

TEST REPORT NO: RU1244/7036

COPY NO: 2

ISSUE NO: 1

FCC ID:

NE0-1665Series

REPORT ON THE CERTIFICATION TESTING OF A AERIAL FACILITIES LIMITED 60-166501 CELL ENHANCER WITH RESPECT TO THE FCC RULES CFR 47, PART 90 Subpart I PRIVATE LAND MOBILE REPEATER.

TEST DATE: 23rd - 26th May 2006

TESTED BY:			J CHARTERS
APPROVED I	BY:		P GREEN PRODUCT MANAGER EMC
DATE:		9 th October 2006	
Distribution:			
Copy Nos:	1.	Aerial Facilities Limited	
	2.	TCB: TRL Compliance Limited	

3. TRL Compliance Ltd

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

TRL COMPLIANCE LTDLONG GREENFORTHAMPTONGLOUCESTERGL19 4QHUNITED KINGDOMTELEPHONE+44(0)1684833818FAX+44(0)1684833858E-MAILtest@trlcompliance.comwww.trlcompliance.com

CONTENTS

	PAGE
CERTIFICATE OF CONFORMITY & COMPLIANCE	3
APPLICANT'S SUMMARY	4
EQUIPMENT TEST CONDITIONS	5
TESTS REQUIRED	5
TEST RESULTS	6-40

	ANNEX	
PHOTOGRAPHS	А	
PHOTOGRAPH No. 1: Test setup		
PHOTOGRAPH No. 2: Test setup		
APPLICANT'S SUBMISSION OF DOCUMENTATION LIST	В	
EQUIPMENT CALIBRATION	С	
MEASUREMENT UNCERTAINTY	D	
SYSTEM DIAGRAM	E	
Notes: 1. Component failure during test	YES [] NO [X]	
2. If Yes, details of failure:		

3. The facilities used for the testing of the product contain in this report are FCC Listed.

CERTIFICATE OF CONFORMITY & COMPLIANCE

FCC IDENTITY:	NE0-1665Series	
PURPOSE OF TEST:	Certification	
TEST SPECIFICATION:	FCC RULES CFR 47, Part 90 Subpart I	
TEST RESULT:	Compliant to Specification	
EQUIPMENT UNDER TEST:	60-166501 Cell Enhancer	
EQUIPMENT TYPE:	Private Land Mobile Repeater	
MAXIMIUM GAIN:	Uplink = 40.53 dB Downlink = 47.44 dB	
MAXIMUM INPUT:	Uplink = -29.45 dBm Downlink = -14.48 dBm	
MAXIMUM OUTPUT:	Uplink = 11.08 dBm Downlink = 32.96 dBm	
ANTENNA TYPE:	Not applicable	
CHANNEL SPACING:	Not Applicable	
FREQUENCY GENERATION:	N/A	
MODULATION TYPE:	F3E	
POWER SOURCE(s):	+110 Vac	
TEST DATE(s):	23 rd – 26 th May 2006	
ORDER No(s):	36615	
APPLICANT:	Aerial Facilities Limited	
ADDRESS:	Aerial House Asheridge Road Chesham Buckinghamshire HP5 1TU United Kingdom	
TESTED BY:		J CHARTERS
APPROVED BY:		P GREEN PRODUCT MANAGER EMC

APPLICANT'S SUMMARY

EQUIPMENT UNDER TEST (EUT):	60-166501 Cell Enhancer			
EQUIPMENT TYPE:	Private Land Mobile Repeater			
PURPOSE OF TEST:	Certification			
TEST SPECIFICATION(s):	FCC RULES CFR 47, Part 90 Subpart I			
TEST RESULT:	COMPLIANT Yes [X] No []			
APPLICANT'S CATEGORY:	MANUFACTURER[X]IMPORTER[DISTRIBUTOR[TEST HOUSE[AGENT[
APPLICANT'S ORDER No(s):	36615			
APPLICANT'S CONTACT PERSON(s):	Mr Peter Bradfield			
E-mail address:	Peterb@aerial.co.uk			
APPLICANT:	Aerial Facilities Limited			
ADDRESS:	Aerial House Asheridge Road Chesham Buckinghamshire HP5 1TU United Kingdom			
TEL:	+44 (0)1494 777000			
FAX:	+44 (0)1494 778456			
MANUFACTURER:	Aerial Facilities Limited			
EUT(s) COUNTRY OF ORIGIN:	United Kingdom			
TEST LABORATORY:	TRL Compliance			
UKAS ACCREDITATION No:	0728			
TEST DATE(s)	23 rd – 26 th May 2006			
TEST REPORT No:	RU1244/7036			

EQUIPMENT TEST / EXAMINATIONS REQUIRED

- 1	
- 1	

TEST/EXAMINATION	RULE PART	APPLICABILITY	RESULT
RF Power Output	90.205	Yes	Complies
Audio Frequency Response	TIA EIA-603.3.2.6	N/A	N/A
Audio Low-Pass Filter Response	TIA EIA-603.3.2.6	N/A	N/A
Modulation Limiting	TIA EIA-603.3.2.6	N/A	N/A
Occupied Bandwidth	90.210	Yes	Complies
Spurious Emissions at Antenna Terminals	90.210	Yes	Complies
Field Strength of Spurious Emissions	90.210	Yes	Complies
Frequency Stability	90.213	N/A(note 1)	N/A
Transient behaviour	90.214	N/A(note 2)	N/A

Notes:

1 The EUT does not contain modulation circuitry, therefore the test was not performed.

2 The EUT is not a keyed carrier system, therefore the test was not performed.

2.	Product class:	Uplink Downlink	Class A [] Class B [X] Class A [] Class B [X]	
3.	Product Use:	Private Land M	obile Repeater	
4.	Emission Designator:	F3E		
5. 6.	Temperatures:	Ambient (Tnom Vnom) 21°C +110 Vac	
0.	Supply Voltages: Note: Vnom voltages are as stated abov			
7.	Equipment Category:	Single channel Two channel Multi-channel	[] [] [X]	
8.	Channel spacing:	Narrowband Wideband	[] [X]	
9.	Test Location:	TRL Compliance Limited Up Holland Long Green	[X] []	

10. Modifications made during test program:

No modifications were performed.

System description:

The 60-166501 is a bidirectional amplifier. The Downlink is wideband and operates over the frequency range 494.3MHz to 495.3MHz. The RF from the 60-166501 is fed via a fibre optic link using FCCIDs NEO20-0040Series and NEO20-0041Series from the 60-166101 unit, FCCID NEO60-1661Series. The downlink output consists of 4 track feeds and a station feed. The track feeds are identical and split inside the 60-166501 using a passive splitter. The station feed is coupled off before the splitter and can be 3dB less than the track feed levels. Each of these outputs is fed into a FCCID NEO60-1667Series unit. The uplink is wideband and operates over the frequency range 497.3MHz to 498.3MHz. The uplink inputs to the 60-166501 are fed from a FCCID NEO60-1667Series unit there are 5 inputs 4 track feeds and 1 station feed the track feeds are combined using a passive combiner and the station feed is coupled onto the combined signal. The uplink output is fed via a fibre optic link using FCCIDs NEO20-0040Series and NEO20-0041Series to the 60-166101 unit, FCCID NEO60-1661Series, where the RF is channelised.

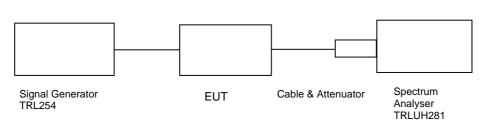
RF335 iss02

COMPLIANCE TESTS

AMPLIFIER GAIN - CONDUCTED - PART 2.1046 - UPLINK

=

=


Ambient temperature	
Relative humidity	
Supply voltage	
Channel number	

24°C = 35% =

+110 Vac

See test results

Radio Laboratory

Track Feed 2

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
497.3 MHz	-29.15	10.13	-0.44	38.84	9.69	28.85
497.8 MHz	-29.85	10.13	-0.41	39.57	9.72	30.94
498.3 MHz	-29.45	10.13	-0.40	39.18	9.73	30.54

Notes:

The level of the signal generator takes into consideration the loss from the cable. 1.

The signal generator input was increased by 10dBs and the level of the output signal remeasured. 2.

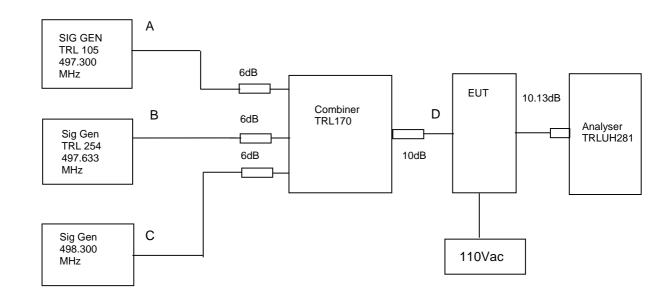
3. As all track feed inputs are identical track feed 2 was chosen at random.

Station Feed

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
497.3 MHz	-24.95	10.13	-0.42	34.66	9.71	24.68
497.8 MHz	-25.65	10.13	-0.40	35.38	9.73	25.40
498.3 MHz	-25.35	10.13	-0.40	35.08	9.73	25.00

Notes:

1.


The level of the signal generator takes into consideration the loss from the cable. The signal generator input was increased by 10dBs and the level of the output signal remeasured. 2.

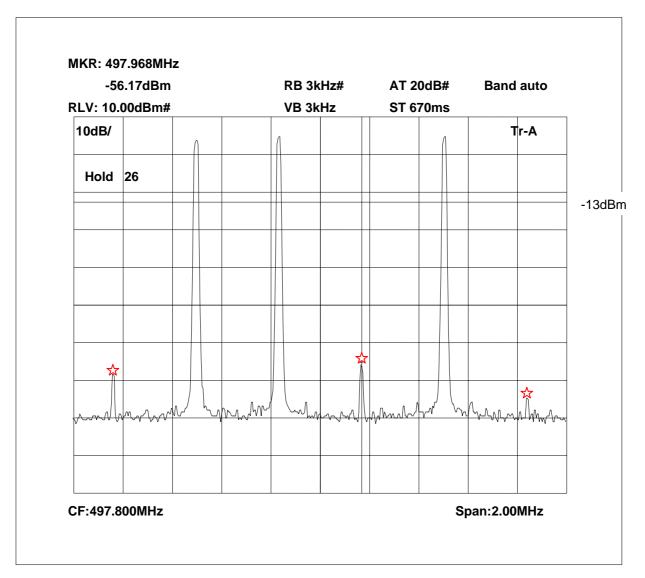
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU	200034	UH281	x
ATTENUATOR	BIRD	8304-100-N	N/A	222	x
SIGNAL GENERATOR	MARCONI	2042	119562/021	254	x

AMPLIFIER INTERMODULATION SPURIOUS EMISSIONS - CONDUCTED - PART 2.1053- UPLINK

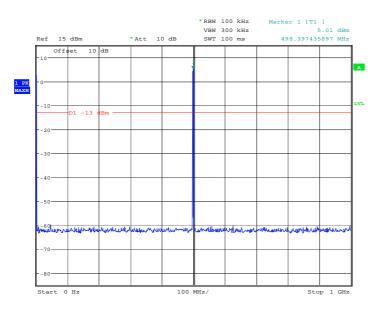
Ambient temperature Relative humidity Supply voltage

= 24°C = 36% = +110 Vac Radio Laboratory

The intermodulation and spurious products were measured with the amplifier operating at maximum gain. A three tone test was conducted using the equipment as above. The input power level was adjusted so the level at point D was 10dB above the maximum input of -29.15dBm. The cable and attenuator loss between the EUT and the spectrum analyser was 10.13dB.


RF	Input Frequen (MHz)	су	Highest Intermodulation Product Frequency & Level	Limit (dBm)
497.300	497.633	498.300	497.968 MHz @ -76.17 dBm	-13

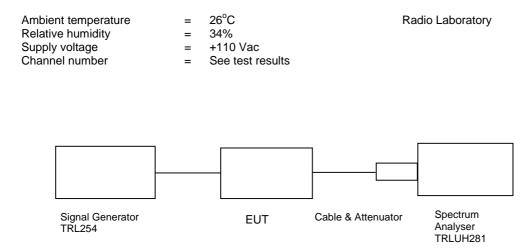
Sweep data is shown on the next page:


Test equipment used for intermodulation test

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
SIGNAL GENERATOR	ROHDE & SCHWARZ	SML20	102268	UH297	x
СМТА	ROHDE & SCHWARZ	CMTA52	894715/033	05	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	x
COMBINER	ELCOM	RC-4-50	N/A	170	x

Intermodulation Inband

The above plot shows that all products (designated by \bigstar) are below the spurious limit.

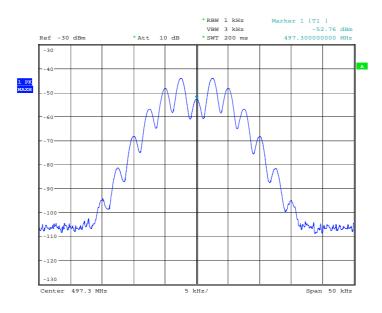

Intermodulation Wideband

Date: 23.MAY.2006 15:02:46

The above plot shows that there are no products outside the bands.

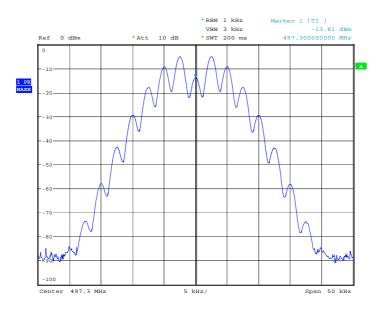
TRANSMITTER TESTS

AMPLIFIER MODULATED CHANNEL TEST - CONDUCTED - Part 2.1049- UPLINK

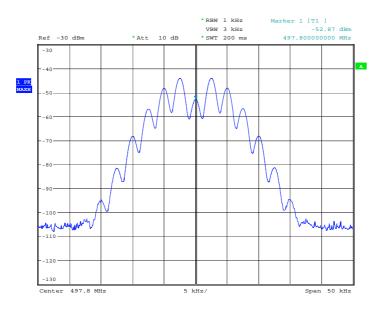

This test was performed to show that the amplifier does not alter the input signal in any way. The input signal was set to the maximum input level (-29.00dBm) and modulated with a 2500Hz tone. The plots show the signal measured at the signal generator and the signal measured at the output of the EUT.

Note: The cables and attenuators had the following losses.

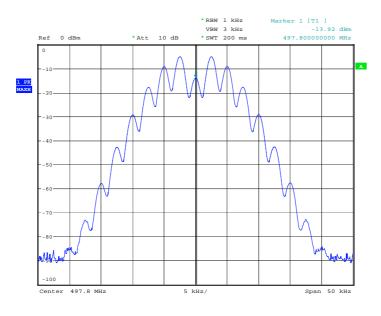
- 1. Cable and attenuator between EUT and Spectrum Analyser 10.13dB.
- 2. Cable between signal generator and EUT 0.15dB.


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU	200034	UH281	x
ATTENUATOR	BIRD	8304-100-N	N/A	222	x
SIGNAL GENERATOR	MARCONI	2042	119562/021	254	x

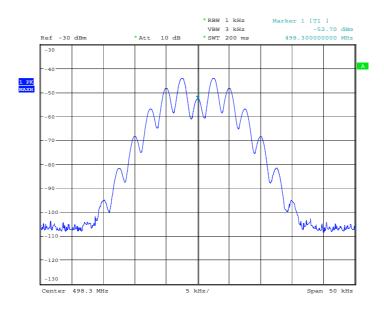
497.3 MHz Signal Generator, deviation set to 5kHz


Date: 23.MAY.2006 14:08:51

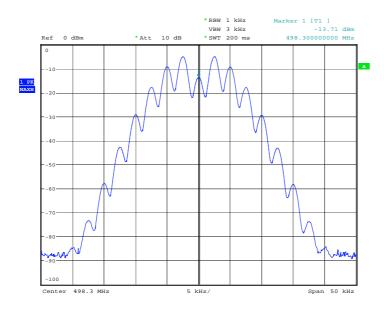
497.3 MHz Signal Generator and EUT, deviation set to 5kHz


Date: 23.MAY.2006 13:58:54

497.8 MHz Signal Generator, deviation set to 5kHz

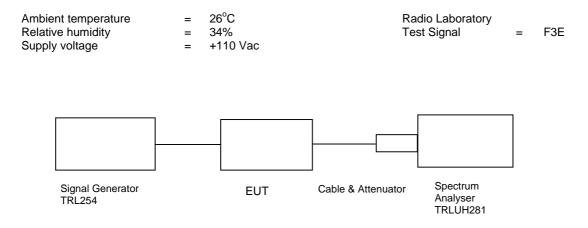

Date: 23.MAY.2006 14:09:23

497.8 MHz Signal Generator and EUT, deviation set to 5kHz


Date: 23.MAY.2006 13:58:10

498.3 MHz Signal Generator, deviation set to 5kHz

Date: 23.MAY.2006 14:09:49


498.3 MHz Signal Generator and EUT, deviation set to 5kHz

Date: 23.MAY.2006 13:56:51

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - CONDUCTED - Part 2.1053 - UPLINK

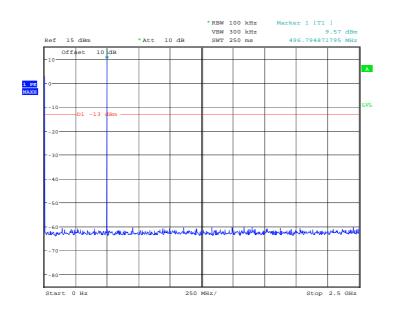
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating at maximum power and on three test frequencies.

The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

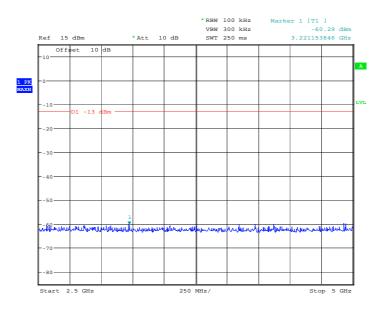
At least 43 + 10 log PdB

(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT =-13 dBm

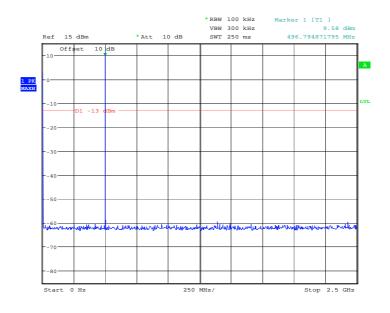

RESULTS

FREQUENCY RANGE	FREQ. (MHz)	MEASURED LEVEL (dBm)	ATTENUATOR & CABLE LOSSES (dB)	EMISSION LEVEL (dBm)	LIMIT (dBm)
0 Hz – 5 GHz	ſ	No Significant Emissic	ons Within 20 dB of the	limit	-13

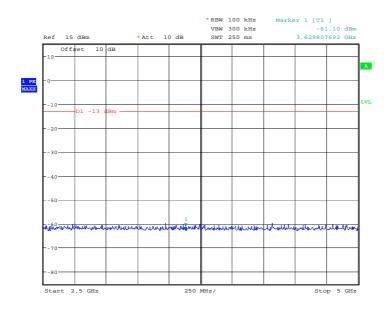
The test equipment used for the Transmitter Conducted Emissions:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU	200034	UH281	x
ATTENUATOR	BIRD	8304-100-N	N/A	222	x
SIGNAL GENERATOR	MARCONI	2042	119562/021	254	х

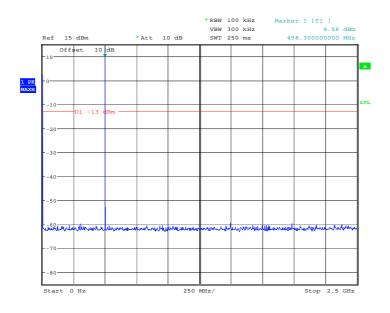
Conducted emissions 497.3 MHz 0 - 2.5GHz


Date: 23.MAY.2006 14:28:51

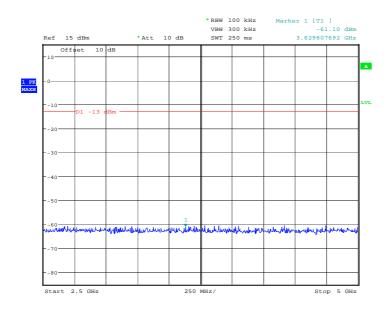
Conducted emissions 497.3 MHz 2.5 - 5GHz


Date: 23.MAY.2006 14:29:13

Conducted emissions 497.8 MHz 0 – 2.5GHz

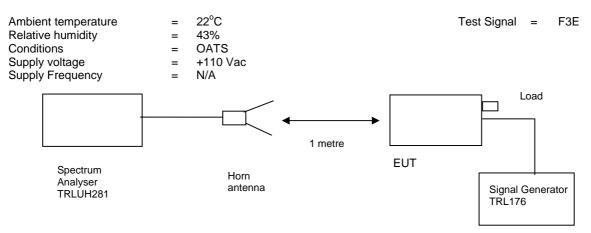

Date: 23.MAY.2006 14:28:04

Conducted emissions 497.8 MHz 2.5 - 5GHz


Date: 23.MAY.2006 14:27:19

Conducted emissions 498.3 MHz 0 - 2.5GHz

Date: 23.MAY.2006 14:26:18


Conducted emissions 498.3 MHz 2.5 - 5GHz

Date: 23.MAY.2006 14:26:38

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - RADIATED - Part 2.1053- UPLINK

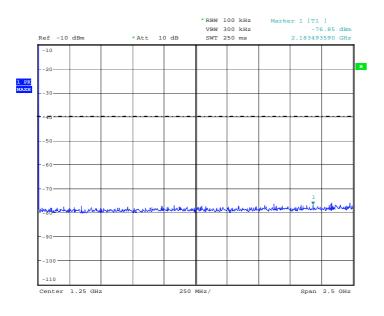
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating maximum power on three test frequencies with a 50 ohm load on the output. The unit was also tested with the signal generator replaced by another 50 ohm load.

The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

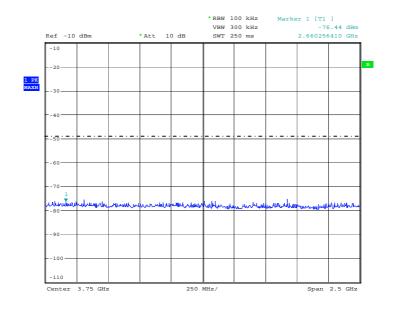
At least 43 + 10 log PdB

(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT =-13 dBm

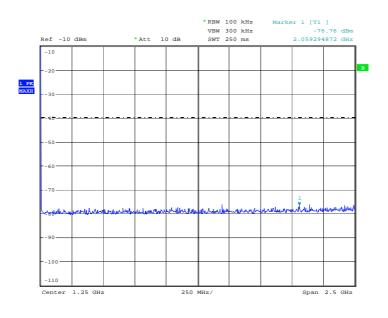

RESULTS

FREQUENCY RANGE	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	ANT FACTOR	FIELD STRENGTH (dBµV/m)	CALCULATED EIRP (dBm)	LIMIT (dBm)
0 Hz – 5 GHz	I	No Significa	ant Emissio	ons Within 2	20 dB of the	limit	-13

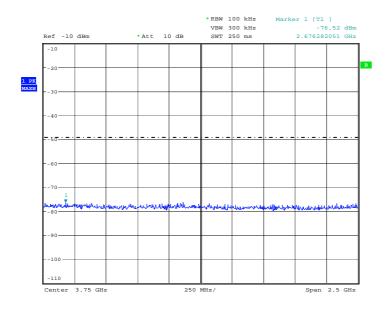
The test equipment used for the Transmitter Spurious Emissions:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU	200034	UH281	x
HORN	EMCO	3115	9010-3581	139	х
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

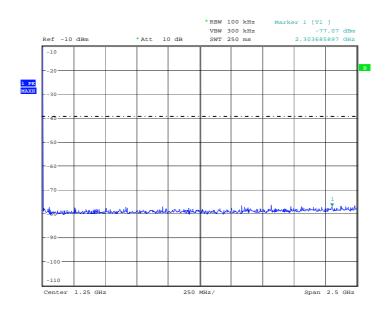
Radiated emissions 497.3 MHz 0 - 2.5GHz


Date: 30.MAY.2006 14:05:32

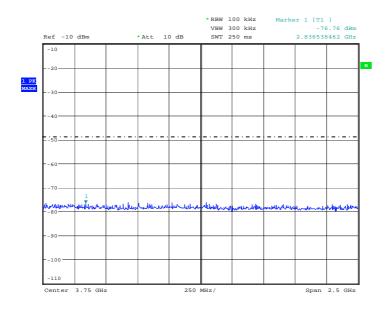
Radiated emissions 497.3 MHz 2.5 - 5GHz


Date: 30.MAY.2006 14:06:22

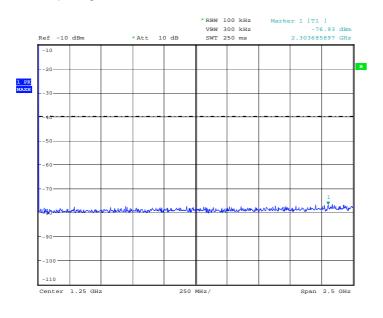
Radiated emissions 497.8 MHz 0 - 2.5GHz


Date: 30.MAY.2006 14:08:53

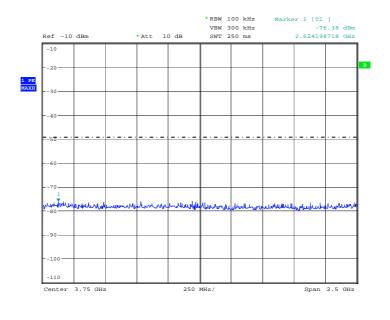
Radiated emissions 497.8 MHz 2.5 - 5GHz


Date: 30.MAY.2006 14:09:30

Radiated emissions 498.3 MHz 0 - 2.5GHz


Date: 30.MAY.2006 14:13:18

Radiated emissions 498.3 MHz 2.5 - 5GHz


Date: 30.MAY.2006 14:14:11

Radiated emissions no input signal 0 - 2.5GHz

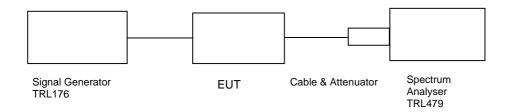
Date: 30.MAY.2006 14:23:49

Radiated emissions no input signal 2.5 - 5GHz

Date: 30.MAY.2006 14:24:24

AMPLIFIER GAIN - CONDUCTED - PART 2.1046 - DOWNLINK

=


=

Ambient temperature Relative humidity Supply voltage Channel number = 18°C = 58%

+110 Vac

See test results

Radio Laboratory

Track Feed 1

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
494.3 MHz	-14.48	40.28	-7.58	47.18	32.70	36.95
494.8 MHz	-14.48	40.28	-7.43	47.33	32.85	37.17
495.3 MHz	-14.28	40.28	-8.66	45.90	31.62	35.78

Notes:

- 1. The level of the signal generator takes into consideration the loss from the cable.
- 2. The signal generator input was increased by 10dBs and the level of the output signal remeasured

Track Feed 2

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
494.3 MHz	-14.48	40.28	-7.44	47.32	32.84	37.07
494.8 MHz	-14.48	40.28	-7.35	47.41	32.93	37.15
495.3 MHz	-14.28	40.28	-8.70	45.86	31.58	35.90

Notes:

- 1. The level of the signal generator takes into consideration the loss from the cable.
- 2. The signal generator input was increased by 10dBs and the level of the output signal remeasured

Track Feed 3

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
494.3 MHz	-14.48	40.28	-7.48	47.28	32.80	37.01
494.8 MHz	-14.48	40.28	-7.33	47.43	32.95	37.17
495.3 MHz	-14.28	40.28	-8.56	46.00	31.72	36.02

Notes:

- 1. The level of the signal generator takes into consideration the loss from the cable.
- 2. The signal generator input was increased by 10dBs and the level of the output signal remeasured

Track Feed 4

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
494.3 MHz	-14.48	40.28	-7.44	47.32	32.84	37.04
494.8 MHz	-14.48	40.28	-7.32	47.44	32.96	37.18
495.3 MHz	-14.28	40.28	-7.81	46.75	32.47	35.87

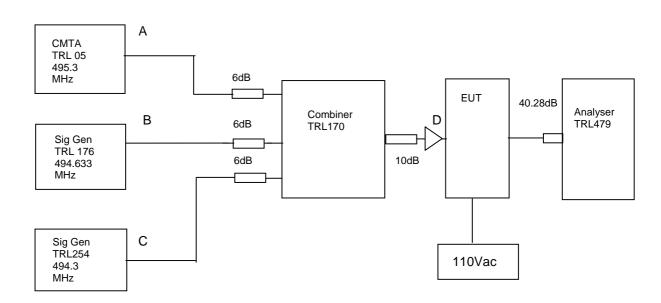
Notes:

- 1. The level of the signal generator takes into consideration the loss from the cable.
- 2. The signal generator input was increased by 10dBs and the level of the output signal remeasured

Station Feed

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
494.3 MHz	-14.48	40.28	-11.73	43.03	28.55	32.76
494.8 MHz	-14.48	40.28	-11.59	43.17	28.69	32.93
495.3 MHz	-14.28	40.28	-13.29	41.27	26.99	31.47

Notes:


1. The level of the signal generator takes into consideration the loss from the cable.

2. The signal generator input was increased by 10dBs and the level of the output signal remeasured

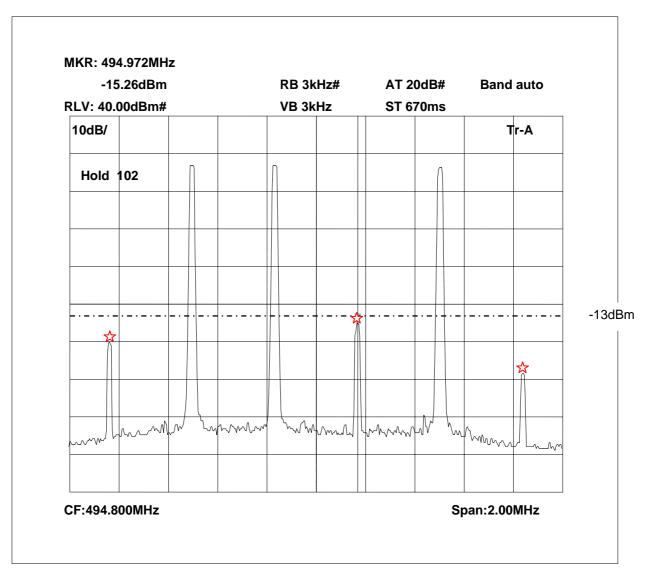
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
ATTENUATOR	BIRD	8304-200	N/A	103	x
ATTENUATOR	BIRD	8304-300-N	N/A	220	х
CABLE	ROSENBERGER	MICRO COAX	N/A	280	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

AMPLIFIER INTERMODULATION SPURIOUS EMISSIONS - CONDUCTED - PART 2.1053- DOWNLINK

Ambient temperature Relative humidity Supply voltage = 24°C = 36% = +110 Vac Radio Laboratory

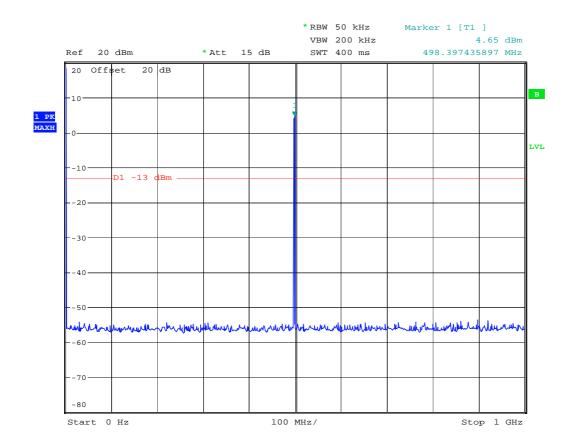
The Intermodulation and spurious products were measured with the amplifier operating at maximum gain. A three tone test was conducted using the equipment as above. The input power level was adjusted so the level at point D was 10 dB above the maximum input of -14.0dBm.The cable and attenuators loss between the EUT and the spectrum analyser was 40.28dB.

RF Input Frequency		су	Highest Intermodulation Product Level	Limit
(MHz)			(dBm)	(dBm)
494.300	494.633	495.300	494.972 MHz @ -15.26 dBm	-13


Sweep data is shown on the next page:

Test equipment used for intermodulation test

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU	200034	UH281	х
SIGNAL GENERATOR	MARCONI	2042	119562/02	254	х
СМТА	ROHDE & SCHWARZ	CMTA52	894715/033	05	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	x
COMBINER	ELCOM	RC-4-50	N/A	170	x
AMPLIFIER	ENI	603L	1240	31	x


RF335 iss02

Intermodulation Inband

The above plot shows that all products (designated by \bigstar) are below the spurious limit.

Intermodulation Wideband

Date: 23.MAY.2006 17:13:29

The above plot shows that there are no products outside the bands.

TRANSMITTER TESTS

AMPLIFIER MODULATED CHANNEL TEST – CONDUCTED – Part 2.1049– DOWNLINK

See test results

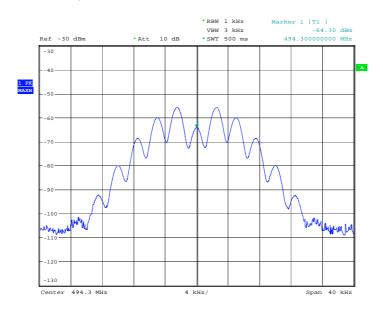
Ambient temperature	=
Relative humidity	=
Supply voltage	=
Channel number	=

17°C = 48%

+110 Vac _

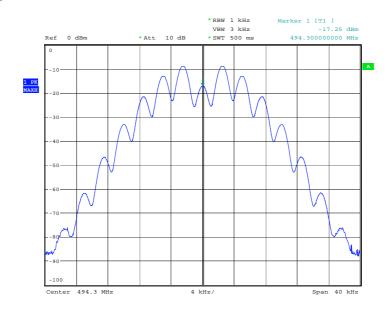
Spectrum Signal Generator Cable & Attenuator EUT Analyser TRLUH281 TRL254

This test was performed to show that the amplifier does not alter the input signal in any way. The input signal was set to the maximum input level (-14.0dBm) and modulated with a 2500Hz tone. The plots show the signal measured at the signal generator and the signal measured at the output of the EUT.

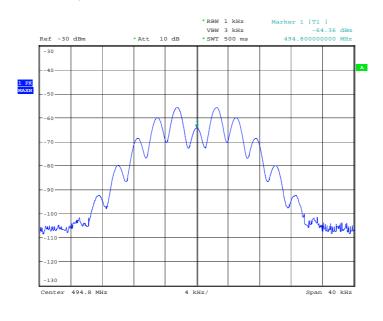

Radio Laboratory

Note: The cables and attenuators had the following losses.

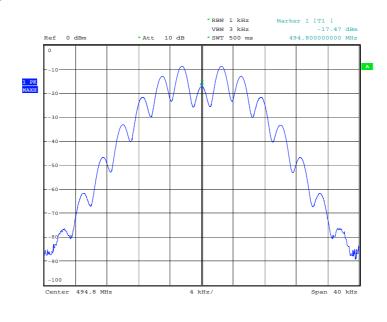
- Cable and attenuator between EUT and spectrum analyser 40.28dB
 Cable between signal generator and EUT 0.15dB


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU	200034	UH281	x
ATTENUATOR	BIRD	8304-200	N/A	103	x
ATTENUATOR	BIRD	8304-100-N	N/A	221	x
SIGNAL GENERATOR	MARCONI	2042	119562/02	254	x

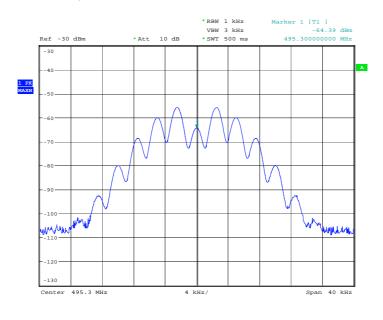
494.3 MHz Signal Generator, deviation set to 5kHz


Date: 23.MAY.2006 10:59:22

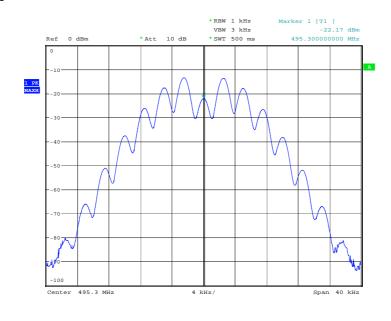
494.3 MHz Signal Generator and EUT, deviation set to 5kHz


Date: 23.MAY.2006 10:56:55

494.8 MHz Signal Generator, deviation set to 5kHz

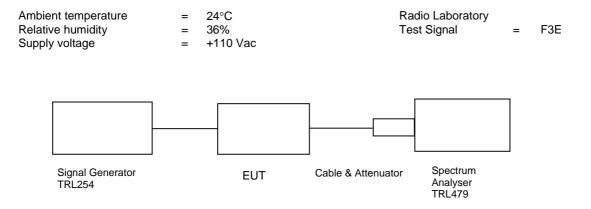

Date: 23.MAY.2006 11:00:03

494.8 MHz Signal Generator and EUT, deviation set to 5kHz


Date: 23.MAY.2006 10:56:23

495.3 MHz Signal Generator, deviation set to 5kHz

Date: 23.MAY.2006 11:00:25


495.3 MHz Signal Generator and EUT, deviation set to 5kHz

Date: 23.MAY.2006 10:55:49

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - CONDUCTED - Part 2.1053 - DOWNLINK

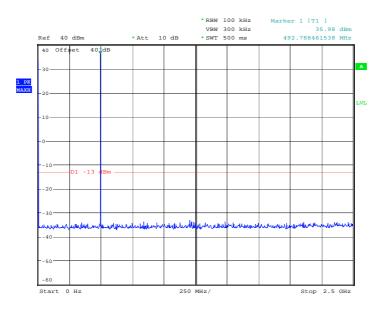
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating at maximum power and on three test frequencies.

The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

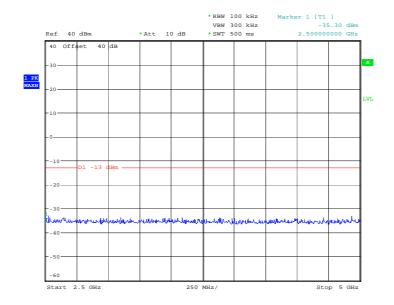
At least 43 + 10 log PdB

(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT =-13 dBm


RESULTS

FREQUENCY RANGE	FREQ. (MHz)	MEASURED LEVEL (dBm)	ATTENUATOR & CABLE LOSSES (dB)	EMISSION LEVEL (dBm)	LIMIT (dBm)
0Hz – 5GHz		No Significant Emissio	ons within 20dB of the L	imit	-13

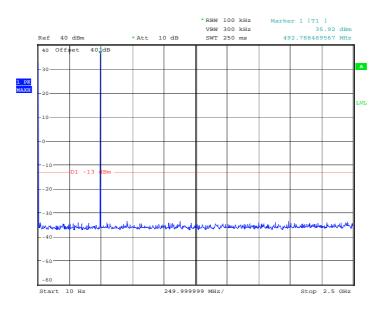
The test equipment used for the Transmitter Conducted Emissions:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU	200034	UH281	x
ATTENUATOR	BIRD	8304-200	N/A	103	x
ATTENUATOR	BIRD	8304-100-N	N/A	221	x
SIGNAL GENERATOR	MARCONI	2042	119562/02	254	х

Conducted emissions 494.3 MHz 0 - 2.5GHz

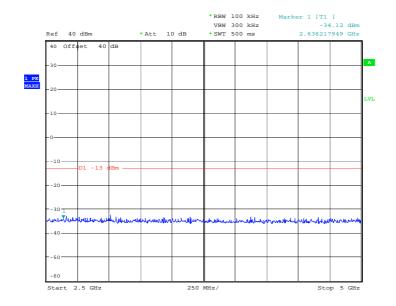
Date: 23.MAY.2006 11:29:42

Conducted emissions 494.3 MHz 2.5 - 5GHz



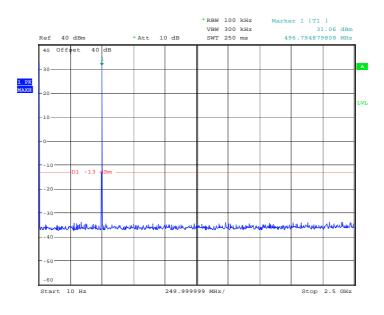
Date: 23.MAY.2006 11:30:11

RF335 iss02

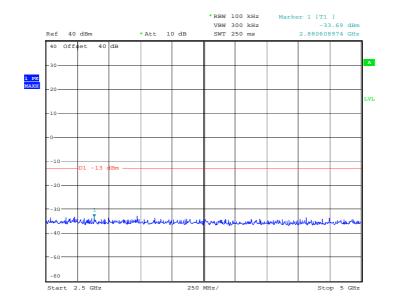

RU1074/4830

Conducted emissions 494.8 MHz 0 - 2.5GHz

Date: 23.MAY.2006 11:40:46

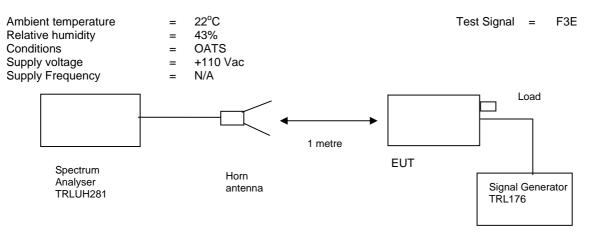

Conducted emissions 494.8 MHz 2.5 - 5GHz

Date: 23.MAY.2006 11:31:06


RF335 iss02

Conducted emissions 495.3 MHz 0 - 2.5GHz

Date: 23.MAY.2006 11:41:09


Conducted emissions 495.3 MHz 2.5 - 5GHz

Date: 23.MAY.2006 11:41:34

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - RADIATED - Part 2.1053- DOWNLINK

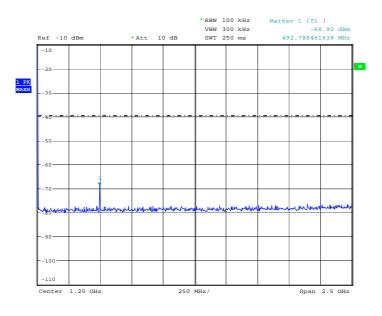
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating maximum power on three test frequencies with a 50 ohm load on the output. The unit was also tested with the signal generator replaced by another 50 ohm load.

The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

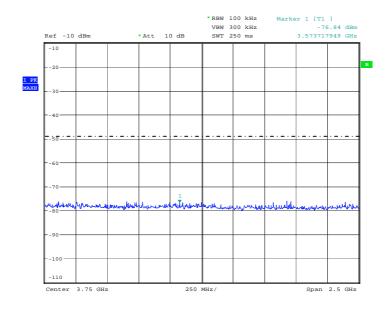
At least 43 + 10 log PdB

(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT =-13 dBm

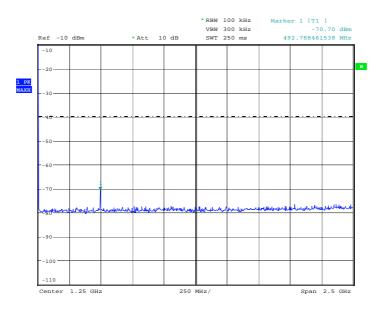

RESULTS

FREQUENCY RANGE	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	ANT FACTOR	FIELD STRENGTH (dBµV/m)	CALCULATED EIRP (dBm)	LIMIT (dBm)
0 Hz – 5 GHz	I	No Significa	ant Emissio	ons Within	20 dB of the	limit	-13

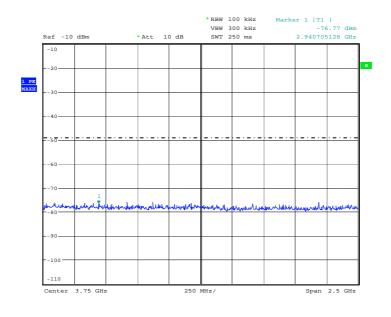
The test equipment used for the Transmitter Spurious Emissions:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	RHODE & SCHWARZ	FSU	200034	UH281	x
HORN	EMCO	3115	9010-3581	139	x
CABLE	ROSENBERGER	MICRO COAX	N/A	280	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	X

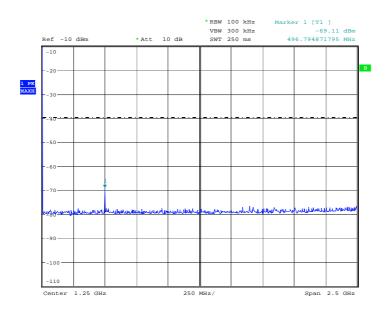
Radiated emissions 494.3 MHz 0 - 2.5GHz


Date: 30.MAY.2006 12:44:14

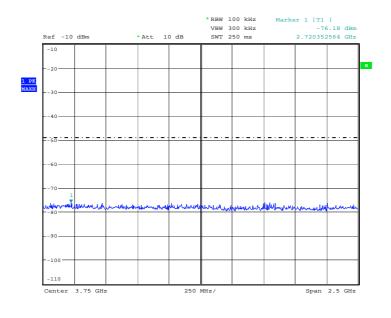
Radiated emissions 494.3 MHz 2.5 - 5GHz


Date: 30.MAY.2006 12:44:47

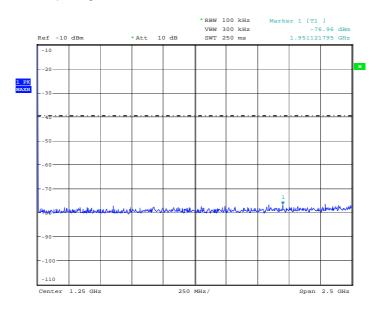
Radiated emissions 494.8 MHz 0 - 2.5GHz


Date: 30.MAY.2006 12:48:25

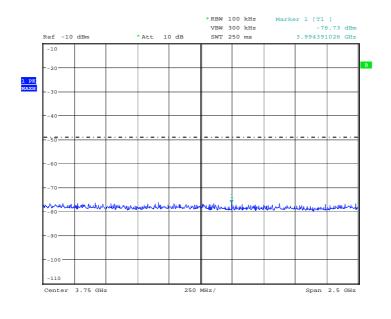
Radiated emissions 494.8 MHz 2.5 - 5GHz


Date: 30.MAY.2006 12:49:11

Radiated emissions 495.3 MHz 0 - 2.5GHz


Date: 30.MAY.2006 12:52:19

Radiated emissions 495.3 MHz 2.5 - 5GHz


Date: 30.MAY.2006 12:53:00

Radiated emissions no input signal 0 - 2.5GHz

Date: 30.MAY.2006 14:25:15

Radiated emissions no input signal 2.5 - 5GHz

Date: 30.MAY.2006 14:26:05

RF335 iss02

RU1074/4830

ANNEX A

PHOTOGRAPHS

PHOTOGRAPH No. 1

TEST SETUP

PHOTOGRAPH No. 2

TEST SETUP

ANNEX B

APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

a.	ТСВ	-	APPLICATION FEE	[X] [X]
b.	AGENT'S LETTER OF AUTHORISATION	-		[X]
C.	MODEL(s) vs IDENTITY	-		[]
d.	ALTERNATIVE TRADE NAME DECLARATION(s)	-		[]
e.	LABELLING	-	PHOTOGRAPHS DECLARATION DRAWINGS	[] [] []
f.	TECHNICAL DESCRIPTION	-		[X]
g.	BLOCK DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [] [] []
h.	CIRCUIT DIAGRAMS	- - -	Tx Rx PSU AUX	[] [] [] []
i.	COMPONENT LOCATION	- - -	Tx Rx PSU AUX	[] [] [] []
j.	PCB TRACK LAYOUT		Tx Rx PSU AUX	[] [] [] []
k.	BILL OF MATERIALS	- - -	Tx Rx PSU AUX	[] [] [] []
I.	USER INSTALLATION / OPERATING INSTRUCTIONS	-		[X]

RF335 iss02

RU1074/4830

EQUIPMENT CALIBRATION

ANNEX C

TRL Number	Equipment Type	Manufacturer	Last Cal Calibration	Calibration Period	Due For Calibration
UH281	Spectrum Analyser	R&S			
UH297	Signal Generator	R&S	21/04/2006	12	21/04/2007
L005	CMTA	R&S	05/12/2005	12	05/12/2006
L031	Power Amp	ENI		Calibrate in Use	
L103	Attenuator	Bird		Calibrate in Use	
L138	1-18GHz Horn	EMCO	15/04/2005	24	15/04/2007
L139	1-18GHz Horn	EMCO	03/05/2005	24	03/05/2007
L170	Combiner	Elcom		Calibrate in Use	
L176	Signal Generator	Marconi	15/02/2006	12	15/02/2007
L220	Attenuator	Bird		Calibrate in Use	
L222	Attenuator	Bird		Calibrate in Use	
L280	18GHz Cable	Rosenberger	05/01/2006	12	05/01/2007
L254	Signal Generator	Marconi	04/01/2006	12	04/01/2007
L479	Analyser	Anritsu	18/11/2005	12	18/11/2006

ANNEX D

MEASUREMENT UNCERTAINTY

RU1074/4830

Radio Testing - General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

[1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

[2] Carrier Power

Uncertainty in test result (Equipment - TRLUH120) = **2.18dB** Uncertainty in test result (Equipment – TRL05) = **1.08dB** Uncertainty in test result (Equipment – TRL479) = **2.48dB**

[3] Effective Radiated Power

Uncertainty in test result = 4.71dB

[4] Spurious Emissions

Uncertainty in test result = 4.75dB

[5] Maximum frequency error

Uncertainty in test result (Equipment - TRLUH120) = **119ppm** Uncertainty in test result (Equipment – TRL05) = **0.113ppm** Uncertainty in test result (Equipment – TRL479) = **0.265ppm**

[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz - 30MHz) = 4.8dB, Uncertainty in test result (30MHz - 1GHz) = 4.6dB, Uncertainty in test result (1GHz-18GHz) = 4.7dB

[7] Frequency deviation

Uncertainty in test result = 3.2%

[8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

[9] Conducted Spurious

Uncertainty in test result (Equipment TRL479) Up to 8.1GHz = **3.31dB** Uncertainty in test result (Equipment TRL479) 8.1GHz – 15.3GHz = **4.43dB** Uncertainty in test result (Equipment TRL479) 15.3GHz – 21GHz = **5.34dB** Uncertainty in test result (Equipment TRLUH120) Up to 26GHz = **3.14dB**

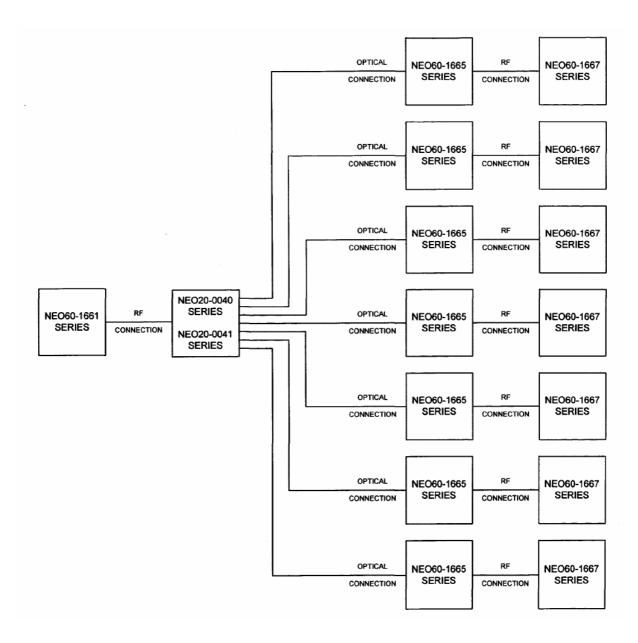
[10] Channel Bandwidth

Uncertainty in test result = **15.5%**

[11] Amplitude and Time Measurement – Oscilloscope

Uncertainty in overall test level = 2.1dB, Uncertainty in time measurement = 0.59%, Uncertainty in Amplitude measurement = 0.82%

[11] Power Line Conduction


Uncertainty in test result = **3.4dB**

RF335 iss02

RU1074/4830

ANNEX E

SYSTEM DIAGRAM

