1 W	
Handling	detector/amp	$>30 \mathrm{~W}$ (or as required)
Temperature	operation	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Range	storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Size	attenuator pcb	$50 \times 42 \times 21 \mathrm{~mm}$
	detector/amp pcb	$54 \times 42 \times 21 \mathrm{~mm}$
Weight	attenuator	90 gm
	detector/amp	100 gm

4.2.4.13. 12V Relay Board (20-001601)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. Its common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001601 Specification

PARAMETER	SPECIFICATION
Operating voltage	8 to 30 V (floating earth)
Alarm threshold	Vcc -1.20 volt $+15 \%$
Alarm output relay contacts:	
Max. switch current	1.0 Amp
Max. switch volts	$120 \mathrm{Vdc} / 60 \mathrm{VA}$
Max. switch power	$24 \mathrm{~W} / 60 \mathrm{VA}$
Min. switch load	$10.0 \mu \mathrm{~A} / 10.0 \mathrm{mV}$
Relay isolation	1.5 kV
	Mechanical life
	$>2 \times 10^{7}$ operations
	Relay approval

4.2.4.14. $24 V$ Relay Board (20-001602)

The General Purpose 24 V Relay Board (20-001602) allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays RL1 and RL2, with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. Its common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001602 Specification

PARAMETER		SPECIFICATION
Operating voltage		8 to 30V (floating earth)
	rm Threshold	Vcc - 1.20 volt +15\%
Alarm output relay contacts:		
Max. switch current		1.0Amp
Max. switch volts		120Vdc/60VA
Max. switch power		24W/60VA
Min. switch load		$10.0 \mu \mathrm{~A} / 10.0 \mathrm{mV}$
Relay isolation		1.5 kV
Mechanical life		$>2 \times 107$ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature	operational	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
range	storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

The transmitter modulates the RF signal on to a laser, which is then transmitted over a fibre optic cable to a receiver. The laser current is monitored and compensated for constant optical out put power against temperature variation and aging. Laser over-current alarm function is provided as LED output as well as open collect and voltage-free relay contacts on 9 way D-type connector.

20-005401 specification

PARAMETER	SPECIFICATION
Frequency Range (RF path)	$70-3000 \mathrm{MHz}$
Frequency Range (Data path)	$20-35 \mathrm{MHz}$
Available Link Gain (RF Path)	18 dB
Link Gain (DATA Path)	0 dB
Gain Flatness (entire frequency range)	$\pm 1.5 \mathrm{~dB} \mathrm{p-p}$
Δ Gain vs. Temperature -20 to 70 $^{\circ} \mathrm{C}$	3.5 dB
Gain adjustment range (RF Path)	30 dB
In/Out Return Loss (RF path)	10 dB Min
Output IP3 @ max gain	37 dBm
In/Output IP3 @ 0dB Gain *	33 dBm
RF impedance	50 Ohm
Noise Figure @ OdB gain (400MHz)	36 dB
Optical Transmit Power	$2.7 \pm 0.3 \mathrm{dBm}$
Optical return loss	$>50 \mathrm{~dB}$
Received Power Alarm Threshold	$-10 \mathrm{dBm}($ optic)
Optical wavelength	1310 nm
DC Supply Voltage	$10-12 \mathrm{Vdc}$
DC Supply Current	120 mA
Operating Temperature	-20 to $70^{\circ} \mathrm{C}$
Storage Temperature	-30 to $855^{\circ} \mathrm{C}$
RF Connector type	SMA
Sibre optic connector type	FC/APC

Fibre Optic Transmitter (20-005401) 'D' Type Female Connector Pinouts

Pin No.	Signal Description
1	$+10-12 \mathrm{~V}$ DC Power
2	0V DC, Power Ground
3	OV DC, Power Ground
4	No Connection
5	No Connection
6	TTL Alarm, (OV=good, open coll.= fail)
7	Relay Alarm Contact (N.C)
8	Relay Alarm Contact (Common)
9	Relay Alarm Contact (N.O)

The receiver demodulates RF signals from the laser with a typical gain of 18 dB and with 30 dB adjustability in the RF domain. The received optical power is monitored for alarm function in case of fibre damage.

20-005501 Specification

PARAMETER	SPECIFICATION
Frequency Range (RF path)	$70-3000 \mathrm{MHz}$
Frequency Range (Data path)	$20-35 \mathrm{MHz}$
Available Link Gain (RF Path)	18 dB
Link Gain (DATA Path)	0 dB
Gain Flatness (entire frequency range)	$\pm 1.5 \mathrm{~dB}$ p-p
$\Delta{\text { Gain vs. Temperature -20 to } 70^{\circ} \mathrm{C}}^{2} 3.5 \mathrm{~dB}$	
Gain adjustment range (RF Path)	30 dB
In/Out Return Loss (RF path)	10 dB Min
Output IP3 @ max Gain	37 dBm
In/Output IP3 @ 0dB Gain	33 dBm
RF impedance	50 Ohm
Noise Figure @ 0dB gain (400MHz)	36 dB
Optical Transmit Power	$2.7 \pm 0.3 \mathrm{dBm}$
Optical return loss	$>50 \mathrm{~dB}$
Received Power Alarm Threshold	$-10 \mathrm{dBm}($ optic)
Optical wavelength	1310 nm
DC Supply Voltage	$10-12 \mathrm{Vdc}$
DC Supply Current	350 mA
Operating Temperature	-20 to $70^{\circ} \mathrm{C}$
Storage Temperature	-30 to $855^{\circ} \mathrm{C}$
RF Connector type	SMA
Fibre optic connector type	FC/APC

Fibre Optic Receiver (20-005501) 'D' Type Female Connector Pinouts

Pin No.	Signal Description
1	$+10-12 \mathrm{~V}$ DC Power
2	OV DC, Power Ground
3	OV DC, Power Ground
4	No Connection
5	No Connection
6	TTL Alarm, (OV=good, open coll.= fail)
7	Relay Alarm Contact (N.C)
8	Relay Alarm Contact (Common)
9	Relay Alarm Contact (N.O)

4.2.4.17. 12 V Relay Assembly (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. Its common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008901 Specification

PARAMETER		SPECIFICATION
Operating voltage		8 to 30V (floating earth)
Alarm threshold		Vcc - 1.20 volt $+15 \%$
Alarm output relay contacts		
Max. switch current		1.0Amp
Max. switch volts		$120 \mathrm{Vdc} / 60 \mathrm{VA}$
Max. switch power		24W/60VA
Min. switch load		$10.0 \mu \mathrm{~A} / 10.0 \mathrm{mV}$
Relay isolation		1.5 kV
Mechanical life		>2×10 ${ }^{7}$ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature range	operational	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

4.2.4.18. 60A Dual Diode (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

4.2.4.19. PSU 600W (24V 23A) (96-300067)

The power supply unit is a switched-mode type capable of supplying 24 V DC at 23.0 Amps continuously. Equipment of this type typically requires approximately 10.0 Amps at 24 V DC, so the PSU will be used conservatively ensuring a long operational lifetime.
No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 24.5 V using the multi-turn potentiometer mounted close to the DC output studs on the PSU PCB. All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220 V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300067 Specification

AC Input Supply	
Voltages:	110 or 220 V nominal
	90 to 132 or 180 to 264 V (absolute limits)
Frequency:	
47 to 63 Hz	
VC Output Supply:	
Voltage:	24 V DC (nominal)
	20 to 28 V (absolute limits)
Maximum current:	23 A

Description

The equipment is fitted with an Automatic Gain Control (AGC) system. This is generally fitted in the Uplink path (not usually needed in the downlink path, as the signal here is at an almost constant level), to avoid overloading the amplifiers (with the associated performance degradation) should a mobile be operated very close to the unit.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1 dB below the Enhancer 1 dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1 dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

The unit contains a 12 V DC regulator in the detector module, which supplies stabilised voltage to the DC amplifier and via an external cableform to the AGC attenuator.

For small signals, below AGC onset, the output control line will be close to 12 V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.
The AGC onset level is adjusted by the choice of sampler resistor R1 and by the setting of potentiometer VR1.
The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30 dB . The attenuation is controlled by a DC voltage which is derived from the associated AGC detector unit.

Technical Specification

PARAMETER		SPECIFICATION
	Frequency range:	up to 1000 MHz
	Attenuation range:	3 to 30 dB
	Attenuation steps:	continuously variable
	VSWR:	better than $1.2: 1$
	RF Connectors:	SMA female
Power handling:	attenuator:	1 W
	detector/amp:	$>30 \mathrm{~W}$ (or as required)
Temperature range:	operation:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage:	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Size:	attenuator pcb	$50 \times 42 \times 21 \mathrm{~mm}$
	detector/amp pcb	$54 \times 42 \times 21 \mathrm{~mm}$
	attenuator:	90 grams
	detector/amp:	100 grams

Drg. Nō. 17-001101, ACG Detector Assembly

Drg. Nō. 17-001171, AGC Detector Circuit Diagram

Drg. Nō 1 17-001171C, AGC Detector Parts List

Drg. Nō. 17-001201, AGC Attenuator Assembly Drawing

Drg. Nō. 17-001270, AGC Attenuator Circuit Diagram

Drg. Nō. 17-001270C, AGC Attenuator Parts List

Description
The equipment is fitted with a wide dynamic range Automatic Gain Control (AGC) system. This is generally fitted in the Uplink path (not usually needed in the downlink path, as the signal here is at an almost constant level), to avoid overloading the amplifiers (with the associated performance degradation) should a mobile be operated very close to the unit.

The AFL wide dynamic range Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2 nd stages of amplification.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1 dB below the Enhancer 1 dB compression point. Some adjustment of this AGC threshold level is possible, a 10 dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1 dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

The unit contains a 12 V DC regulator in the detector module, which supplies stabilised voltage to the DC amplifier and via an external cableform to the AGC attenuator.

For small signals, below AGC onset, the output control line will be close to 12 V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value. The AGC onset level is adjusted by the choice of sampler resistor R1 and by the setting of potentiometer VR1, (factory set @ time of system test) do not adjust unless able to monitor subsequent RF levels.
The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30 dB . The attenuation is controlled by a DC voltage which is derived from the associated AGC detector unit.

Technical Specification

PARAMETER		SPECIFICATION
Frequency range:		up to 1000 MHz
	Attenuation range:	3 to 30 dB
	Attenuation steps:	continuously variable
	VSWR:	better than 1.2:1
	RF Connectors:	SMA female
Power handling:	attenuator:	1 W
	detector/amp:	$>30 \mathrm{~W}$ (or as required)
Temperature range:	operation:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage:	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Size:	attenuator (pcb)	$50 \times 42 \times 21 \mathrm{~mm}$
	Detector (pcb)	$54 \times 42 \times 21 \mathrm{~mm}$
Weight:	attenuator:	90 grams
	detector/amp:	100 grams

Drg. Nō. 17-001175, Wide Range AGC Detector Circuit Diagram

Drg. Nō. 17-001201,AGC Attenuator Assembly Drawing

Description

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays RL1 and RL2, with completely isolated wiring, accessed via screw terminals.

Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

Note that the board is available for different voltages (12 or 24 V) depending on the type of relays fitted at RL1 and RL2.

Technical Specification

PARAMETER	SPECIFICATION
Operating voltage:	8 to 30 V (floating earth)
Alarm Threshold:	Vcc -1.20 volt $\pm 15 \%$
Alarm output relay contacts:	
Max. switch current:	1.0 Amp
Max. switch volts:	$120 \mathrm{Vdc} / 60 \mathrm{VA}$
Max. switch power:	$24 \mathrm{~W} / 60 \mathrm{VA}$
Min. switch load:	$10.0 \mu \mathrm{~A} / 10.0 \mathrm{mV}$
Relay isolation:	1.5 kV
Mechanical life:	$>2 \times 10^{7}$ operations
Relay approval:	BT type 56
Connector details:	Screw terminals
Coperational:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Temperature range	storage:
	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Drg. Nō. 20-001602, 24V Relay Board Assembly Drawing

Drg. Nō. 20-001671, Relay Board Circuit Diagram

Description

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays RL1 and RL2, with completely isolated wiring, accessed via screw terminals.

Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

Note that the board is available for different voltages (12 or 24 V) depending on the type of relays fitted at RL1 and RL2.

Technical Specification

PARAMETER	SPECIFICATION
Operating voltage:	8 to 30 V (floating earth)
Alarm threshold:	Vcc -1.20 volt $+15 \%$
Alarm output relay contacts:	
Max. switch current:	1.0 Amp
Max. switch volts:	$120 \mathrm{Vdc} / 60 \mathrm{VA}$
Max. switch power:	$24 \mathrm{~W} / 60 \mathrm{VA}$
Min. switch load:	$10.0 \mu \mathrm{~A} / 10.0 \mathrm{mV}$
Relay isolation:	1.5 kV
Mechanical life:	$>2 \times 10^{7}$ operations
Relay approval:	BT type 56
Connector details:	Screw terminals
Temperature range	operational:
storage:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Drg. Nō. 20-001601, 12 V Relay Board Assembly Drawing

Drg. Nō. 20-001671, Relay Board Circuit Diagram

The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. However, in this case only the attenuator is employed as part of the simplex control system.

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30 dB . The attenuation is controlled by a DC voltage which is derived in this instance from the associated Simplex controller board.

Drg. Nō. 17-002201, AGC Attenuator Assembly Drawing

This amplifier is dedicated to be a 1.0 W driver from 380 MHz to 470 MHz . It is a 2 stage amplifier where each stage is in balanced configuration. It demonstrates very high linearity and good input/output VSWR. There is a Current Fault Alarm Function, which indicates failure of each one of the RF transistors by various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a 9way D-type connector for DC and alarm outputs.

11-007901 Specifications

PARAMETER		SPECIFICATION
Frequency range:		$380-470 \mathrm{MHz}$
Small signal gain:		37.5 dB
Gain flatness:		$\pm 0.5 \mathrm{~dB}$
Gain vs. temperature:		1.5 dB
Temperature range:	operational:	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage:	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Input/output return loss:		18dB
Maximum output power:		30.4dBm (@ 1dB comp. point)
OIP3:		43 dBm
Supply voltage:		10-15V DC
Current consumption:		780mA (typical)
Noise Figure:		<1.75dB

11-007901 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/OV (good)
9	O/C good/OV bad

Drg. Nō. 11-007901, 1W LPA Assembly Drawing

Drg. Nō. 11-007970, 1W LPA Circuit Diagram

Description

The low noise amplifier used is a double stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The two active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

Technical Specification, 11-007402

PARAMETER		SPECIFICATION
Frequency range:		$380-500 \mathrm{MHz}$
Bandwidth:		$<140 \mathrm{MHz}$
Gain:		30dB
1 dB Compression point:		+22dB (typical)
3rd order intercept:		+34.8dB (typical)
Input/Output return loss:		$>19 \mathrm{~dB}$
Noise figure:		$<1.3 \mathrm{~dB}$
Connectors:		SMA female
Supply:		300-330mA @ 10-24V DC
Temperature range	operational:	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
	storage:	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight:		$<300 \mathrm{gm}$
Size:		$90 \times 55 \times 30.2$ (case only)

LNA 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

Drg. Nō. 11-007371, LNA DC Wiring Diagram

Ш

$10-000701$ provides attenuation from $0-30 \mathrm{~dB}$ in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER	SPECIFICATION
Attenuation Values	$0-30 \mathrm{~dB}$
Attenuation Steps	$2,4,8$ and 16 dB
Power Handling	0.25 Watt
Attenuation Accuracy	$\pm 1.0 \mathrm{~dB}$
Frequency Rang	DC to 1 GHz
Impedance	50Ω
Connectors	SMA
VSWR	$1.3: 1$
Weigh	0.2 kg
Temperature range	operation
	storage
	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

General Application

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

Switched Attenuators
The AFL switched attenuators are available in two different types; $0-30 \mathrm{~dB}$ in 2 dB steps (as in this case), or $0-15 \mathrm{~dB}$ in 1 dB steps. The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000703 extended lid
$10-000701$ provides attenuation from $0-30 \mathrm{~dB}$ in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

Attenuation Values:	$0-30 \mathrm{~dB}$ part number $10-000701 \& 10-000703$
Attenuation Steps:	$2,4,8$ and 16 dB
Power Handling:	0.25 Watt
Attenuation Accuracy:	$\pm 1.0 \mathrm{~dB}$
Frequency Range	DC to 1 GHz
Connectors:	SMA
VSWR:	$1.3: 1$
Weight	0.2 kg

Drg. Nō. 10-000770, 0-30dB Attenuator Circuit Diagram

