Power Amplifier (12-018002) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

STTRS DOCUMENTATION

9.4.3. 800MHz Line Amplifier (Ext. Amp.) (55-165401)

section	Component	Component Part Description	Qty. Per
	Part		Assembly
9.4.3.3.	02-007206	Bandpass Filter	4
9.4.3.4.	07-015105	Wideband Asymmetric Coupler	2
9.4.3.5.	10-000901	Switched Attenuator 0.25W, 0 - 15dB	2
9.4.3.6.	11-006702	Low Noise Amplifier	1
9.4.3.7.	12-018002K	Power Amplifier	1
9.4.3.8.	12-021901	Low Power Amplifier	2
9.4.3.9.	17-001109	AGC Detector Assembly (Logarithmic)	1
	17-001117	AGC Detector Assembly	1
	17-001201	AGC Attenuator Assembly	2
9.4.3.10.	80-008901	12V (Single) Relay Board	1
9.4.3.11.	94-100004	Dual Diode Assembly	1
9.4.3.12.	96-200047	DC/DC Converter	1
9.4.3.13.	96-300052	12V Switch-Mode PSU	1

800MHz Line Amplifier (Ext. Amp.) (55-165401) list of major components

STTRS DOCUMENTATION

9.4.3.1. 800MHz Line Amplifier (Ext. Amp.) (55-165401) outline drawing Drawing number 55-1654101

9.4.3.2. 800MHz Line Amplifier (Ext. Amp.) (55-165401) system diagram Drawing number 55-165481

9.4.3.3. Bandpass Filter (02-007206)

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously.

PARAMETER		SPECIFICATION
Re	sponse type	Chebyshev
Freq	uency range	800 - 950MHz *
	Bandwidth	25MHz *
Numbe	r of sections	8
Insertion loss		1.2 dB
VSWR		better than 1.2:1
Connectors		SMA female
Power handling		100W max
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C
Weight		3 kg (typical)

02-007206 Specification

*tuned to Customer's specification

9.4.3.4. Wideband Asymmetric Coupler (07-015105)

The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

07-015105 Specification

PARAMETER		SPECIFICATION
	Construction	Inductive air gap
	Frequency	800-2500MHz
	Through loss	0.4dB (typical)
Coupling level		-30dB ±0.5dB
Isolation		N/A
Weight		<1.0kg
Connectors		SMA, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

9.4.3.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000901 Specification

PARAMETER		SPECIFICATION
Attenuat	ion Values	0-15dB
Attenua	ation Steps	1, 2, 4 and 8dB
Powe	r Handling	0.25 Watt
Attenuatior	n Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

9.4.3.6. Low Noise Amplifier (11-006702)

The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system.

11-006702 Specification

PARAMETER		SPECIFICATION
Frec	luency range	800 – 1000MHz
	Bandwidth	<200MHz
	Gain	29dB (typical)
1dB Comp	ression point	20dBm
	OIP3	33dBm
Input/Outp	ut return loss	>18dB
	Noise figure	1.3dB (typical)
Power consumption		180mA @ 24V DC
Su	upply voltage	10-24V DC
	Connectors	SMA female
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
Size		90 x 55 x 30.2mm
Weight		290gms (approximately)

STTRS DOCUMENTATION

Low Noise Amplifier (11-006702) 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

9.4.3.7. Power Amplifier (12-018002)

This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-018002 Specification

PARAMETER		SPECIFICATION
F	requency range:	800-960MHz
5	Small signal gain:	30dB
	Gain flatness:	±1.2dB
	I/O Return loss:	>18dB
1dB co	mpression point:	42.8dBm
OIP3:		56dBm
Supply voltage:		24V DC
	Supply current:	5.0Amps (Typical)
Temperature	operational:	-10°C to +60°C
range storage:		-20°C to +70°C
Weight:		<2kg (no heatsink)

STTRS DOCUMENTATION

Power Amplifier (12-018002) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

9.4.3.8. Low Power Amplifier (12-021901)

The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

Low Power Amplifier (12-021901) Specification

PARAM	ETER	SPECIFICATION
Free	quency range	800-960MHz*
	Bandwidth	20MHz *
Maxim	um RF output	>1.0 Watt
	Gain	15dB
1dB comp	pression point	+30.5dBm
3 rd order i	ntercept point	+43dBm
Noise Figure		<6dB
VSWR		better than 1.5:1
Connectors		SMA female
	Supply	500mA @ 10-15V DC
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
Weight		0.5 kg
	Size	167x52x25mm

* Tuned to Customer's specification

Low Power Amplifier (12-021901) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

9.4.3.9. Automatic Gain Control

- 17-001109 AGC Detector Assembly (Logarithmic)
- 17-001117 AGC Detector Assembly
- 17-001201 AGC Attenuator Assembly

The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (Ext. Amp.) (55-165401); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

800MHz Line Amplifier (Ext. Amp.) (55-165401) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path

The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

STTRS DOCUMENTATION

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

PARA	METER	SPECIFICATION
	Frequency range	up to 1000MHz
	Attenuation range	3 to 30dB
	Attenuation steps	continuously variable
	VSWR	better than 1.2:1
	RF Connectors	SMA female
Power	attenuator	1W
handling	detector/amp	>30W (or as required)
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C
Sizo	attenuator pcb	50 x 42 x 21mm
Size	detector/amp pcb	54 x 42 x 21mm
Woight	attenuator	90grams
weight	detector/amp	100grams

AGC Specification (both types)

9.4.3.10. 12V (Single) Relay Board (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector. The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008901 Specification

PARAM	ETER	SPECIFICATION
(Operating voltage	8 to 30V (floating earth)
	Alarm threshold	Vcc - 1.20 volt +15%
	Alarm output rel	ay contacts:
Ma	ax. switch current	1.0Amp
	Max. switch volts	120Vdc/60VA
Ν	lax. switch power	24W/60VA
Min. switch load		10.0µA/10.0mV
Relay isolation		1.5kV
	Mechanical life	>2x10 ⁷ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

9.4.3.11. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

9.4.3.12. DC/DC Converter 96-200047

96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced.

96-200047 Specification

PARAMETER		SPECIFICATION
DC Input Voltage range		19 to 36V
DC C	output voltage	12V ± 1%
Max	. current load	12.5Amps
Temperature	Operation	-10°C to +60°C
range Storage		-20°C to +85°C
Working Humidity		20 to 90% RHNC

9.4.3.12. 12V Switch-Mode PSU (96-300052)

No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals.

All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300052 Specification

AC Input Supply		
	110 or 220V nominal	
Voltage	85 - 265V AC	
	(absolute limits)	
Frequency	47 to 63Hz	
DC Output Supply		
Voltago	12V DC (nominal)	
voltage	10.5-13.8V (absolute limits)	
Current	12.5A	

10. UNIVERSITY STATION MASTER SITE 1 (80-330552-1)

Rack C05-CR-06

55-165601 55-165602 55-165502 98-800001 98-700002 55-165507 55-165601 55-165602 55-165711

University Station Master Site 1 (80-330552-1) list of major components

section	Component Part	Component Part Description	Qty. Per Assembly
10.4.1.	55-165502	800MHz FO HUB Splitter/Combiner	1
10.4.2.	55-165507	Fibre Optic Splitter	1
10.4.3.	55-165601	800MHz FO Hub Amplifier + Filters	2
10.4.4.	55-165602	700MHz FO Hub Amplifier	2
10.4.5.	55-165711	UNIVERSITY ST. SPLITTER 1	1
10.4.6.	98-700002	Optical A/B Switch FC/APC	1
10.4.7.	98-800001	F/O Link Subsystem	1

800MHz FO Hub Amplifier (55-165601)

10.1. University Station Master Site 1 (80-330552-1) Rack elevation Drawing number 80-330552

STTRS DOCUMENTATION

10.2. University Station Master Site 1 (80-330552-1) system diagram Drawing number 80-330582-1

10.3. University Station Master Site 1 (80-330552-1) Alarm Wiring Diagram Drawing number 80-330522-1

10.4 University Station Master Site 1 (80-330552-1) Major Components

10.4.1. 800MHz FO HUB Splitter/Combiner (55-165502)

800MHz FO HUB SPLITTER/COMB (55-165502) List of major components

section	Component	Component Part Description	Qty. Per
	Part		Assembly
10.4.1.3.	05-002602	900MHZ SPLITTER/COMBINER, 20W	2
10.4.1.4.	05-003302	Four Way Splitter/Combiner	2

STTRS DOCUMENTATION

10.4.1.1. 800MHz FO HUB SPLITTER/COMB (55-165502) Outline Drawing Drawing number 55-1655102

10.4.1.2. 800MHz FO HUB SPLITTER/COMB (55-165502) System Diagram Drawing number 55-165582

10.4.1.3. 900MHz Splitter/Combiner (05-002602)

The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load.

Being passive devices, the splitters should have an extremely long operational life and require no maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module rather than attempt repair or re-tuning.

PARAMETER		SPECIFICATION
Frequency	Narrowband:	815 – 960MHz
range:	Broadband:	800 – 1200MHz
Bondwidth:	Narrowband:	145MHz
Danuwiuth.	Broadband:	400MHz
	Input ports:	1
	Output ports:	2
Insortion loss:	Narrowband:	3.3dB
113011011035.	Broadband:	3.5dB
Return I	oss input & output:	1.3:1
Impedance:		50Ω
Isolation:	Narrowband:	>20dB
1501411011.	Broadband:	>18dB
	MTFB:	>180,000 hours
Dowor rating:	Splitting:	20Watts
Fower raing.	Combining:	0.5Watt
Connectors:		SMA female
Weight:		200g (approximately)
Size:		54 x 44 x 21mm

10.4.1.4. Four Way Splitter/Combiner (05-003302)

The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load.

Four Way Splitter (05-003302) Specification

PARAMETER		SPECIFICATION
Fr	equency range	700-980MHz
Bandwidth		180MHz
Rejection		>14dB
Insertion loss		<7.0dB (in band)
Connectors		N type, female
Weight		<1.5kg
Temperature	operational	-20⇒C to +60⇒C
range	storage	-40⇒C to +70⇒C

STTRS DOCUMENTATION

10.4.2. Fibre Optic Splitter (55-165507)

Fibre Optic Splitter (55-165507) is a 1U rack mount tray containing an optical splitter/coupler

Fibre Optic Splitter (55-165507) List of Major Sub Components

Component Part	Component Part Description	Qty. Per Assembly
98-100001	Single Mode Optical Splitter/Coupler	1

10.4.2.1. Single Mode Optical Splitter/Coupler (98-100001)

Single Mode Optical Splitter/Couplers are used whenever it is necessary to split or combine outputs from optical transmitters or inputs to receivers. Operators should be aware that a small insertion loss (typically 3-4dB) is common with these type of couplers.

Single Mode Optical Splitter/Coupler (98-100001) It is an O.E.M unit featuring almost negligible insertion loss to the F/O signal. Extreme caution should be exercised when handling these devices. Special attention should be shown to the connectors; repair of a broken Splitter/Coupler is not possible; replacement is the only option.

In the Fibre Optic Splitter (55-165507) in University Station Master Site 1 (80-330552-1), Single Mode Optical Splitter/Coupler (98-100001) is used to split the optical signal from the FO TX module in F/O Link Subsystem (98-700001) into two equal paths.

Section	Component	Component Part Description	Qty. Per
	Part		Assembly
10.4.3.3.	02-007206	900MHZ 8POLE 25MHz+ B/W "SMA"	6
10.4.3.4.	07-015105	ASYMMETRIC CPLR 30dB 800-2500MHz GA	3
10.4.3.5.	10-000701	SW ATT 0-30dB 0.25W SMA F	2
10.4.3.6.	11-005902K	900MHz LOW NOISE AMP WITH RELAY KIT	1
10.4.3.7.	11-006702K	800-1000MHz LNA 29dB (cw RELAY) KIT	2
10.4.3.8.	12-018002K	PA 800-960MHz 20W CLASS A KIT	1
10.4.3.9.	12-021901	Low Power Amplifier	2
10.4.3.10.	17-001109*	AGC Detector Assembly (Logarithmic)	1
	17-001117*	AGC Detector Assembly	1
	17-001201*	AGC Attenuator Assembly	2
10.4.3.11.	20-001601	12V RELAY BOARD	1
10.4.3.12.	80-008901	12V RELAY PCB ASSEMBLY	1
10.4.3.13.	94-100004	STPS12045TV 60A DUAL DIODE	1
10.4.3.14.	96-200047	DC/DC Converter	1
10.4.3.15.	96-300052	JWS150-12/A PSU (COUTANT LAMBDA)	1

10.4.3. 800MHz FO Hub Amplifier + Filters (55-165601)

*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz FO Hub Amplifier + Filters (55-165601); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link

10.4.3.1. 800MHz FO Hub Amplifier + Filters (55-165601) **outline drawing** drawing number 55-1656101

STTRS DOCUMENTATION

ш \bigcirc \square ш L < ANALOGUE ALARMS ٩M പപ S ₽ Ľ -30dB MON 06/11/07 24/08/07 12/07/07 14/06/07 DATE Ā PRODUCTION ISSUE (ECN4628) 07-015105 -30dB 55-165681 AMPLIFIER ISSUE DESCRIPTION PROTOTYPE ISSUE DRAWING.No 800MHz F/O HUB 854-869MHz SYSTEM DIAGRAM 02-007201 ECN4490 ECN4547 222 764-776MHz 02-007201 794-806MHz 809-824MHz RF LEVEL 17-016502 02-007201 55-165411 02-007201 XX XX XX 1A A ΒA AA ٩ ANALOGUE 5 ALARM MONITOR ₩ ⊕ CUSTOMER 17-001117 TITLE 11-006702 AGC 30dB THIRD ANGLE PROJECTION 12-018002 ယ G 30dB **Aerial Facilities Limited** Tel : 01494 777000 Fax : 01494 777002 17-001201 10-000701 0-30dB B PART No. 55-165601 England 12-021901 15dB 甲 +12V 11-006702 809-824MHz 02-007201 30dB 10-000701 17-001201 THIS IS A PROPRIETARY DESIGN OF AERIAL FACILITIES LTD. REPRODUCION OR USE OF THIS DESIGN BY OTHERS IS PERMISSIBLE ONLY IF EXPRESSLY AUTHORISED IN WRITING BY AERIAL FACILITIES LTD. Яþ 11-005902 20dB I 0-30dB dВ SCALE 12-021901 96-300052 DC TOLERANCES NO DECIMAL PLACE ± 1mm ONE DECIMAL PLACE ± 0.3mm TWO DECIMAL PLACES ± 0.1mm 15dB 96-200047 854-869MHz DC 02-007201 }} 07-015105 17-001109 AGC 07-015105 -30dB -30dB ALL DIMENSIONS ARE IN mm UNLESS OTHERWISE STATED 14/06/07 ND APPD DATE N ົບ œ JB2 JB1 -30dB MON -30dB MON AC 2 12V 110 ß S DRAWN CHKD \triangleleft \square \bigcirc \square ш L

10.4.3.3. Bandpass Filter (02-007206)

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously.

PARAMETER		SPECIFICATION
Re	sponse type	Chebyshev
Freq	uency range	800 - 950MHz *
	Bandwidth	25MHz *
Numbe	er of sections	8
	nsertion loss	1.2 dB
VSWR		better than 1.2:1
	Connectors	SMA female
Power handling		100W max
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C
Weight		3 kg (typical)

02-007206 Specification

*tuned to Customer's specification

10.4.3.4. Wideband Asymmetric Coupler (07-015105)

The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

07-015105 Specification

PARAMETER		SPECIFICATION
	Construction	Inductive air gap
Frequency		800-2500MHz
Through loss		0.4dB (typical)
Coupling level		-30dB ±0.5dB
Isolation		N/A
Weight		<1.0kg
Connectors		SMA, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

10.4.3.5. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

Switched Attenuator 10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER		SPECIFICATION
Attenu	ation Values	0-30dB
Atten	uation Steps	2, 4, 8 and 16dB
Pov	wer Handling	0.25 Watt
Attenuat	ion Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

10.4.3.6. Low Noise Amplifier (11-005902)

The Gallium-Arsenide low noise amplifier used in the unit is a double stage, solid-state low noise amplifier. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into any alarm system. There is a Current Fault Alarm Function, which indicates failure of each one or both RF transistors by a various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.

PARAMETER		SPECIFICATION
Fr	equency range:	800 – 960MHz *
	Bandwidth:	<170MHz
	Gain:	19.5dB (typical)
1dB con	npression point:	21dBm
	OIP3:	33dBm
Input/ou	tput return loss:	>20dB
	Noise figure:	1dB (typical)
Powe	er consumption:	190mA @ 24V DC
	Supply voltage:	10-24V DC
	Connectors:	SMA female
Temperature	operational:	-10°C to +60°C
range	storage:	-40°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		0.28kg

11-005902 Specification

*tuned to Customer's specification

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)

O/C good/0V bad

LNA 'D' Connector Pin-out details

9

10.4.3.7. Low Noise Amplifier (11-006702)

The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system.

11-006702 Specification

PARAMETER		SPECIFICATION
Frequency range:		800 – 1000MHz
	Bandwidth:	<200MHz
	Gain:	29dB (typical)
1dB Compi	ession point:	20dBm
	OIP3:	33dBm
Input/Outpu	it return loss:	>18dB
	Noise figure:	1.3dB (typical)
Power consumption:		180mA @ 24V DC
Su	pply voltage:	10-24V DC
	Connectors:	SMA female
Tomporaturo rango:	operational:	-10°C to +60°C
remperature range.	storage:	-20°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		290gms (approximately)

Low Noise Amplifier (11-006702) 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

10.4.3.8. Power Amplifier (12-018002)

This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-018002 Specification

PARAMETER		SPECIFICATION
F	requency range:	800-960MHz
(U)	Small signal gain:	30dB
	Gain flatness:	±1.2dB
	I/O Return loss:	>18dB
1dB co	mpression point:	42.8dBm
OIP3:		56dBm
Supply voltage:		24V DC
Supply current:		5.0Amps (Typical)
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C
Weight:		<2kg (no heatsink)

Power Amplifier (12-018002) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

10.4.3.9. Low Power Amplifier (12-021901)

The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

PARAM	ETER	SPECIFICATION
Free	quency range	800-960MHz*
	Bandwidth	20MHz *
Maxim	um RF output	>1.0 Watt
	Gain	15dB
1dB comp	pression point	+30.5dBm
3 rd order in	ntercept point	+43dBm
	Noise Figure	<6dB
VSWR		better than 1.5:1
	Connectors	SMA female
	Supply	500mA @ 10-15V DC
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
	Weight	0.5 kg
Size		167x52x25mm

Low Power Amplifier (12-021901) Specification

* Tuned to Customer's specification

Low Power Amplifier (12-021901) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

10.4.3.10. Automatic Gain Control

17-001109 AGC Detector Assembly (Logarithmic)

17-001117 AGC Detector Assembly

17-001201 AGC Attenuator Assembly

The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz FO Hub Amplifier + Filters (55-165601); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link

800MHz FO Hub Amplifier + Filters (55-165601) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path

The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

PARAMETER		SPECIFICATION
	Frequency range	up to 1000MHz
	Attenuation range	3 to 30dB
	Attenuation steps	continuously variable
	VSWR	better than 1.2:1
	RF Connectors	SMA female
Power	attenuator	1W
handling	detector/amp	>30W (or as required)
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C
Ci=o	attenuator pcb	50 x 42 x 21mm
5126	detector/amp pcb	54 x 42 x 21mm
Woight	attenuator	90grams
weight	detector/amp	100grams

10.4.3.11. 12V (Dual) Relay Board (20-001601)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001601 Specification

PARAM	ETER	SPECIFICATION
C	perating voltage:	8 to 30V (floating earth)
	Alarm threshold:	Vcc - 1.20 volt <u>+</u> 15%
	Alarm output rel	ay contacts:
Ma	x. switch current:	1.0Amp
ľ	Max. switch volts:	120Vdc/60VA
Μ	ax. switch power:	24W/60VA
Min. switch load:		10.0µA/10.0mV
Relay isolation:		1.5kV
Mechanical life:		>2x10 ⁷ operations
Relay approval:		BT type 56
Connector details:		Screw terminals
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C

10.4.3.12. 12V (Single) Relay Board (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector.

The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008901 Specification

PARAMETER		SPECIFICATION
(Operating voltage	8 to 30V (floating earth)
	Alarm threshold	Vcc - 1.20 volt +15%
	Alarm output rel	ay contacts:
Ma	ax. switch current	1.0Amp
	Max. switch volts	120Vdc/60VA
N	lax. switch power	24W/60VA
Min. switch load		10.0µA/10.0mV
Relay isolation		1.5kV
Mechanical life		>2x10 ⁷ operations
Relay approval		BT type 56
	Connector details	Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

10.4.3.13. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

10.4.3.14. DC/DC Converter 96-200047

96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced.

96-200047 Specification

PARAMETER		SPECIFICATION
DC Input Voltage range		19 to 36V
DC Output voltage		12V ± 1%
Max. current load		12.5Amps
Temperature	Operation	-10°C to +60°C
range	Storage	-20°C to +85°C
Working Humidity		20 to 90% RHNC

10.4.3.15. 12V Switch-Mode PSU (96-300052)

No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals.

All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300052 Specification

AC Input Supply			
Voltaga	110 or 220V nominal		
voltage	85 - 265V AC (absolute limits)		
Frequency	47 to 63Hz		
DC Output Supply			
Voltago	12V DC (nominal)		
voltage	10.5-13.8V (absolute limits)		
Current	12.5A		

10.4.4. 700MHz FO Hub Amplifier (55-165602)

Section	Component	Component Part Description	Qty. Per
	Part		Assembly
10.4.4.3.	02-007206	900MHZ 8POLE 25MHz+ B/W "SMA"	2
10.4.4.4.	07-015105	ASYMMETRIC CPLR 30dB 800-2500MHz GA	2
10.4.4.5.	10-000701	SW ATT 0-30dB 0.25W SMA F	2
10.4.4.6.	11-005902	900MHz LOW NOISE AMP WITH RELAY KIT	1
10.4.4.7.	11-006702	800-1000MHz LNA 29dB (cw RELAY) KIT	2
10.4.4.8.	12-018002	PA 800-960MHz 20W CLASS A KIT	1
10.4.4.9.	12-021901	Low Power Amplifier	2
10.4.4.10.	17-001109	AGC Detector Assembly (Logarithmic)	1
	17-001117	AGC Detector Assembly	1
	17-001201	AGC Attenuator Assembly	2
10.4.4.11.	20-001601	12V RELAY BOARD	1
10.4.4.12.	80-008901	12V RELAY PCB ASSEMBLY	1
10.4.4.13.	94-100004	STPS12045TV 60A DUAL DIODE	1
10.4.4.14.	96-200047	DC/DC Converter	1
10.4.4.15.	96-300052	JWS150-12/A PSU (COUTANT LAMBDA)	1

700MHz FO Hub Amplifier (55-165602) List of major components

*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz FO Hub Amplifier (55-165602); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

10.4.4.1. 700MHz FO Hub Amplifier (55-165602) Outline Drawing drawing number 55-1656102

10.4.4.2. 700MHz FO Hub Amplifier (55-165602) system diagram drawing number 55-165682

10.4.4.3. Bandpass Filter (02-007206)

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously.

PARAMETER		SPECIFICATION
Re	esponse type	Chebyshev
Freq	uency range	800 - 950MHz *
Bandwidth		25MHz *
Number of sections		8
Insertion loss		1.2 dB
VSWR		better than 1.2:1
Connectors		SMA female
Power handling		100W max
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C
Weight		3 kg (typical)

02-007206 Specification

*tuned to Customer's specification

10.4.4.4. Wideband Asymmetric Coupler (07-015105)

The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

07-015105 Specification

PARAM	IETER	SPECIFICATION
	Construction	Inductive air gap
	Frequency	800-2500MHz
	Through loss	0.4dB (typical)
Coupling level		-30dB ±0.5dB
Isolation		N/A
Weight		<1.0kg
Connectors		SMA, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C
10.4.4.5. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

Switched Attenuator 10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER		SPECIFICATION
Attenu	ation Values	0-30dB
Atten	uation Steps	2, 4, 8 and 16dB
Pov	wer Handling	0.25 Watt
Attenuat	ion Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

10.4.4.6. Low Noise Amplifier (11-005902)

The Gallium-Arsenide low noise amplifier used in the unit is a double stage, solid-state low noise amplifier. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into any alarm system. There is a Current Fault Alarm Function, which indicates failure of each one or both RF transistors by a various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.

PARAMETER		SPECIFICATION
Fr	equency range:	800 – 960MHz *
	Bandwidth:	<170MHz
	Gain:	19.5dB (typical)
1dB con	npression point:	21dBm
	OIP3:	33dBm
Input/ou	tput return loss:	>20dB
	Noise figure:	1dB (typical)
Powe	er consumption:	190mA @ 24V DC
	Supply voltage:	10-24V DC
	Connectors:	SMA female
Temperature	operational:	-10°C to +60°C
range	storage:	-40°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		0.28kg

11-005902 Specification

*tuned to Customer's specification

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)

O/C good/0V bad

LNA 'D' Connector Pin-out details

9

10.4.4.7. Low Noise Amplifier (11-006702)

The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system.

11-006702 Specification

PARAMETER		SPECIFICATION
Frequency range:		800 – 1000MHz
	Bandwidth:	<200MHz
	Gain:	29dB (typical)
1dB Compi	ression point:	20dBm
OIP3:		33dBm
Input/Output return loss:		>18dB
	Noise figure:	1.3dB (typical)
Power consumption:		180mA @ 24V DC
Su	pply voltage:	10-24V DC
	Connectors:	SMA female
Tomporaturo rango:	operational:	-10°C to +60°C
remperature range.	storage:	-20°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		290gms (approximately)

Low Noise Amplifier (11-006702) 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

10.4.4.8. Power Amplifier (12-018002)

This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-018002 Specification

PARAMETER		SPECIFICATION
F	requency range:	800-960MHz
(U)	Small signal gain:	30dB
	Gain flatness:	±1.2dB
	I/O Return loss:	>18dB
1dB co	mpression point:	42.8dBm
OIP3:		56dBm
Supply voltage:		24V DC
Supply current:		5.0Amps (Typical)
Temperature	operational:	-10°C to +60°C
range storage:		-20°C to +70°C
Weight:		<2kg (no heatsink)

Power Amplifier (12-018002) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

10.4.4.9. Low Power Amplifier (12-021901)

The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

PARAMETER		SPECIFICATION
Free	quency range	800-960MHz*
	Bandwidth	20MHz *
Maxim	um RF output	>1.0 Watt
	Gain	15dB
1dB comp	pression point	+30.5dBm
3 rd order in	ntercept point	+43dBm
	Noise Figure	<6dB
	VSWR	better than 1.5:1
	Connectors	SMA female
	Supply	500mA @ 10-15V DC
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
Weight		0.5 kg
Size		167x52x25mm

Low Power Amplifier (12-021901) Specification

* Tuned to Customer's specification

Low Power Amplifier (12-021901) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

10.4.4.10. Automatic Gain Control

17-001109 AGC Detector Assembly (Logarithmic)

17-001117 AGC Detector Assembly

17-001201 AGC Attenuator Assembly

The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz FO Hub Amplifier (55-165602); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

700MHz FO Hub Amplifier (55-165602) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path

The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

PARAMETER		SPECIFICATION
	Frequency range	up to 1000MHz
	Attenuation range	3 to 30dB
	Attenuation steps	continuously variable
	VSWR	better than 1.2:1
	RF Connectors	SMA female
Power	attenuator	1W
handling	detector/amp	>30W (or as required)
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C
Sizo	attenuator pcb	50 x 42 x 21mm
3126	detector/amp pcb	54 x 42 x 21mm
Woight	attenuator	90grams
weight	detector/amp	100grams

10.4.4.11. 12V (Dual) Relay Board (20-001601)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001601 Specification

PARAM	ETER	SPECIFICATION
C	perating voltage:	8 to 30V (floating earth)
	Alarm threshold:	Vcc - 1.20 volt <u>+</u> 15%
	Alarm output rel	ay contacts:
Ma	x. switch current:	1.0Amp
ľ	Max. switch volts:	120Vdc/60VA
M	ax. switch power:	24W/60VA
Min. switch load:		10.0µA/10.0mV
Relay isolation:		1.5kV
Mechanical life:		>2x10 ⁷ operations
Relay approval:		BT type 56
Connector details:		Screw terminals
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C

10.4.4.12. 12V (Single) Relay Board (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector.

The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008901 Specification

PARAM	ETER	SPECIFICATION
(Operating voltage	8 to 30V (floating earth)
	Alarm threshold	Vcc - 1.20 volt +15%
	Alarm output rel	ay contacts:
Ma	ax. switch current	1.0Amp
Max. switch volts		120Vdc/60VA
Max. switch power		24W/60VA
Min. switch load		10.0µA/10.0mV
Relay isolation		1.5kV
Mechanical life		>2x10 ⁷ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

10.4.4.13. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

10.4.4.14. DC/DC Converter 96-200047

96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced.

96-200047 Specification

PARAMETER		SPECIFICATION
DC Input Voltage range		19 to 36V
DC Output voltage		12V ± 1%
Max. current load		12.5Amps
Temperature	Operation	-10°C to +60°C
range Storage		-20°C to +85°C
Working Humidity		20 to 90% RHNC

10.4.4.15. 12V Switch-Mode PSU (96-300052)

No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals.

All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300052 Specification

AC Input Supply		
Valtaga	110 or 220V nominal	
voltage	85 - 265V AC (absolute limits)	
Frequency	47 to 63Hz	
DC Output Supply		
Voltaga	12V DC (nominal)	
voltage	10.5-13.8V (absolute limits)	
Current	12.5A	

STTRS DOCUMENTATION

10.4.5. University Station Splitter 1 (55-165711)

section	Component	Component Part Description	Qty. Per
	Part		Assembly
10.4.5.3.	05-003005	3 PORT THC 900MHz	1
10.4.5.4.	07-015102	ASYMMETRIC CPLR 10dB 800-2500MHz GA	4

University Station Splitter 1 (55-165711) list of major components

STTRS DOCUMENTATION

10.4.5.1. University Station Splitter 1 (55-165711) outline drawing drawing number 55-1657111

STTRS DOCUMENTATION

10.4.5.2. University Station Splitter 1 (55-165711) system diagram drawing number 55-165791

STTRS DOCUMENTATION

10.4.5.3. 2-Way Splitter/Combiner (05-003005)

This printed circuit based Splitter/Combiner is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load.

(05-003005) Specification	

PARAMETER		SPECIFICATION	
Fre	quency Range	800 - 1000 MHz	
	Input Ports	2	
	Output Ports	1	
	Insertion Loss	<3.3 dB	
	Isolation	>18 dB	
	VSWR	1.3:1	
Power Rating as a Splitter		50 Watts	
Power Rating as a Combiner		5 Watts	
Mechanical		Wall mount case	
Weight		<1.5kg	
RF Connectors		'N' female	
Dimensions		70mm x 63mm x 21mm	
		(excludes connectors)	
Temperature	operational	-20∜C to +60∜C	
range:	storage	-40∜C to +70∜C	

10.4.5.4. Wideband Asymmetric Coupler (07-015102)

The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case 10dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

07-015102 Specification

PARAN	IETER	SPECIFICATION
Free	quency Range	800 - 2500 MHz
C	Coupling Value	10 dB ± 1.0 dB
Main Line	Insertion Loss	<1.6 dB
VSWR		1.4:1
Directivity		>18 dB
Power Rating		200 Watts
RF Connectors		'N' female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

STTRS DOCUMENTATION

10.4.6. Optical AB Switch FC/APC (98-700002)

Optical A/B Switch FC/APC (98-700002) an O.E.M. sourced Fibre Optic relay supplied as a 1U rack mount tray. 98-700002 allows for the automatic switching between two optical inputs to provide a common optical output. Manual selection of the input is also possible via toggle switches on the front panel.

98-700002 Specification

PARAMETER	SPECIFICATION
Electrical Characteristics	
Power Supply Voltage	100 - 240 VAC
Power Supply Frequency	50 - 60 Hz
Optical Characteristics	
Operating Wavelength	1200 – 1610nm
Optical Input Range	+20 dBm
Optical Insertion Loss	2.0 dB
Optical Trip Threshold/Meter Range	-35 - +20 dBm
Optical Switch Speed	15ms
Backreflection Tolerance	-50dB
Environmental and Physical Characterist	ics
Optical Connectors	FC/APC
Operating Temp. Range	+10 to +40°C
Storage Temp. Range	-40 to +80 °C
Humidity	5 to 90 % RHNC
Weight	2.2 kg (6 lbs)
Dimensions	483 x 361 x 44mm (19.0 x 14.2 x 1.72 in.)

10.4.7. F/O Link Subsystem (98-800001)

F/O Link Subsystem (98-800001) is an O.E.M. sourced Optical Tranceiver package containing discreet TX and RX modules and supplied as a 1U rack mount tray

Parameter	Specification
Optical Output Power	4 mW
Wavelength, peak	1310 1550 nm
Frequency Response, 50 to 2.2 GHz	± 1.5 dB
Input and Output VSWR	1.5:1
Link Gain ⁽²⁾	0 dB
Output Noise Floor ⁽¹⁾	-137 dBm/Hz
Input 3rd Order Intercept ⁽¹⁾	30 dBm
Operating Temperature	−30 to +75°C
Storage Temperature	−40 to +85°C
Maximum RF Input to Transmitter	+20 dBm
Maximum Optical Input to Receiver	6 mW
A.C. Supply Voltage	90 – 265 VAC
Dimensions	483 x 457 x 44mm (19.0 x 18 x 1.72 in.)

⁽¹⁾ SFDR, Noise and IP3 specified with 5 dB optical loss.

⁽²⁾ Link Gain specified with 1 meter fiber.

STTRS DOCUMENTATION

11. UNIVERSITY STATION MASTER SITE 2 (80-330552-2)

Rack C05-CR-07

55-165601 55-165602 55-165603 98-800001 98-700002 55-165507 55-165601 55-165602 55-165711

University Station Master Site 2 (80-330552-2) list of major components

Section	Component Part	Component Part Description	Qty. Per Assembly
11.4.1.	55-165507	Fibre Optic Splitter	1
11.4.2.	55-165601	800MHz FO HUB AMP + FILTERS	2
11.4.3.	55-165602	700MHz FO Hub Amplifier	2
11.4.4.	55-165603	700MHz FO HUB Splitter/Combiner	1
11.4.5.	55-165712	UNIVERSITY ST. SPLITTER 2	1
11.4.6.	98-700002	Optical A/B Switch FC/APC	1
11.4.7.	98-800001	F/O Link Subsystem	1

11.1. University Station Master Site 2 (80-330552-1) Rack elevation Drawing number 80-330552

STTRS DOCUMENTATION

11.2. University Station Master Site 2 (80-330552-1) system diagram Drawing number 80-330582-1

STTRS DOCUMENTATION

11.3. University Station Master Site 2 (80-330552-1) Alarm Wiring Diagram Drawing number 80-330522-1

STTRS DOCUMENTATION

11.4 University Station Master Site 2 (80-330552-1) Major Components

11.4.1. Fibre Optic Splitter (55-165507)

Fibre Optic Splitter (55-165507) is a 1U rack mount tray containing an optical splitter/coupler

Fibre Optic Splitter (55-165507) List of Major Sub Components

Component Part	Component Part Description	Qty. Per Assembly
98-100001	Single Mode Optical Splitter/Coupler	1

11.4.1.1. Single Mode Optical Splitter/Coupler (98-100001)

Single Mode Optical Splitter/Couplers are used whenever it is necessary to split or combine outputs from optical transmitters or inputs to receivers. Operators should be aware that a small insertion loss (typically 3-4dB) is common with these type of couplers.

Single Mode Optical Splitter/Coupler (98-100001) It is an O.E.M unit featuring almost negligible insertion loss to the F/O signal. Extreme caution should be exercised when handling these devices. Special attention should be shown to the connectors; repair of a broken Splitter/Coupler is not possible; replacement is the only option.

In the Fibre Optic Splitter (55-165507) in University Station Master Site 1 (80-330552-1), Single Mode Optical Splitter/Coupler (98-100001) is used to split the optical signal from the FO TX module in F/O Link Subsystem (98-700001) into two equal paths.

11.4.2. 800MHz FO Hub Amplifier + Filters (55-165601)

Section	Component	Component Part Description	Qty. Per
	Part		Assembly
11.4.2.3.	02-007206	900MHZ 8POLE 25MHz+ B/W "SMA"	6
11.4.2.4.	07-015105	ASYMMETRIC CPLR 30dB 800-2500MHz GA	3
11.4.2.5.	10-000701	SW ATT 0-30dB 0.25W SMA F	2
11.4.2.6.	11-005902K	900MHz LOW NOISE AMP WITH RELAY KIT	1
11.4.2.7.	11-006702K	800-1000MHz LNA 29dB (cw RELAY) KIT	2
11.4.2.8.	12-018002K	PA 800-960MHz 20W CLASS A KIT	1
11.4.2.9.	12-021901	Low Power Amplifier	2
11.4.2.10.	17-001109*	AGC Detector Assembly (Logarithmic)	1
	17-001117*	AGC Detector Assembly	1
	17-001201*	AGC Attenuator Assembly	2
11.4.2.11.	20-001601	12V RELAY BOARD	1
11.4.2.12.	80-008901	12V RELAY PCB ASSEMBLY	1
11.4.2.13.	94-100004	STPS12045TV 60A DUAL DIODE	1
11.4.2.14.	96-200047	DC/DC Converter	
11.4.2.15.	96-300052	JWS150-12/A PSU (COUTANT LAMBDA)	1

*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz FO Hub Amplifier + Filters (55-165601); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link

11.4.2.1. 800MHz FO Hub Amplifier + Filters (55-165601) **outline drawing** drawing number 55-1656101

STTRS DOCUMENTATION

ш ANALOGUE ALARMS ٩M S S S P പ -30dB MON 06/11/07 24/08/07 12/07/07 14/06/07 DATE Ā 07-015105 (ECN4628) -30dB 55-165681 AMPLIFIER ISSUE DESCRIPTION PRODUCTION ISSUE PROTOTYPE ISSUE DRAWING.No οC 800MHz F/O HUB 854-869MHz SYSTEM DIAGRAM 02-007201 ECN4490 ECN4547 }} 764-776MHz 02-007201 794-806MHz 809-824MHz RF LEVEL 17-016502 55-165411 02-007201 02-007201 }} }} }} CA BA AA % 1 1 ANALOGUE ALARM MONITOR ₩ ⊕ CUSTOMER 30dB 17-001117 11-006702 TITLE AGC 30dB THIRD ANGLE PROJECTION 12-018002 Aerial Facilities Limited Tel : 01494 777000 Fax : 01494 777002 17-001201 10-000701 0-30dB 甲 PART No. 55-165601 England 12-021901 15dB Bр ►+12V 11-006702 809-824MHz 02-007201 **30dB** }} 10-000701 17-001201 Щþ THIS IS A PROPRIETARY DESIGN OF AERIAL FACILITIES LTO. REPRODUTON OR USE OF THIS DESIGN BY OTHERS IS PERMISSIBLE ONLY IF EXPRESSLY AUTHORISED IN WRITING BY AERIAL FACULITIES LTD. 11-005902 20dB 滀 T 0-30dB BЬ SCALE 12-021901 15dB TOLERANCES NO DECIMAL PLACE ± 1mm ONE DECIMAL PLACE ± 0.3mm TWO DECIMAL PLACES ± 0.1mm 96-300052 96-200047 DC 854-869MHz 02-007201 g 17-001109 AGC 07-015105 -30dB 07-015105 -30dB ALL DIMENSIONS ARE IN mm UNLESS OTHERWISE STATED 14/06/07 N APPD DATE ပ œ JB1 -30dB MON JB2 -30dB MON AC Ы 110V 12V G പ DRAWN CHKD ш \triangleleft Ш \odot \square

STTRS DOCUMENTATION

11.4.2.3. Bandpass Filter (02-007206)

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously.

PARAMETER		SPECIFICATION	
Re	esponse type	Chebyshev	
Freq	uency range	800 - 950MHz *	
	Bandwidth	25MHz *	
Numbe	er of sections	8	
Insertion loss		1.2 dB	
VSWR		better than 1.2:1	
Connectors		SMA female	
Power handling		100W max	
Temperature	operation	-20°C to +60°C	
range	storage	-40°C to +70°C	
Weight		3 kg (typical)	

02-007206 Specification

*tuned to Customer's specification

11.4.2.4. Wideband Asymmetric Coupler (07-015105)

The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

07-015105 Specification

PARAMETER		SPECIFICATION
	Construction	Inductive air gap
	Frequency	800-2500MHz
	Through loss	0.4dB (typical)
Coupling level		-30dB ±0.5dB
Isolation		N/A
Weight		<1.0kg
Connectors		SMA, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

STTRS DOCUMENTATION

11.4.2.5. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

Switched Attenuator 10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER		SPECIFICATION
Attenu	ation Values	0-30dB
Atten	uation Steps	2, 4, 8 and 16dB
Pov	wer Handling	0.25 Watt
Attenuat	ion Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

11.4.2.6. Low Noise Amplifier (11-005902)

The Gallium-Arsenide low noise amplifier used in the unit is a double stage, solid-state low noise amplifier. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into any alarm system. There is a Current Fault Alarm Function, which indicates failure of each one or both RF transistors by a various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.

PARAMETER		SPECIFICATION
Fr	equency range:	800 – 960MHz *
	Bandwidth:	<170MHz
	Gain:	19.5dB (typical)
1dB con	npression point:	21dBm
	OIP3:	33dBm
Input/ou	tput return loss:	>20dB
	Noise figure:	1dB (typical)
Powe	er consumption:	190mA @ 24V DC
	Supply voltage:	10-24V DC
	Connectors:	SMA female
Temperature	operational:	-10°C to +60°C
range	storage:	-40°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		0.28kg

11-005902 Specification

*tuned to Customer's specification

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

LNA 'D' Connector Pin-out details

11.4.2.7. Low Noise Amplifier (11-006702)

The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system.

11-006702 Specification

PARAMETER		SPECIFICATION
Frequency range:		800 – 1000MHz
	Bandwidth:	<200MHz
	Gain:	29dB (typical)
1dB Compi	ession point:	20dBm
	OIP3:	33dBm
Input/Outpu	it return loss:	>18dB
	Noise figure:	1.3dB (typical)
Power consumption:		180mA @ 24V DC
Su	pply voltage:	10-24V DC
	Connectors:	SMA female
Tomporaturo rango:	operational:	-10°C to +60°C
remperature range.	storage:	-20°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		290gms (approximately)

Low Noise Amplifier (11-006702) 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

11.4.2.8. Power Amplifier (12-018002)

This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-018002 Specification

PARAMETER		SPECIFICATION
F	requency range:	800-960MHz
00	Small signal gain:	30dB
	Gain flatness:	±1.2dB
	I/O Return loss:	>18dB
1dB co	mpression point:	42.8dBm
OIP3:		56dBm
Supply voltage:		24V DC
Supply current:		5.0Amps (Typical)
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C
Weight:		<2kg (no heatsink)

Power Amplifier (12-018002) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

11.4.2.9. Low Power Amplifier (12-021901)

The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

PARAMETER		SPECIFICATION
Free	quency range	800-960MHz*
	Bandwidth	20MHz *
Maxim	um RF output	>1.0 Watt
	Gain	15dB
1dB comp	pression point	+30.5dBm
3 rd order in	ntercept point	+43dBm
	Noise Figure	<6dB
	VSWR	better than 1.5:1
	Connectors	SMA female
	Supply	500mA @ 10-15V DC
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
	Weight	0.5 kg
Size		167x52x25mm

Low Power Amplifier (12-021901) Specification

* Tuned to Customer's specification

Low Power Amplifier (12-021901) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

11.4.2.10. Automatic Gain Control

17-001109 AGC Detector Assembly (Logarithmic)

17-001117 AGC Detector Assembly

17-001201 AGC Attenuator Assembly

The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz FO Hub Amplifier + Filters (55-165601); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link

800MHz FO Hub Amplifier + Filters (55-165601) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path

The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the down link

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

PARAMETER		SPECIFICATION
	Frequency range	up to 1000MHz
	Attenuation range	3 to 30dB
	Attenuation steps	continuously variable
	VSWR	better than 1.2:1
	RF Connectors	SMA female
Power	attenuator	1W
handling	detector/amp	>30W (or as required)
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C
Sizo	attenuator pcb	50 x 42 x 21mm
Size	detector/amp pcb	54 x 42 x 21mm
Woight	attenuator	90grams
weight	detector/amp	100grams

11.4.2.11. 12V (Dual) Relay Board (20-001601)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001601 Specification

PARAM	ETER	SPECIFICATION
C	perating voltage:	8 to 30V (floating earth)
	Alarm threshold:	Vcc - 1.20 volt <u>+</u> 15%
	Alarm output rel	ay contacts:
Ma	x. switch current:	1.0Amp
ľ	Max. switch volts:	120Vdc/60VA
Μ	ax. switch power:	24W/60VA
Min. switch load:		10.0µA/10.0mV
Relay isolation:		1.5kV
Mechanical life:		>2x10 ⁷ operations
Relay approval:		BT type 56
Connector details:		Screw terminals
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C

11.4.2.12. 12V (Single) Relay Board (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector.

The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008901 Specification

PARAMETER		SPECIFICATION
Operating voltage		8 to 30V (floating earth)
	Alarm threshold	Vcc - 1.20 volt +15%
Alarm output relay contacts:		
Max. switch current		1.0Amp
Max. switch volts		120Vdc/60VA
Max. switch power		24W/60VA
Min. switch load		10.0µA/10.0mV
Relay isolation		1.5kV
Mechanical life		>2x10 ⁷ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

11.4.2.13. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

11.4.2.14. DC/DC Converter 96-200047

96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced.

96-200047 Specification

PARAMETER		SPECIFICATION
DC Input Voltage range		19 to 36V
DC Output voltage		12V ± 1%
Max. current load		12.5Amps
Temperature	Operation	-10°C to +60°C
range	Storage	-20°C to +85°C
Working Humidity		20 to 90% RHNC

11.4.2.15. 12V Switch-Mode PSU (96-300052)

No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals.

All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300052 Specification

AC Input Supply		
Voltage	110 or 220V nominal	
	85 - 265V AC (absolute limits)	
Frequency	47 to 63Hz	
DC Output Supply		
Valtaga	12V DC (nominal)	
voltage	10.5-13.8V (absolute limits)	
Current	12.5A	

11.4.3. 700MHz FO Hub Amplifier (55-165602)

Section	Component	Component Part Description	Qty. Per
	Part		Assembly
11.4.3.3.	02-007206	900MHZ 8POLE 25MHz+ B/W "SMA"	2
11.4.3.4.	07-015105	ASYMMETRIC CPLR 30dB 800-2500MHz GA	2
11.4.3.5.	10-000701	SW ATT 0-30dB 0.25W SMA F	2
11.4.3.6.	11-005902	900MHz LOW NOISE AMP WITH RELAY KIT	1
11.4.3.7.	11-006702	800-1000MHz LNA 29dB (cw RELAY) KIT	2
11.4.3.8.	12-018002	PA 800-960MHz 20W CLASS A KIT	1
11.4.3.9.	12-021901	Low Power Amplifier	2
11.4.3.10.	17-001109	AGC Detector Assembly (Logarithmic)	1
	17-001117	AGC Detector Assembly	1
	17-001201	AGC Attenuator Assembly	2
11.4.3.11.	20-001601	12V RELAY BOARD	1
11.4.3.12.	80-008901	12V RELAY PCB ASSEMBLY	1
11.4.3.13.	94-100004	STPS12045TV 60A DUAL DIODE	1
11.4.3.14.	96-200047	DC/DC Converter	
11.4.3.15.	96-300052	JWS150-12/A PSU (COUTANT LAMBDA)	1

700MHz FO Hub Amplifier (55-165602) List of major components

*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz FO Hub Amplifier (55-165602); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

11.4.3.1. 700MHz FO Hub Amplifier (55-165602) outline drawing drawing number 55-1656102

STTRS DOCUMENTATION

11.4.3.2. 700MHz FO Hub Amplifier (55-165602) system diagram drawing number 55-165682

STTRS DOCUMENTATION

11.4.3.3. Bandpass Filter (02-007206)

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously.

PARAMETER		SPECIFICATION
Response type		Chebyshev
Frequency range		800 - 950MHz *
Bandwidth		25MHz *
Number of sections		8
Insertion loss		1.2 dB
VSWR		better than 1.2:1
Connectors		SMA female
Power handling		100W max
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C
Weight		3 kg (typical)

02-007206 Specification

*tuned to Customer's specification

11.4.3.4. Wideband Asymmetric Coupler (07-015105)

The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

07-015105 Specification

PARAMETER		SPECIFICATION
Construction		Inductive air gap
Frequency		800-2500MHz
Through loss		0.4dB (typical)
Coupling leve:		-30dB ±0.5dB
Isolation		N/A
Weight		<1.0kg
Connectors		SMA, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C
11.4.3.5. Switched Attenuator 0.25Watt, 0 - 30dB (10-000701)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

Switched Attenuator 10-000701 provides attenuation from 0 to 30dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000701 Specification

PARAMETER		SPECIFICATION
Attenu	ation Values	0-30dB
Atten	uation Steps	2, 4, 8 and 16dB
Pov	wer Handling	0.25 Watt
Attenuat	ion Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

11.4.3.6. Low Noise Amplifier (11-005902)

The Gallium-Arsenide low noise amplifier used in the unit is a double stage, solid-state low noise amplifier. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into any alarm system. There is a Current Fault Alarm Function, which indicates failure of each one or both RF transistors by a various alarm output options. The amplifier is housed in an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a 9way D-type for DC and alarm outputs.

PARAMETER		SPECIFICATION
Fr	equency range:	800 – 960MHz *
	Bandwidth:	<170MHz
	Gain:	19.5dB (typical)
1dB con	npression point:	21dBm
	OIP3:	33dBm
Input/ou	tput return loss:	>20dB
	Noise figure:	1dB (typical)
Powe	er consumption:	190mA @ 24V DC
	Supply voltage:	10-24V DC
	Connectors:	SMA female
Temperature	operational:	-10°C to +60°C
range	storage:	-40°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		0.28kg

11-005902 Specification

*tuned to Customer's specification

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm relay O/P bad
4	Alarm relay common
5	Alarm relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)

O/C good/0V bad

LNA 'D' Connector Pin-out details

9

11.4.3.7. Low Noise Amplifier (11-006702)

The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system.

11-006702 Specification

PARAMETER		SPECIFICATION
Frequency range:		800 – 1000MHz
	Bandwidth:	<200MHz
	Gain:	29dB (typical)
1dB Compi	ression point:	20dBm
OIP3:		33dBm
Input/Output return loss:		>18dB
Noise figure:		1.3dB (typical)
Power consumption:		180mA @ 24V DC
Su	pply voltage:	10-24V DC
	Connectors:	SMA female
Tomporaturo rango:	operational:	-10°C to +60°C
remperature range.	storage:	-20°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		290gms (approximately)

Low Noise Amplifier (11-006702) 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

11.4.3.8. Power Amplifier (12-018002)

This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-018002 Specification

PARAMETER		SPECIFICATION
F	requency range:	800-960MHz
00	Small signal gain:	30dB
	Gain flatness:	±1.2dB
	I/O Return loss:	>18dB
1dB co	mpression point:	42.8dBm
OIP3:		56dBm
Supply voltage:		24V DC
Supply current:		5.0Amps (Typical)
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C
Weight:		<2kg (no heatsink)

Power Amplifier (12-018002) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

111.4.3.9. Low Power Amplifier (12-021901)

The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

PARAM	ETER	SPECIFICATION
Free	quency range	800-960MHz*
	Bandwidth	20MHz *
Maxim	um RF output	>1.0 Watt
	Gain	15dB
1dB comp	pression point	+30.5dBm
3 rd order in	ntercept point	+43dBm
	Noise Figure	<6dB
VSWR		better than 1.5:1
	Connectors	SMA female
	Supply	500mA @ 10-15V DC
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
	Weight	0.5 kg
Size		167x52x25mm

Low Power Amplifier (12-021901) Specification

* Tuned to Customer's specification

Low Power Amplifier (12-021901) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

11.4.3.10. Automatic Gain Control

17-001109 AGC Detector Assembly (Logarithmic)

17-001117 AGC Detector Assembly

17-001201 AGC Attenuator Assembly

The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz FO Hub Amplifier (55-165602); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

700MHz FO Hub Amplifier (55-165602) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path

The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

PARAMETER		SPECIFICATION
	Frequency range	up to 1000MHz
	Attenuation range	3 to 30dB
	Attenuation steps	continuously variable
	VSWR	better than 1.2:1
	RF Connectors	SMA female
Power	attenuator	1W
handling	detector/amp	>30W (or as required)
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C
Sizo	attenuator pcb	50 x 42 x 21mm
5126	detector/amp pcb	54 x 42 x 21mm
Woight	attenuator	90grams
weight	detector/amp	100grams

11.4.3.11. 12V (Dual) Relay Board (20-001601)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001601 Specification

PARAM	ETER	SPECIFICATION
C	perating voltage:	8 to 30V (floating earth)
	Alarm threshold:	Vcc - 1.20 volt <u>+</u> 15%
	Alarm output rel	ay contacts:
Ma	x. switch current:	1.0Amp
ľ	Max. switch volts:	120Vdc/60VA
M	ax. switch power:	24W/60VA
Min. switch load:		10.0µA/10.0mV
Relay isolation:		1.5kV
Mechanical life:		>2x10 ⁷ operations
Relay approval:		BT type 56
Connector details:		Screw terminals
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C

11.4.3.12. 12V (Single) Relay Board (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector.

The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008901 Specification

PARAMETER		SPECIFICATION
(Operating voltage	8 to 30V (floating earth)
	Alarm threshold	Vcc - 1.20 volt +15%
	Alarm output rel	ay contacts:
Ma	ax. switch current	1.0Amp
	Max. switch volts	120Vdc/60VA
N	lax. switch power	24W/60VA
Min. switch load		10.0µA/10.0mV
Relay isolation		1.5kV
Mechanical life		>2x10 ⁷ operations
Relay approval		BT type 56
	Connector details	Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

11.4.3.13. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

11.4.3.14. DC/DC Converter 96-200047

96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced.

96-200047 Specification

PARAMETER		SPECIFICATION
DC Input Voltage range		19 to 36V
DC C	utput voltage	12V ± 1%
Max. current load		12.5Amps
Temperature	Operation	-10°C to +60°C
range Storage		-20°C to +85°C
Working Humidity		20 to 90% RHNC

11.4.3.15. 12V Switch-Mode PSU (96-300052)

No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals.

All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300052 Specification

AC Input Supply		
\/altaga	110 or 220V nominal	
voltage	85 - 265V AC (absolute limits)	
Frequency	47 to 63Hz	
DC Output Supply		
)/altara	12V DC (nominal)	
voltage	10.5-13.8V (absolute limits)	
Current	12.5A	

11.4.4. 700MHz FO HUB Splitter/Combiner (55-165603)

700MHz FO HUB Splitter/Combiner (55-165603) list of major components

section	Component Part	Component Part Description	Qty. Per Assembly
11.4.4.2.	05-003302	4 WAY SPLITTER GSM 900MHz	2

STTRS DOCUMENTATION

11.4.4.2. Four Way Splitter/Combiner (05-003302)

The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load.

Four Way Splitter (05-003302) Specification

PARAM	ETER	SPECIFICATION
Fred	luency range	700-980MHz
	Bandwidth	180MHz
	Rejection	>14dB
Insertion loss		<7.0dB (in band)
Connectors		N type, female
Weight		<1.5kg
Temperature	operational	-20∜C to +60∜C
range	storage	-40∜C to +70∜C

11.4.5. UNIVERSITY ST. SPLITTER 2 (55-165712)

UNIVERSITY ST. SPLITTER 2 (55-165712) List of major Components

section	Component	Component Part Description	Qty. Per
	Parts		Assembly
11.4.5.3.	07-015102	ASYMMETRIC CPLR 10dB 800-2500MHz GA	3

11.4.5.1. University Station Splitter 2 (55-165712) outline drawing drawing number 55-1657112

STTRS DOCUMENTATION

11.4.5.2. University Station Splitter 2 (55-165712) system diagram drawing number 55-165792

11.4.5.3. Wideband Asymmetric Coupler (07-015102)

The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case 10dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

07-015102 Specification

PARAN	IETER	SPECIFICATION
Free	quency Range	800 - 2500 MHz
C	Coupling Value	10 dB ± 1.0 dB
Main Line	Insertion Loss	<1.6 dB
	VSWR	1.4:1
	Directivity	>18 dB
	Power Rating	200 Watts
RF Connectors		'N' female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

11.4.6. Optical AB Switch FC/APC (98-700002)

Optical A/B Switch FC/APC (98-700002) an O.E.M. sourced Fibre Optic relay supplied as a 1U rack mount tray. 98-700002 allows for the automatic switching between two optical inputs to provide a common optical output. Manual selection of the input is also possible via toggle switches on the front panel.

PARAMETER	SPECIFICATION
Electrical Characteristics	
Power Supply Voltage	100 - 240 VAC
Power Supply Frequency	50 - 60 Hz
Optical Characteristics	
Operating Wavelength	1200 – 1610nm
Optical Input Range	+20 dBm
Optical Insertion Loss	2.0 dB
Optical Trip Threshold/Meter Range	-35 - +20 dBm
Optical Switch Speed	15ms
Backreflection Tolerance	-50dB
Environmental and Physical Characterist	ics
Optical Connectors	FC/APC
Operating Temp. Range	+10 to +40°C
Storage Temp. Range	-40 to +80 °C
Humidity	5 to 90 % RHNC
Weight	2.2 kg (6 lbs)
Dimensions	483 x 361 x 44mm (19.0 x 14.2 x 1.72 in.)

11.4.7. F/O Link Subsystem (98-800001)

F/O Link Subsystem (98-800001) is an O.E.M. sourced Optical Tranceiver package containing discreet TX and RX modules and supplied as a 1U rack mount tray

Parameter	Specification
Optical Output Power	4 mW
Wavelength, peak	1310 1550 nm
Frequency Response, 50 to 2.2 GHz	± 1.5 dB
Input and Output VSWR	1.5:1
Link Gain ⁽²⁾	0 dB
Output Noise Floor ⁽¹⁾	-137 dBm/Hz
Input 3rd Order Intercept ⁽¹⁾	30 dBm
Operating Temperature	-30 to +75°C
Storage Temperature	-40 to +85°C
Maximum RF Input to Transmitter	+20 dBm
Maximum Optical Input to Receiver	6 mW
A.C. Supply Voltage	90 – 265 VAC
Dimensions	483 x 457 x 44mm (19.0 x 18 x 1.72 in.)

⁽¹⁾ SFDR, Noise and IP3 specified with 5 dB optical loss.

⁽²⁾ Link Gain specified with 1 meter fiber.

STTRS DOCUMENTATION

12. WESTLAKE STATION LINE AMPLIFIER (80-330553)

rack number C03-CR-06

Westlake Station Line Amplifier (80-330553) list of major components

Section	Component	Component Part Description	Qty. Per
	Part		Assembly
12.4.1.	55-165703	800MHz LINE AMP + FILTERS (INT AMP)	2
12.4.2.	55-165704	700MHz LINE AMP + FILTERS (INT AMP)	2
12.4.3.	55-165707	WESTLAKE ST. SPLITTER	1

STTRS DOCUMENTATION

12.1. Westlake Station Line Amplifier (80-330553) rack elevation

drawing number 80-330553

STTRS DOCUMENTATION

12.2. Westlake Station Line Amplifier (80-330553) system diagram drawing number 80-330583

STTRS DOCUMENTATION

12.3. Westlake Station Line Amplifier (80-330553) alarm wiring diagram drawing number 80-330523

STTRS DOCUMENTATION

12.4. Westlake Station Line Amplifier (80-330553) Sub Components

12.4.1. 800MHz Line Amplifier (55-165703)

Section	Component	Component Part Description	Qty. Per
	Part		Assembly
12.4.1.3.	02-007206	Bandpass Filter	4
12.4.1.4.	07-015105	Wideband Asymmetric Coupler	1
12.4.1.5.	10-000901	Switched Attenuator 0.25W, 0 - 15dB	2
12.4.1.6.	11-006702	Low Noise Amplifier	1
12.4.1.7.	12-018002	Power Amplifier (20W 800MHz)	1
12.4.1.8.	12-021901	Low Power Amplifier	2
12.4.1.9.	17-001109*	AGC Detector Assembly (Logarithmic)	1
	17-001117*	AGC Detector Assembly	1
	17-001201*	AGC Attenuator Assembly	2
12.4.1.10.	20-001601	12V (Dual) Relay Board	1
12.4.1.11.	80-008901	12V (Single) Relay Board	1
12.4.1.12.	94-100004	Dual Diode Assembly	1
12.4.1.13.	96-200047	DC/DC Converter	1
12.4.1.14.	96-300052	12V Switch-Mode PSU	1

800MHz Line Amplifier (55-165703) List of Major Components

*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165703); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

STTRS DOCUMENTATION

12.4.1.2. 800MHz Line Amplifier (55-165703) System Diagram Drawing number 55-165783

STTRS DOCUMENTATION

12.4.1.3. Bandpass Filter (02-007206)

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously.

PARAM	ETER	SPECIFICATION
Re	esponse type	Chebyshev
Freq	uency range	800 - 950MHz *
	Bandwidth	25MHz *
Numbe	er of sections	8
	nsertion loss	1.2 dB
	VSWR	better than 1.2:1
Connectors		SMA female
Power handling		100W max
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C
Weight		3 kg (typical)

02-007206 Specification

*tuned to Customer's specification

12.4.1.4. Wideband Asymmetric Coupler (07-015105)

The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

07-015105 Specification

PARAMETER		SPECIFICATION
	Construction	Inductive air gap
	Frequency	800-2500MHz
Through loss		0.4dB (typical)
Coupling level		-30dB ±0.5dB
Isolation		N/A
Weight		<1.0kg
Connectors		SMA, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

STTRS DOCUMENTATION

12.4.1.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000901 S	pecification
-------------	--------------

PARAMETER		SPECIFICATION
Attenuat	ion Values	0-15dB
Attenua	ation Steps	1, 2, 4 and 8dB
Powe	r Handling	0.25 Watt
Attenuatior	n Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weigh		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

12.4.1.6. Low Noise Amplifier (11-006702)

The Gallium-Arsenide low noise amplifiers used in 800MHz Line Amplifier (55-165703) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system.

11-006702 Specification

PARAMETER		SPECIFICATION
Frequency range:		800 – 1000MHz
	Bandwidth:	<200MHz
	Gain:	29dB (typical)
1dB Compi	ession point:	20dBm
OIP3:		33dBm
Input/Outpu	it return loss:	>18dB
Noise figure:		1.3dB (typical)
Power consumption:		180mA @ 24V DC
Supply voltage:		10-24V DC
Connectors:		SMA female
Tomporaturo rango:	operational:	-10°C to +60°C
remperature range.	storage:	-20°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		290gms (approximately)

STTRS DOCUMENTATION

Low Noise Amplifier (11-006702) 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

12.4.1.7. Power Amplifier (12-018002)

This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

12-018002 Specification

PARAMETER		SPECIFICATION
F	requency range:	800-960MHz
	Small signal gain:	30dB
	Gain flatness:	±1.2dB
	I/O Return loss:	>18dB
1dB co	mpression point:	42.8dBm
OIP3:		56dBm
Supply voltage:		24V DC
Supply current:		5.0Amps (Typical)
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C
Weight:		<2kg (no heatsink)

STTRS DOCUMENTATION

Power Amplifier (12-018002) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

12.4.1.8. Low Power Amplifier (12-021901)

The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

Low Power Amplifier (12-021901) Specification

PARAMETER		SPECIFICATION
Free	quency range	800-960MHz*
	Bandwidth	20MHz *
Maxim	um RF output	>1.0 Watt
	Gain	15dB
1dB comp	pression point	+30.5dBm
3 rd order ii	ntercept point	+43dBm
	Noise Figure	<6dB
	VSWR	better than 1.5:1
	Connectors	SMA female
Supply		500mA @ 10-15V DC
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
Weight		0.5 kg
Size		167x52x25mm

* Tuned to Customer's specification

STTRS DOCUMENTATION

Low Power Amplifier (12-021901) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

12.4.1.9. Automatic Gain Control

- 17-001109 AGC Detector Assembly (Logarithmic)
- 17-001117 AGC Detector Assembly
- 17-001201 AGC Attenuator Assembly

The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165703); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

800MHz Line Amplifier (55-165703) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path

The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

STTRS DOCUMENTATION

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

PARA	METER	SPECIFICATION
	Frequency range	up to 1000MHz
	Attenuation range	3 to 30dB
	Attenuation steps	continuously variable
	VSWR	better than 1.2:1
	RF Connectors	SMA female
Power	attenuator	1W
handling	detector/amp	>30W (or as required)
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C
Sizo	attenuator pcb	50 x 42 x 21mm
Size	detector/amp pcb	54 x 42 x 21mm
\\/oight	attenuator	90grams
weight	detector/amp	100grams

AGC Specification (both types)

12.4.1.10. 12V (Dual) Relay Board (20-001601)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with two dual pole change-over relays with completely isolated wiring, accessed via screw terminals. Both relays are provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

20-001601 Specification

PARAMI	ETER	SPECIFICATION
C	perating voltage:	8 to 30V (floating earth)
	Alarm threshold:	Vcc - 1.20 volt <u>+</u> 15%
	Alarm output rel	ay contacts:
Ma	x. switch current:	1.0Amp
Γ	Max. switch volts:	120Vdc/60VA
M	ax. switch power:	24W/60VA
	Min. switch load:	10.0µA/10.0mV
Relay isolation:		1.5kV
Mechanical life:		>2x10 ⁷ operations
Relay approval:		BT type 56
Connector details:		Screw terminals
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C

12.4.1.11. 12V (Single) Relay Board (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector.

The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008901 Specification

PARAM	ETER	SPECIFICATION
(Operating voltage	8 to 30V (floating earth)
	Alarm threshold	Vcc - 1.20 volt +15%
	Alarm output rel	ay contacts:
Ma	ax. switch current	1.0Amp
	Max. switch volts	120Vdc/60VA
Max. switch power		24W/60VA
Min. switch load		10.0µA/10.0mV
Relay isolation		1.5kV
Mechanical life		>2x10 ⁷ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

12.4.1.12. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

12.4.1.13. DC/DC Converter 96-200047

96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced.

PARAMETER		SPECIFICATION
DC Input Voltage range		19 to 36V
DC C	output voltage	12V ± 1%
Max. current load		12.5Amps
Temperature	Operation	-10°C to +60°C
range Storage		-20°C to +85°C
Working Humidity		20 to 90% RHNC

12.4.1.14. 12V Switch-Mode PSU (96-300052)

No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals.

All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300052 Specification

AC Input Supply		
	110 or 220V nominal	
Voltage	85 - 265V AC	
	(absolute limits)	
Frequency	47 to 63Hz	
DC Output Supply		
Voltago	12V DC (nominal)	
voltage	10.5-13.8V (absolute limits)	
Current	12.5A	

12.4.2 700MHz Line Amplifier (55-165704)

Description of 700MHz Line Amplifier (55-165704)

-			
Section	Component	Component Part Description	Qty. Per
	Part		Assembly
12.4.2.3.	02-007206	Bandpass Filter	4
12.4.2.4.	07-015105	Wideband Asymmetric Coupler	1
12.4.2.5.	10-000901	Switched Attenuator 0.25W, 0 - 15dB	2
12.4.2.6.	11-006702	Low Noise Amplifier	1
12.4.2.7.	12-018002	Power Amplifier (20W 800MHz)	1
12.4.2.8.	12-021901	Low Power Amplifier	2
12.4.2.9.	17-001109*	AGC Detector Assembly (Logarithmic)	1
	17-001117*	AGC Detector Assembly	1
	17-001201*	AGC Attenuator Assembly	2
12.4.2.10.	80-008901	12V (Single) Relay Board	1
12.4.2.11.	94-100004	Dual Diode Assembly	1
12.4.2.12.	96-200047	DC/DC Converter	1
12.4.2.13.	96-300052	12V Switch-Mode PSU	1

700MHz Line Amplifier (55-165704) List of Major Components

*The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 800MHz Line Amplifier (55-165703); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

STTRS DOCUMENTATION

12.4.2.2. 700MHz Line Amplifier (55-165704) System Diagram Drawing number 55-165784

12.4.2.3. Bandpass Filter (02-007206)

The bandpass filters are multi-section designs with a bandwidth dependent upon the passband frequencies, (both tuned to customer requirements). The response shape is basically Chebyshev with a passband design ripple of 0.1dB. The filters are of slot coupled, folded combline design, and are carefully aligned during manufacture in order to optimise the insertion loss, VSWR and intermodulation characteristics of the unit. The tuned elements are silver-plated to reduce surface ohmic losses and maintain a good VSWR figure and 50Ω load at the input and output ports.

Being passive devices, the bandpass filters should have an extremely long operational life and require no maintenance. Should a filter be suspect, it is usually most time efficient to replace the module rather than attempt repair or re-tuning.

No adjustments should be attempted without full network sweep analysis facilities to monitor both insertion loss and VSWR simultaneously.

PARAMETER		SPECIFICATION
Response type		Chebyshev
Freq	uency range	800 - 950MHz *
	Bandwidth	25MHz *
Numbe	er of sections	8
Insertion loss		1.2 dB
VSWR		better than 1.2:1
Connectors		SMA female
Power handling		100W max
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C
Weight		3 kg (typical)

02-007206 Specification

*tuned to Customer's specification

12.4.2.4. Wideband Asymmetric Coupler (07-015105)

The purpose of Wideband Asymmetric Coupler (07-015105) is to tap off a known portion (in this case 30dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

07-015105 Specification

PARAMETER		SPECIFICATION
	Construction	Inductive air gap
	Frequency	800-2500MHz
Through loss		0.4dB (typical)
Coupling level		-30dB ±0.5dB
Isolation		N/A
Weight		<1.0kg
Connectors		SMA, female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

STTRS DOCUMENTATION

12.4.2.5. Switched Attenuator 0.25W, 0 - 15dB (10-000901)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

PARAMETER		SPECIFICATION
Attenuat	ion Values	0-15dB
Attenua	ation Steps	1, 2, 4 and 8dB
Powe	r Handling	0.25 Watt
Attenuation Accuracy		± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weigh		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

12.4.2.6. Low Noise Amplifier (11-006702)

The Gallium-Arsenide low noise amplifiers used in 700MHz Line Amplifier (55-165704) are double stage, solid-state low noise amplifiers. Class A circuitry is used throughout the units to ensure excellent linearity and extremely low noise over a very wide dynamic range. The active devices are very moderately rated to provide a long trouble-free working life. There are no adjustments on these amplifiers, and in the unlikely event of a failure, then the complete amplifier should be replaced. This amplifier features its own in-built alarm system which gives a volt-free relay contact type alarm that is easily integrated into the main alarm system.

11-006702 Specification

PARAMETER		SPECIFICATION
Frequency range:		800 – 1000MHz
	Bandwidth:	<200MHz
Gain:		29dB (typical)
1dB Compi	ession point:	20dBm
OIP3:		33dBm
Input/Output return loss:		>18dB
	Noise figure:	1.3dB (typical)
Power consumption:		180mA @ 24V DC
Supply voltage:		10-24V DC
Connectors:		SMA female
Tomporaturo rango:	operational:	-10°C to +60°C
remperature range.	storage:	-20°C to +70°C
Size:		90 x 55 x 30.2mm
Weight:		290gms (approximately)

STTRS DOCUMENTATION

Low Noise Amplifier (11-006702) 'D' Connector Pin-out details

Connector pin	Signal
1	+Ve input (10-24V)
2	GND
3	Alarm RelayO/P bad
4	Alarm Relay common
5	Alarm Relay good
6	No connection
7	TTL voltage set
8	TTL alarm/0V (good)
9	O/C good/0V bad

12.4.2.7. Power Amplifier (12-018002)

This amplifier is a Class A 20W power amplifier from 800-960MHz in a 1 stage balanced configuration. It demonstrates a very high linearity and a very good input/output return loss (RL). It has built in a Current Fault Alarm Function.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

Technical Specification

PARAMETER		SPECIFICATION
F	requency range:	800-960MHz
5	Small signal gain:	30dB
	Gain flatness:	±1.2dB
	I/O Return loss:	>18dB
1dB co	mpression point:	42.8dBm
OIP3:		56dBm
Supply voltage:		24V DC
Supply current:		5.0Amps (Typical)
Temperature	operational:	-10°C to +60°C
range	storage:	-20°C to +70°C
Weight:		<2kg (no heatsink)

STTRS DOCUMENTATION

Power Amplifier (12-018002) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

12.4.2.8. Low Power Amplifier (12-021901)

The low power amplifier used is a triple stage solid-state low-noise amplifier. Class A circuitry is used in the unit to ensure excellent linearity over a very wide dynamic range. The three active devices are very moderately rated to provide a long trouble-free working life.

Its housing is an aluminium case (Iridite NCP finish) with SMA connectors for the RF input/output and a D-Type connector for the power supply and the Current Fault Alarm Function.

There are no adjustments on this amplifier, and in the unlikely event of failure then the entire amplifier should be replaced.

Low Power Amplifier (12-021901) Specification

PARAMETER		SPECIFICATION
Frequency range		800-960MHz*
	Bandwidth	20MHz *
Maxim	um RF output	>1.0 Watt
	Gain	15dB
1dB comp	pression point	+30.5dBm
3 rd order ii	ntercept point	+43dBm
Noise Figure		<6dB
VSWR		better than 1.5:1
Connectors		SMA female
Supply		500mA @ 10-15V DC
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C
Weight		0.5 kg
Size		167x52x25mm

* Tuned to Customer's specification

STTRS DOCUMENTATION
Low Power Amplifier (12-021901) 7-Way Connector Pin-outs

Connector Pin	Signal
A1 (large pin)	+24V DC
A2 (large pin)	GND
1	Alarm relay common
2	TTL alarm/0V good
3	Alarm relay contact (bad)
4	Alarm relay contact (good)
5	O/C good/0V bad (TTL)

12.4.2.9. Automatic Gain Control

- 17-001109 AGC Detector Assembly (Logarithmic)
- 17-001117 AGC Detector Assembly
- 17-001201 AGC Attenuator Assembly

The sub components 17-001109, 17-001117 & 17-001201 are parts of the Automatic Gain Control (AGC) system used in 700MHz Line Amplifier (55-165704); 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

700MHz Line Amplifier (55-165704) is fitted with two differing types of Automatic Gain Control (AGC) system, one linear, and one logarithmic. The AGC with logarithmic detector (17-001117) is fitted in the uplink path and the AGC with linear detector (17-001109) is fitted in the downlink path

The AFL Automatic Gain Control system consists of two units, a detector/amplifier and an attenuator. The detector/amplifier unit is inserted in the RF path on the output of the power amplifier, and the attenuator is situated in the RF path between the 1st and 2nd stages of amplification. 17-001117 and 17-001201 are paired for use in the uplink and 17-001109 and 17-001201 are paired for use in the downlink

The attenuator comprises a 50Ω P.I.N diode, voltage-variable attenuator with a range of 3 to 30dB. The attenuation is controlled by a DC voltage which is derived from the associated detector controller board.

Normally the attenuator is at minimum attenuation. The detector/amplifier unit monitors the RF level being delivered by the power amplifier, and when a certain threshold is reached it begins to increase the value of the attenuator to limit the RF output to the (factory set) threshold. Therefore overloading of the power amplifier is avoided.

The factory set threshold is 1dB below the Enhancer 1dB compression point. Some adjustment of this AGC threshold level is possible, a 10dB range is mostly achieved. It is not recommended under any circumstances to adjust the AGC threshold to a level greater than the 1dB compression point as system degradation will occur.

STTRS DOCUMENTATION

The detector comprises of a 50Ω transmission line with a resistive tap which samples a small portion of the mainline power. The sampled signal is amplified and fed to a conventional half wave diode rectifier, the output of which is a DC voltage proportional to the RF input signal.

This DC voltage is passed via an inverting DC amplifier with integrating characteristics, to the output, which drives the attenuation control line of the corresponding AGC attenuator. This unit is fitted at some earlier point in the RF circuit.

For small signals, below AGC onset, the output control line will be close to 12V and the AGC attenuator will have minimum attenuation. As the signal level increases the control line voltage will fall, increasing the attenuator value and keeping the system output level at a constant value.

PARA	AMETER	SPECIFICATION
	Frequency range	up to 1000MHz
	Attenuation range	3 to 30dB
	Attenuation steps	continuously variable
	VSWR	better than 1.2:1
	RF Connectors	SMA female
Power	attenuator	1W
handling	detector/amp	>30W (or as required)
Temperature	operation	-10°C to +60°C
range	storage	-20°C to +70°C
Sizo	attenuator pcb	50 x 42 x 21mm
Size	detector/amp pcb	54 x 42 x 21mm
Woight	attenuator	90grams
weight	detector/amp	100grams

AGC Specification (both types)

12.4.2.10. 12V (Single) Relay Board (80-008901)

The General Purpose Relay Board allows the inversion of signals and the isolation of circuits. It is equipped with a single dual pole change-over relay RL1, with completely isolated wiring, accessed via a 15 way in-line connector.

The relay is provided with polarity protection diodes and diodes for suppressing the transients caused by "flywheel effect" which can destroy switching transistors or induce spikes on neighbouring circuits. It's common use is to amalgamate all the alarm signals into one, volts-free relay contact pair for the main alarm system.

80-008901 Specification

PARAM	ETER	SPECIFICATION
(Operating voltage	8 to 30V (floating earth)
	Alarm threshold	Vcc - 1.20 volt +15%
	Alarm output rel	ay contacts:
M	ax. switch current	1.0Amp
	Max. switch volts	120Vdc/60VA
Max. switch power		24W/60VA
Min. switch load		10.0µA/10.0mV
Relay isolation		1.5kV
Mechanical life		>2x10 ⁷ operations
Relay approval		BT type 56
Connector details		Screw terminals
Temperature	operational	-10°C to +60°C
range	storage	-20°C to +70°C

STTRS DOCUMENTATION

12.4.2.11. Dual Diode Assembly (94-100004)

The purpose of these dual diode assemblies is to allow two DC voltage sources to be combined, so that the main DC rail within the equipment can be sourced from either a mains driven PSU, or externally through an XLR connector or from dual mains driven PSUs. They are very heavy-duty diodes and they prevent any reverse current from flowing back to their source or the alternative supply rail. Combining diodes such as these will also be used if the equipment is to be powered from external back-up batteries.

12.4.2.12. DC/DC Converter 96-200047

96-200047 is an O.E.M. high power device with a wide input range and 12.5 amp @ 12V (150Watts) output capability used to derive a 12V fixed voltage power supply rail from a higher voltage supply, in this case 12V. In the event of failure this unit should not be repaired, only replaced.

96-200047 Specification

PARAMETER		SPECIFICATION
DC Input \	/oltage range	19 to 36V
DC C	utput voltage	12V ± 1%
Max. current load		12.5Amps
Temperature	Operation	-10°C to +60°C
range	Storage	-20°C to +85°C
Working Humidity		20 to 90% RHNC

12.4.2.13. 12V Switch-Mode PSU (96-300052)

No routine maintenance of the PSU is required. If a fault is suspected, then the output voltage from the power supply may be measured on its output terminals. This is typically set to 12.2V. The adjustment potentiometer will be found close to the DC output terminals.

All the PSUs used in AFL Cell Enhancers are capable of operation from either 110 or 220V nominal AC supplies. The line voltage is sensed automatically, so no adjustment or link setting is needed by the operator.

96-300052 Specification

AC Input Supply		
	110 or 220V nominal	
Voltage	85 - 265V AC	
	(absolute limits)	
Frequency	47 to 63Hz	
DC Output Supply		
	12V DC (nominal)	
vollage	10.5-13.8V (absolute limits)	
Current	12.5A	

STTRS DOCUMENTATION

12.4.3. Westlake Station. Splitter (55-165707)

2U rack mount chassis

Westlake Station. Splitter (55-165707) list of major components

Section	Component Part	Component Part Description	Qty. Per Assembly
12.4.3.3.	07-015102	Wideband Asymmetric Coupler	5

STTRS DOCUMENTATION

12.4.3.1. Westlake Station. Splitter (55-165707) outline drawing Drawing number 55-1657107

STTRS DOCUMENTATION

12.4.3.2. Westlake Station. Splitter (55-165707) system diagram Drawing number 55-165787

12.4.3.3. Wideband Asymmetric Coupler (07-015102)

The purpose of Wideband Asymmetric Coupler (07-015102) is to tap off a known portion (in this case 10dB) of RF signal from transmission lines and to combine them, for example through splitter units for different purposes (alarms/monitoring etc.), whilst maintaining an accurate 50Ω load to all ports/interfaces throughout the specified frequency range. They are known formally as directional couplers as they couple power from the RF mainline in one direction only.

PARAN	IETER	SPECIFICATION
Free	quency Range	800 - 2500 MHz
C	Coupling Value	10 dB ± 1.0 dB
Main Line	Insertion Loss	<1.6 dB
VSWR		1.4:1
Directivity		>18 dB
Power Rating		200 Watts
RF Connectors		'N' female
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

07-015102 Specification

13 ATTENUATOR SHELF (ITAC) 1 (55-165506)

Attenuator Shelf (ITAC) 1 (55-165506) list of major components

Section	Component	Component Part Description	Qty. Per
	Part		Assembly
13.3.1.	05-002602	900MHz Splitter/Combiner	1
13.3.2.	05-003007	4 Port Hybrid Coupler	1
13.3.3.	09-000902	Dummy load	1
13.3.4.	10-000901	Switched Attenuator 0.25W, 0 - 15dB	1
13.3.5.	10-002960	25W 2.5GHz 60dB ATTENUATOR N M/F	1

13.1. Attenuator Shelf (ITAC) 1 (55-165506) outline drawing Drawing number 55-1655106

STTRS DOCUMENTATION

13.2 Attenuator Shelf (ITAC) 1 (55-165506) system diagram Drawing number 55-165586

STTRS DOCUMENTATION

13.3. Attenuator Shelf (ITAC) 1 (55-165506) major components

13.3.1. 900MHz Splitter/Combiner (05-002602)

The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load.

Being passive devices, the splitters should have an extremely long operational life and require no maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module rather than attempt repair or re-tuning.

05-002602 Specification

PARAMETER		SPECIFICATION
Frequency	Narrowband	815 – 960MHz
range	Broadband	800 – 1200MHz
Bondwidth	Narrowband	145MHz
Danuwium	Broadband	400MHz
	Input ports	1
	Output ports	2
Incortion loss	Narrowband	3.3dB
11561110111055	Broadband	3.5dB
Return	loss input & output	1.3:1
	Impedance	50Ω
lealation	Narrowband	>20dB
1501411011	Broadband	>18dB
	MTFB	>180,000 hours
Power rating	Splitting	20Watts
Fowerrating	Combining	0.5Watt
Connectors		SMA female
	Weight	200g (approximately)
	Size	54 x 44 x 21mm

13.3.2. 4 Port Hybrid Coupler (05-003007)

This transmitter hybrid coupler is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load. In this specific instance one port of 4 Port Hybrid Coupler (05-003007) is terminated with Dummy load 09-000902 (see below).

05-003007 Specification

PARAMETER		SPECIFICATION
Frec	uency range	700-900MHz
	Bandwidth	200MHz
	Rejection	>14dB
Insertion loss		6.5dB (in band, typical)
Connectors		SMA
Weight		<1.0kg
Temperature	operational	-10∜C to +60∜C
range	storage	-20∜C to +70∜C

13.3.3. Dummy load (09-000902)

When a combiner system is used to split or combine RF signals, in many cases it is most cost effective to use a standard stock item 4, 6 or 8 port device where, in fact, only a 3 or 6 port device is needed. In this case 4 Port Hybrid Coupler (05-003007) has one of its ports terminated with Dummy load (09-000902) in order to preserve the correct impedance of the device over the specified frequency range.

09-000902 specification

PARAMETER	SPECIFICATION
Frequency Range	0 - 2500 MHz
Power Rating	25 Watts continuous
VSWR	Better than 1.1:1
Impedance	50 Ohms
Temperature Range	-20 to +60°C
RF Connectors	N Type female
Dimension	110.3mm x 38.1mm x
Weight	485 grams
Finish	Black Anodised
RF Connector	N Type male
Environmental	IP66
MTBF	>180,000 hours

13.3.4. Switched Attenuator 0.25W, 0 - 15dB (10-000901)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000901 Specification

PARAMETER		SPECIFICATION
Attenua	ation Values	0-15dB
Attenu	ation Steps	1, 2, 4 and 8dB
Pow	er Handling	0.25 Watt
Attenuatio	on Accuracy	± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

STTRS DOCUMENTATION

13.3.5. Attenuator 25W, 60dB (10-002960)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. Attenuator 25W, 60dB (10-002960) is a fixed attenuator providing 60dB of signal attenuation.

PARAMETER		SPECIFICATION
Frequency Range		DC to 2.5GHz
Power Handling		25 W
Attenuation		60 dB
Attenuation Accuracy		± 0.5dB
Return Loss to 2.2GHz		18dB
Nominal Impedance		50 Ω
RF Conectors		N male to N female
Finish		Matt Black Anodise
Temperature range	operational	-20∜C to +55∜C
	storage	-20∜C to +70∜C

10-002960 Specification

STTRS DOCUMENTATION

14 ATTENUATOR SHELF (ITAC) 2 (55-165506)

Attenuator Shelf (ITAC) 2 (55-165506) list of major components

Section	Component Part	Component Part Description	Qty. Per Assembly
13.3.1.	05-002602	900MHz Splitter/Combiner	1
13.3.2.	05-003007	4 Port Hybrid Coupler	1
13.3.3.	09-000902	Dummy load	1
13.3.4.	10-000901	Switched Attenuator 0.25W, 0 - 15dB	1
13.3.5.	10-002960	Attenuator 25W, 60dB	1

STTRS DOCUMENTATION

14.1. Attenuator Shelf (ITAC) 2 (55-165506) outline drawing Drawing number 55-1655106

STTRS DOCUMENTATION

14.2 Attenuator Shelf (ITAC) 2 (55-165506) system diagram Drawing number 55-165586

STTRS DOCUMENTATION

14.3. Attenuator Shelf (ITAC) 2 (55-165506) major components

14.3.1. 900MHz Splitter/Combiner (05-002602)

The Splitter/Combiner used is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the VSWR and insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load.

Being passive devices, the splitters should have an extremely long operational life and require no maintenance. Should a unit be suspect, it is usually most time efficient to replace the whole module rather than attempt repair or re-tuning.

05-002602 Specification

PARAMETER		SPECIFICATION
Frequency	Narrowband	815 – 960MHz
range	Broadband	800 – 1200MHz
Pondwidth	Narrowband	145MHz
Danuwiuin	Broadband	400MHz
	Input ports	1
	Output ports	2
Incortion loss	Narrowband	3.3dB
Insention 1055	Broadband	3.5dB
Return loss input & output		1.3:1
	Impedance	50Ω
Isolation Narrow Broad	Narrowband	>20dB
	Broadband	>18dB
	MTFB	>180,000 hours
Power rating	Splitting	20Watts
	Combining	0.5Watt
	Connectors	SMA female
	Weight	200g (approximately)
	Size	54 x 44 x 21mm

14.3.2. 4 Port Hybrid Coupler (05-003007)

This transmitter hybrid coupler is a device for accurately matching two or more RF signals to single or multiple ports, whilst maintaining an accurate 50Ω load to all inputs/outputs and ensuring that the insertion losses are kept to a minimum. Any unused ports should be terminated with an appropriate 50Ω load. In this specific instance one port of 4 Port Hybrid Coupler (05-003007) is terminated with Dummy load 09-000902 (see below).

05-003007 Specification

PARAMETER		SPECIFICATION
Freq	uency range:	700-900MHz
Bandwidth:		200MHz
Rejection:		>14dB
Insertion loss:		6.5dB (in band, typical)
Connectors:		SMA
Weight:		<1.0kg
Temperature	operational :	-10∜C to +60∜C
range:	storage	-20∜C to +70∜C

14.3.3. Dummy load 09-000902

When a combiner system is used to split or combine RF signals, in many cases it is most cost effective to use a standard stock item 4, 6 or 8 port device where, in fact, only a 3 or 6 port device is needed. In this case 4 Port Hybrid Coupler (05-003007) has one of its ports terminated with Dummy load (09-000902) in order to preserve the correct impedance of the device over the specified frequency range.

09-000902 specification

PARAMETER	SPECIFICATION
Frequency Range	0 - 2500 MHz
Power Rating	25 Watts continuous
VSWR	Better than 1.1:1
Impedance	50 Ohms
Temperature Range	-20 to +60°C
RF Connectors	N Type female
Dimension	110.3mm x 38.1mm x
Weight	485 grams
Finish	Black Anodised
RF Connector	N Type male
Environmental	IP66
MTBF	>180,000 hours

14.3.4. Switched Attenuator 0.25W, 0 - 15dB (10-000901)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain.

10-000901 provides attenuation from 0 - 15dB in 2 dB steps The attenuation is simply set using the four miniature toggle switches on the top of each unit. Each switch is clearly marked with the attenuation it provides, and the total attenuation in line is the sum of the values switched in. They are designed to maintain an accurate 50Ω impedance over their operating frequency at both input and output.

10-000901 Specification

PARAMETER		SPECIFICATION
Attenua	ation Values	0-15dB
Attenuation Steps		1, 2, 4 and 8dB
Pow	er Handling	0.25 Watt
Attenuation Accuracy		± 1.0 dB
Frequency Range		DC to 1GHz
Impedance		50Ω
Connectors		SMA
VSWR		1.3:1
Weight		0.2kg
Temperature	operation	-20°C to +60°C
range	storage	-40°C to +70°C

STTRS DOCUMENTATION

14.3.5. Attenuator 25W, 60dB (10-002960)

In many practical applications for Cell Enhancers etc., the gain in each path is found to be excessive. Therefore, provision is made within the unit for the setting of attenuation in each path, to reduce the gain. Attenuator 25W, 60dB (10-002960) is a fixed attenuator providing 60dB of signal attenuation.

PARAMETER		SPECIFICATION
Frequency Range		DC to 2.5GHz
Power Handling		25 W
Attenuation		60 dB
Attenuation Accuracy		± 0.5dB
Return Loss to 2.2GHz		18dB
Nominal Impedance		50 Ω
RF Conectors		N male to N female
Finish		Matt Black Anodise
Temperature	operational	-20∜C to +55∜C
range	storage	-20∜C to +70∜C

10-002960 Specification

STTRS DOCUMENTATION