

TEST REPORT NO: RU1099/5314

COPY NO: 2

ISSUE NO: 1

FCC ID: NEO55-1248Series

REPORT ON THE CERTIFICATION TESTING OF A Aerial Facilities Limited Cell Enhancer WITH RESPECT TO THE FCC RULES CFR 47, PART 90 Subpart I PRIVATE LAND MOBILE REPEATER

TEST DATE: 5th – 24th February 2004

TESTED BY:		J CHARTERS
APPROVED BY:		P GREEN
		PRODUCT MANAGER EMC
DATE:	3 rd March 2003	

Distribution:

Copy Nos: 1. Aerial Facilities Limited

2. TCB: TRL Compliance Services Limited

3. TRL EMC

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

LONG GREEN FORTHAMPTON GLOUCESTER GL194QH UNITED KINGDOM TELEPHONE +44 (0)1684 833818 Fax +44 (0)1684 833858 E-MAIL test@trlcompliance.com www.trlcompliance.com

CONTENTS

	PAGE	
CERTIFICATE OF CONFORMITY & COMPLIANCE	3	
APPLICANT'S SUMMARY	4	
EQUIPMENT TEST CONDITIONS	5	
TESTS REQUIRED	5	
TEST RESULTS	6-65	
	ANNEX	
PHOTOGRAPHS	Α	
PHOTOGRAPH No. 1: Test setup		
PHOTOGRAPH No. 2: Test setup		
APPLICANT'S SUBMISSION OF DOCUMENTATION LIST	В	
Notes: 1. Component failure during test	YES [NO [>] K]
2. If Yes, details of failure:		

If Yes, details of failure:

3. The facilities used for the testing of the product contain in this report are FCC Listed.

CERTIFICATE OF CONFORMITY & COMPLIANCE

FCC IDENTITY:	NEO55-1248Series	
PURPOSE OF TEST:	CERTIFICATION	
TEST SPECIFICATION:	FCC RULES CFR 47, Part 90 Subpart I	
TEST RESULT:	Compliant to Specification	
EQUIPMENT UNDER TEST:	Cell Enhancer	
EQUIPMENT TYPE:	Private Land Mobile Repeater	
MAXIMIUM GAIN	+92.3 dBm (up link)	
MAXIMUM INPUT	-55.4 dBm (down link)	
MAXIMUM OUTPUT	+30.0 dBm	
ANTENNA TYPE:	Not applicable	
CHANNEL SPACING:	Not Applicable	
NUMBER OF CHANNELS:	Channel No. Uplink Downlink 380 – 395 MHz 390 – 395	MHz
FREQUENCY GENERATION:	N/A	
MODULATION TYPE:	F3E	
POWER SOURCE(s):	+24Vdc	
TEST DATE(s):	5 th – 24 th February 2004	
ORDER No(s):	23174	
APPLICANT:	Aerial Facilities Limited	
ADDRESS:	Aerial House Latimer Park, Latimer Chesham Buckinghamshire HP5 1TU United Kingdom	
TESTED BY:		J CHARTERS
APPROVED BY:		P GREEN PRODUCT MANAGER EMC

RF335 iss02 RU1099/5314 Page 3 of 70

APPLICANT'S SUMMARY

EQUIPMENT UNDER TEST (EUT): Cell Enhancer **EQUIPMENT TYPE:** 60-055903 PURPOSE OF TEST: **CERTIFICATION** TEST SPECIFICATION(s): FCC RULES CFR 47, Part 90 Subpart I TEST RESULT: COMPLIANT Yes APPLICANT'S CATEGORY: MANUFACTURER **IMPORTER** DISTRIBUTOR TEST HOUSE **AGENT** APPLICANT'S ORDER No(s): 23174 APPLICANT'S CONTACT PERSON(s): Mr Peter Bradfield E-mail address: Peterb@aerial.co.uk APPLICANT: Aerial Facilities Limited ADDRESS: Aerial House Latimer Park, Latimer Chesham Buckinghamshire HP5 1TU United Kingdom TEL: +44 (0)1494777000 FAX: +44 (0)1494777002 MANUFACTURER: Aerial Facilities Limited EUT(s) COUNTRY OF ORIGIN: United Kingdom TEST LABORATORY: TRL EMC UKAS ACCREDITATION No: 0728 5th – 24th February TEST DATE(s) TEST REPORT No: RU1099/5314

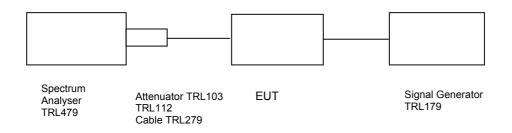
RF335 iss02 RU1099/5314 Page 4 of 70

EQUIPMENT TEST / EXAMINATIONS REQUIRED

1.	TEST/EXAMINATION	RULE PART	APPLICABILITY	RESULT
	RF Power Output	90.205	Yes	Complies
	Audio Frequency Response	TIA EIA-603.3.2.6	N/A	N/A
	Audio Low-Pass Filter Response	TIA EIA-603.3.2.6	N/A	N/A
	Modulation Limiting	TIA EIA-603.3.2.6	N/A	N/A
	Occupied Bandwidth	90.210	Yes	Complies
	Spurious Emissions at Antenna Terminals	90.210	Yes	Complies
	Field Strength of Spurious Emissions	90.210	Yes	Complies
	Frequency Stability	90.213	N/A(note 1)	N/A
	Transient behaviour	90.214	N/A(note 2)	N/A

Notes:

- 1 The EUT does not contain modulation circuitry, therefore the test was not performed.
- 2 The EUT is not a keyed carrier system, therefore the test was not performed.


2.	Product Use:	Private Land Mo	bile Repeater
3.	Emission Designator:	F3E	
4.	Temperatures:	Ambient (Tnom)	21°C
5.	Supply Voltages:	Vnom	+24 Vdc
	Note: Vnom voltages are as stated above	unless otherwise shown on the	e test report page
6.	Equipment Category:	Single channel Two channel Multi-channel	[] [] [X]
7.	Channel spacing:	Narrowband Wideband	[] [X]
8.	Test Location	TRL Compliance Services Up Holland Long Green	[X] []
9.	Modifications made during test program		No modifications were performed.

COMPLIANCE TESTS

AMPLIFIER GAIN - CONDUCTED - PART 2.1046 - UPLINK

21°C Radio Laboratory Ambient temperature

Relative humidity = 53% Supply voltage = +24 Vdc Channel number = See test results

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Gain after 20dB input level increase dBm
380.1	-61.9	29.85	0.36	92.11	92.11
382.5	-62.6	29.85	-0.08	92.39	92.39
384.9	-61.4	29.85	-0.052	91.198	91.198

Notes:

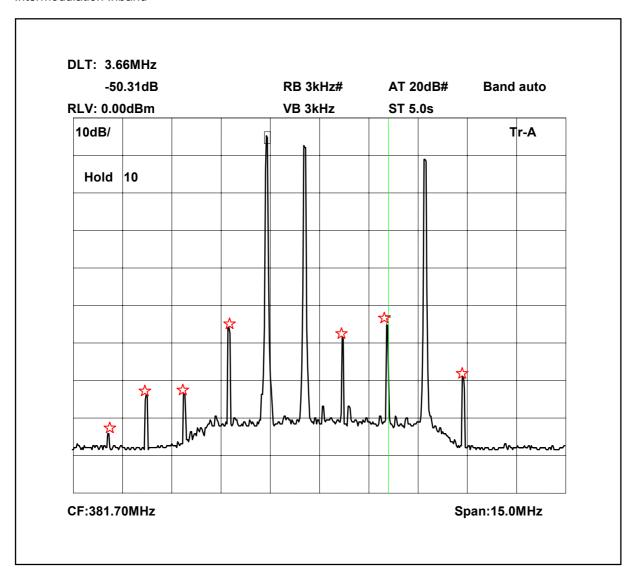
- 1.
- The level of the signal generator takes into consideration the loss from the cable.

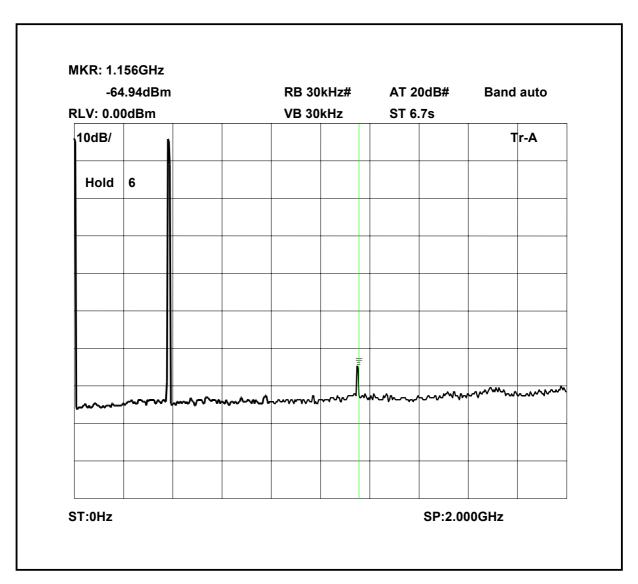
 The signal generator output was increased by 20dBs and the level of the output signal remeasured

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8308-200	N/A	103	x
ATTENUATOR	BIRD	8308-100	N/A	112	х
CABLE	ROSENBERGER	MICRO COAX	N/A	279	x
SIGNAL GENERATOR	MARCON	2042	119388/080	179	х

AMPIFIER INTERMODULATION SPURIOUS EMISSIONS - CONDUCTED - PART 2.1053- UPLINK

Ambient temperature = 21°C Radio Laboratory


Relative humidity = 53% Supply voltage = +24 Vdc


The Intermodulation and spurious products were measured with the amplifier operating at maximum gain. A three tone test was conducted using the equipment as above. The input power level was adjusted so the level at point D was the maximum input of –61.4dBm. The cable and attenuator loss between the EUT and the spectrum analyser was 29.85dB.

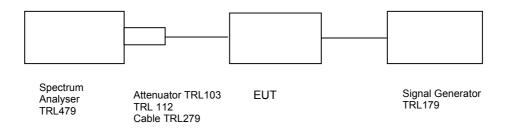
Sweep data is shown on the next page:

RF335 iss02 RU1099/5314 Page 7 of 70

The above plot shows that all products (designated by $\stackrel{\bigstar}{\sim}$) are at least 50dB below the fundamentals level detailed on previous page .

The above plot shows that there are no products outside the transmit band.

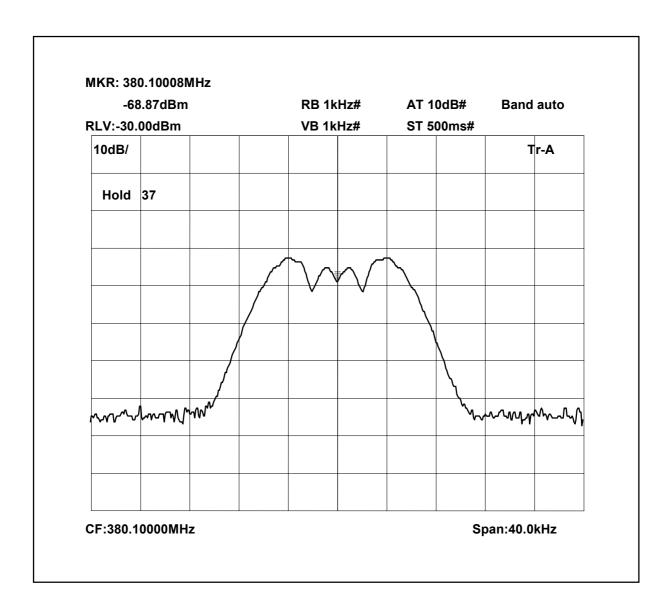
Test equipment used for intermodulation test

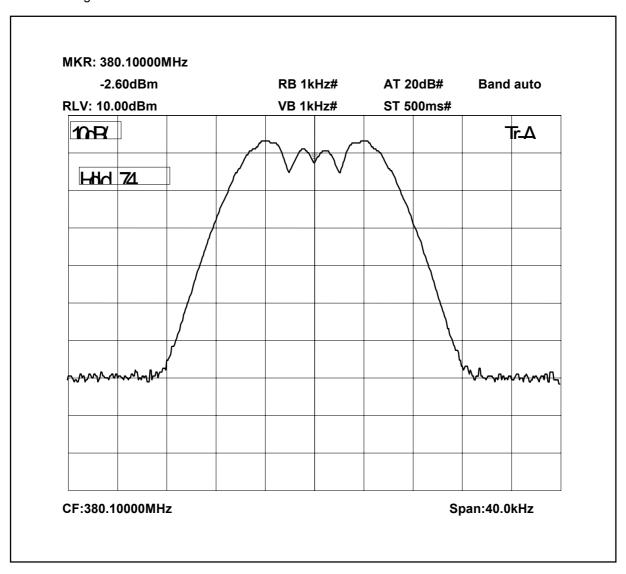

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
SIGNAL GENERATOR	ROHDE & SCHWARZ	SMR 20	834671/003	478	x
СМТА	ROHDE & SCHWARZ	CMTA52	894715/033	05	x
SIGNAL GENERATOR	MARCON	2042	119388/080	179	х
COMBINER	ELCOM	RC-4-50	N/A	170	х

TRANSMITTER TESTS

AMPLIFER MODULATED CHANNEL TEST - CONDUCTED - Part 2.1049- UPLINK

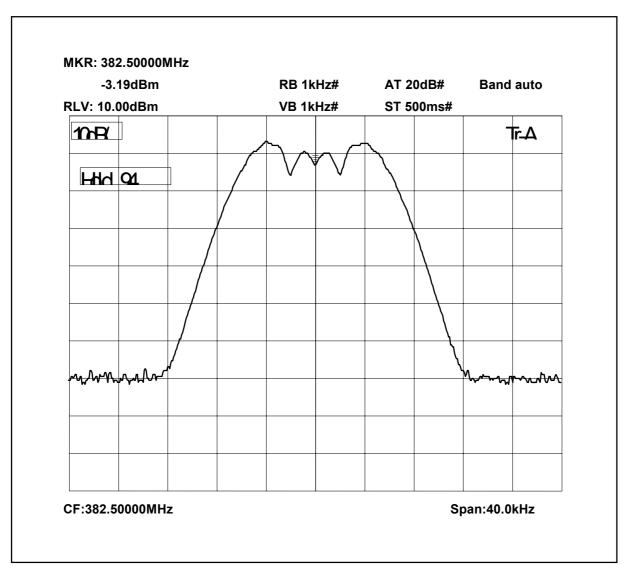
Ambient temperature = 24°C Radio Laboratory


Relative humidity = 48% Supply voltage = +24 Vdc Channel number = See test results

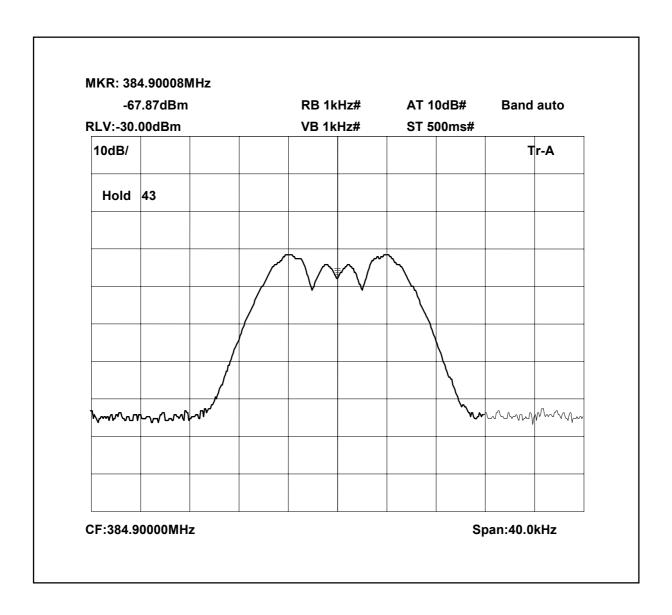

This test was performed to show that the amplifier does not alter the input signal in any way. The input signal was set to the maximum input level (-61.4 dBm) and modulated with a 2500Hz tone. The plots show the signal measured at the signal generator and the signal measured at the output of the EUT.

Note: The cables and attenuators had the following losses.

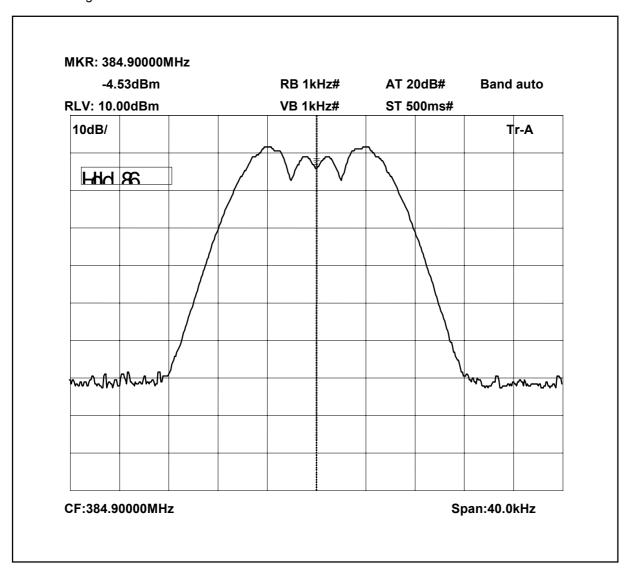

- 1. Cable TRL279 and attenuator TRL112 TRL103 29.85dB
- Cable between signal generator and EUT 0.4dB



380.1MHz Signal Generator and EUT deviation set to 5kHz



The above plots depicting the output waveshape show no measurable distortion visible. When compared to the input signal.

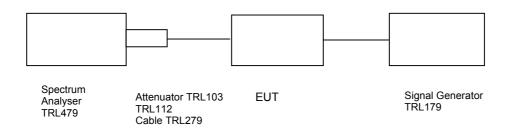


The above plots depicting the output waveshape show no measurable distortion visible. When compared to the input signal.

384.9MHz Signal Generator deviation set to 5kHz

The above plots depicting the output waveshape show no measurable distortion visible. When compared to the input signal.

The test equipment used for the Transmitter Modulated Channel tests is shown overleaf:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
ATTENUATOR	BIRD	8308-200	N/A	103	X
ATTENUATOR	BIRD	8308-100	N/A	112	x
CABLE	ROSENBERGER	MICRO COAX	N/A	279	x
SIGNAL GENERATOR	MARCON	2042	119388/080	179	х

TRANSMITTER TESTS

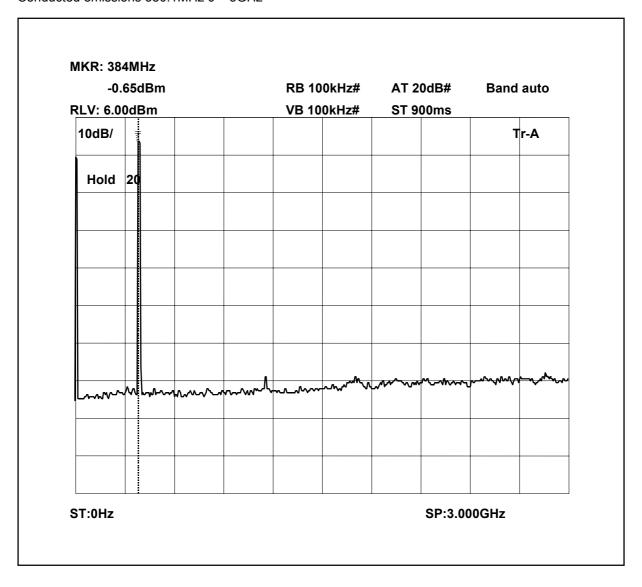
AMPLIFIER SPURIOUS EMISSIONS - CONDUCTED - Part 2.1051 dBm- UPLINK

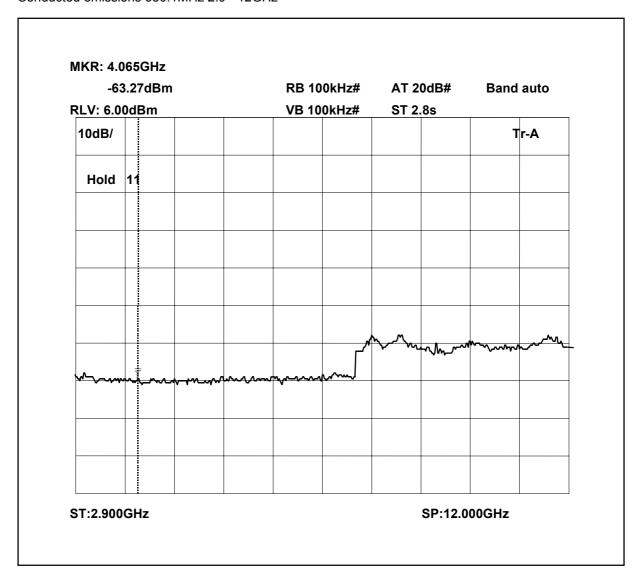
Ambient temperature = 19°C Radio Laboratory

Relative humidity = 45% Test Signal = F3E Supply voltage = +24 Vdc

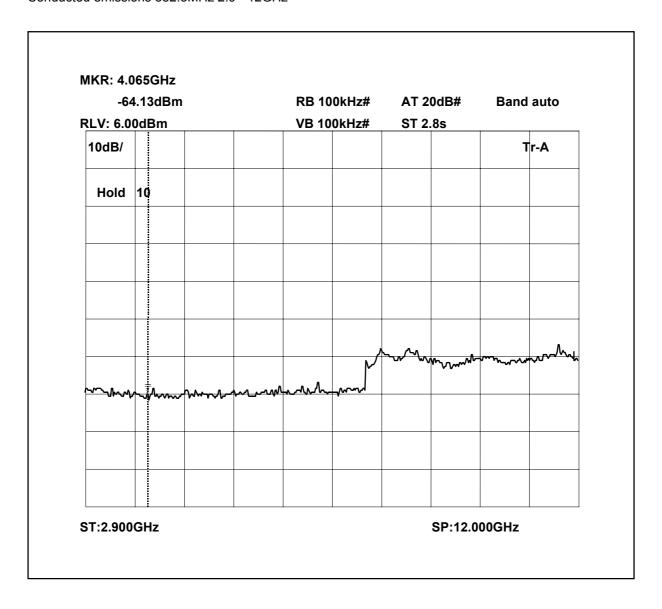
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating at maximum power and on three test frequencies.

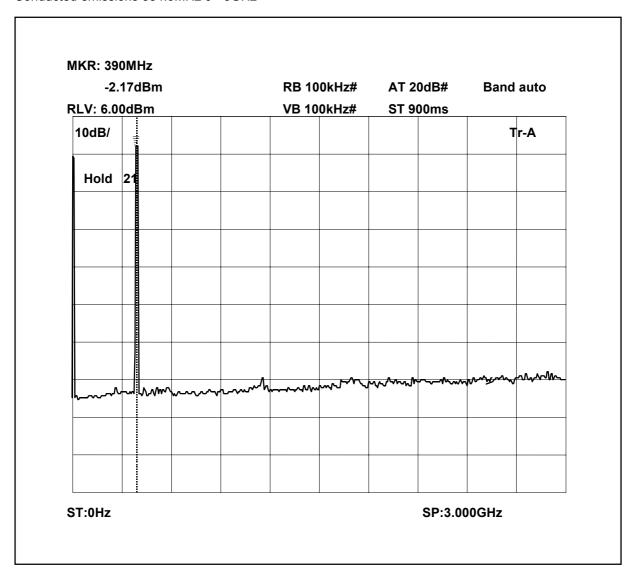
The Spurious limit was calculated as follows:


On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

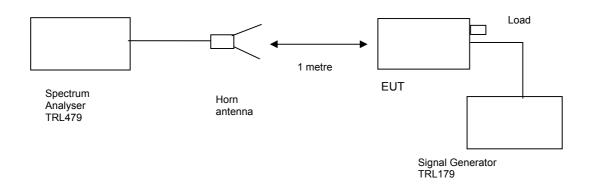

At least 43 + 10 log PdB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$


The test equipment used for the Transmitter Conducted Emissions:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8308-200	N/A	103	х
ATTENUATOR	BIRD	8308-100	N/A	112	х
CABLE	ROSENBERGER	MICRO COAX	N/A	279	x
SIGNAL GENERATOR	MARCON	2042	119388/080	179	х

VB 100kHz#		
	ST 900ms	
		Tr-A
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	_^
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	



-64	4.40dBı	m		RB 10	0kHz#	AT 2	0dB#	Band	auto
RLV: 6.0					0kHz#	ST 2	.8s		
10dB/								1	r-A
Hold	10								
					[^/	~~~~	M	m^	~~~~ <u>~</u>
~~~~~~	₩ <del>Ĭ</del> ₩	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**************************************	\ _{***}	~~~				

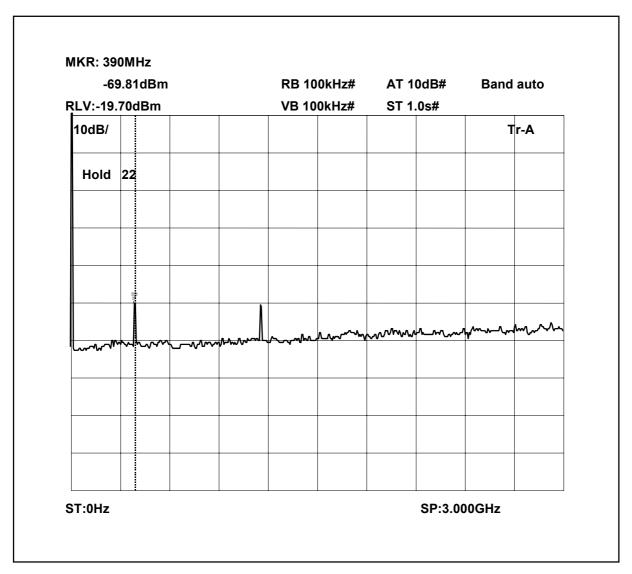
### TRANSMITTER TESTS

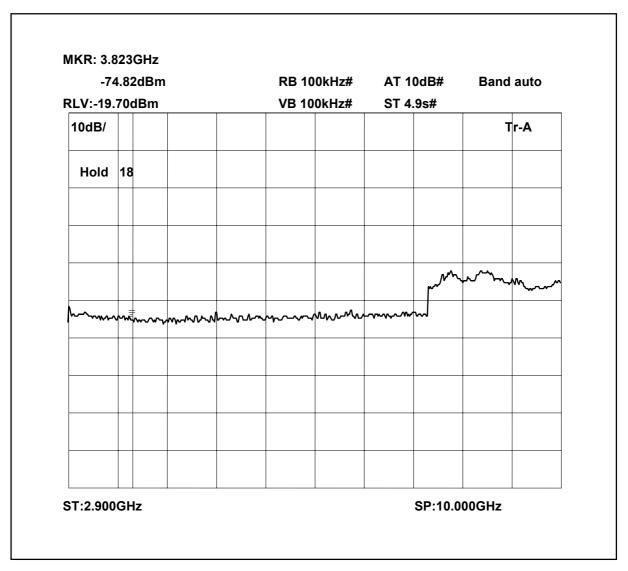
# AMPLIFIER SPURIOUS EMISSIONS - RADIATED - Part 2.1053- UPLINK

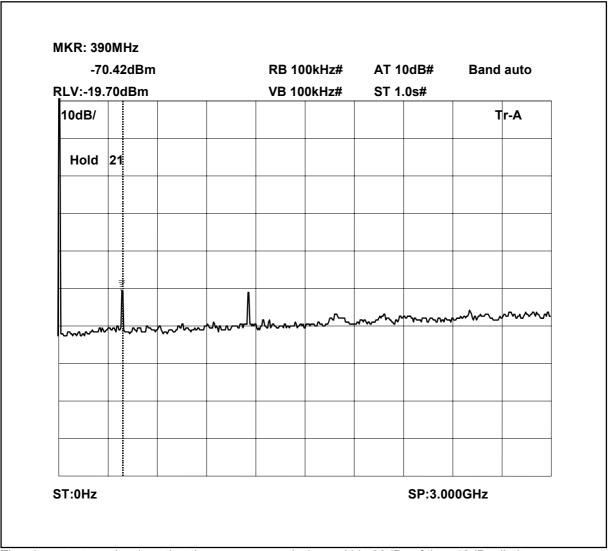
Ambient temperature = 19°C Test Signal = F3E

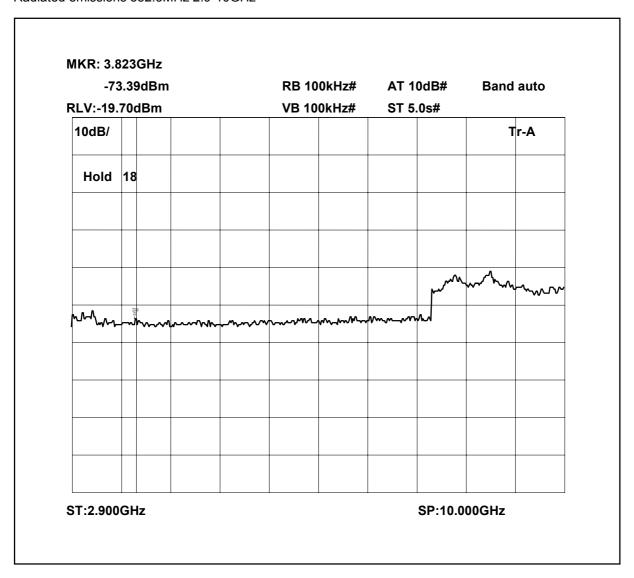
Relative humidity = 45%
Conditions = OATS
Supply voltage = +24 Vdc
Supply Frequency = N/A

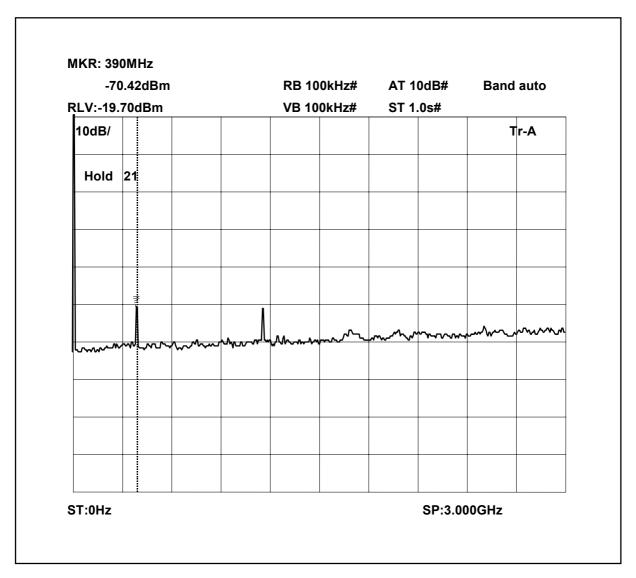


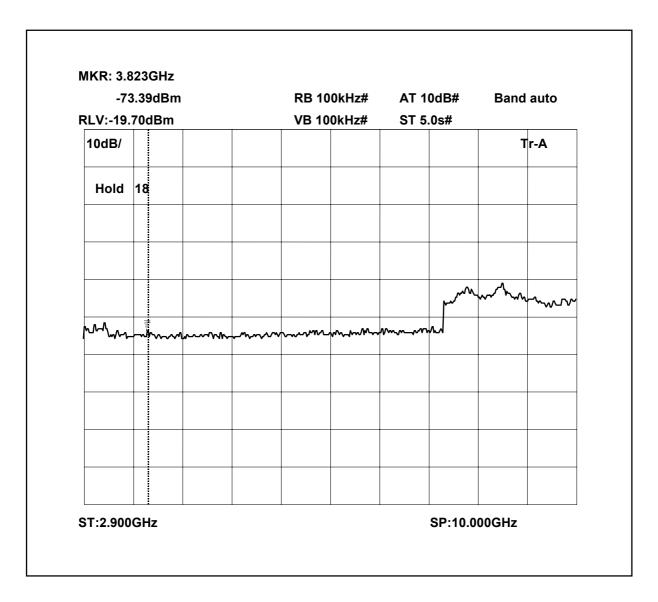

The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating maximum power on three test frequencies with a 50 ohm load on the output. The unit was also tested with the signal generator replaced by another 50ohm load.


The Spurious limit was calculated as follows:


On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

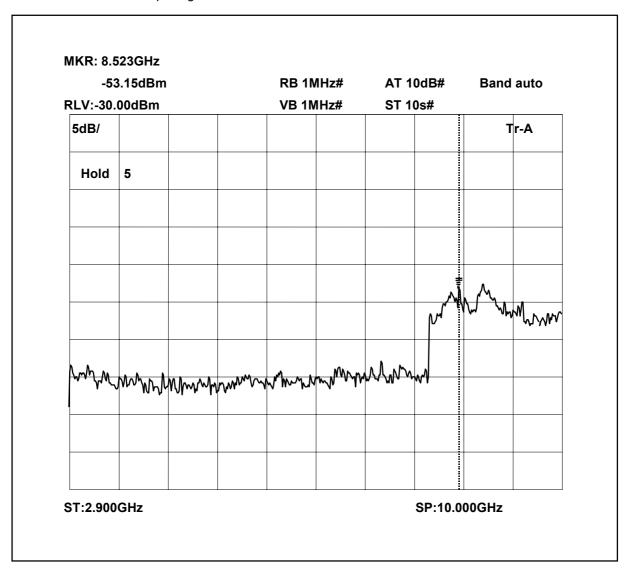

At least 43 + 10 log PdB


 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$ 







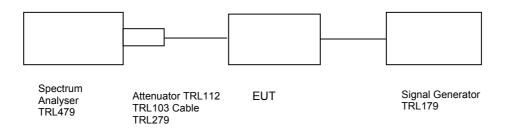





-71.83dBm RLV: 0.00dBm			RB 10	RB 100kHz#		AT 10dB#		d auto	
			VB 100kHz#		ST 20s#				
10dB/									Tr-A
Hold	25								
The same of the sa	······································			~~~~	,~~~~~		<b>~~~~</b>	MANAMAN MANAMAN	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
1 Ofwar									

Radiated emissions no input signal 2.9-10GHz




# The test equipment used for the Transmitter Spurious Emissions:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
HORN	EMCO	3115	9010-3581	139	x
ATTENUATOR	BIRD	8304-300-N	N/A	103	x
ATTENUATOR	BIRD	8304-300-N	N/A	112	x
CABLE	ROSENBERGER	MICRO COAX	N/A	279	x
50Ω Load	PHILCO	160B-300	1643	UH139	х
SIGNAL GENERATOR	MARCON	2042	119388/080	179	x

# AMPLIFIER GAIN - CONDUCTED - PART 2.1046 - DOWNLINK

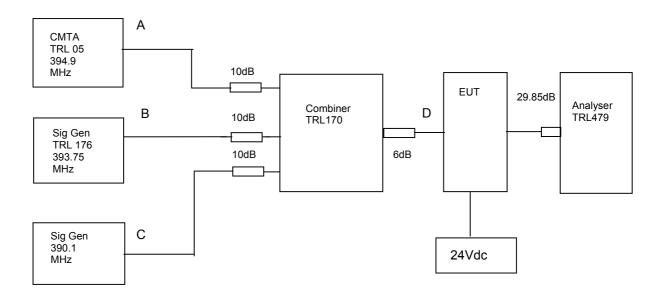
21°C Radio Laboratory Ambient temperature =

37% Relative humidity = Supply voltage Channel number +24 Vdc = See test results



Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Gain after 20dB input level increase dBm
390.1	-55.0	-29.85	-0.64	+84.6	+84.6
392.5	-57.5	-29.85	-0.79	+84.56	+84.56
394.9	-57.4	-29.85	-0.79	+86.84	+86.84

# Notes:

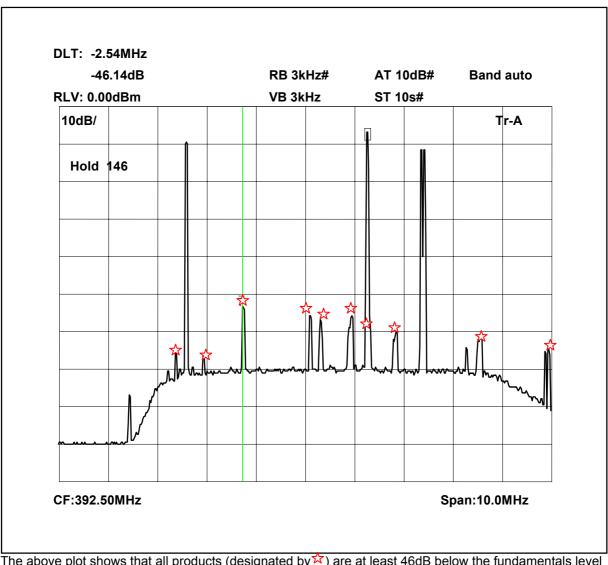

- The level of the signal generator takes into consideration the loss from the cable.
   The signal generator output was increased by 20dBs and the level of the output signal remeasured

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8304-300-N	N/A	103	х
ATTENUATOR	BIRD	8304-300-N	N/A	112	x
CABLE	ROSENBERGER	MICRO COAX	N/A	279	х
SIGNAL GENERATOR	MARCON	2042	119388/080	179	х

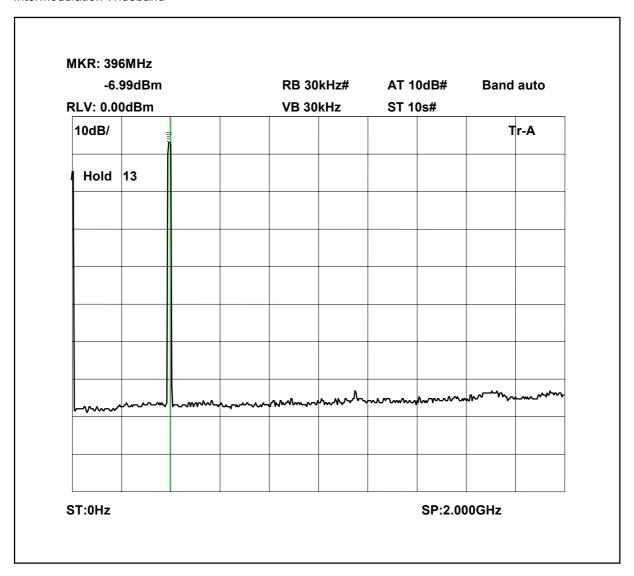
#### AMPIFIER INTERMODULATION SPURIOUS EMISSIONS - CONDUCTED - PART 2.1053- DOWNLINK

Ambient temperature = 21°C Radio Laboratory

Relative humidity = 37% Supply voltage = +24 Vdc




The Intermodulation and spurious products were measured with the amplifier operating at maximum gain. A three tone test was conducted using the equipment as above. The input power level was adjusted so the level at point D was the maximum input of -53.4dBm The cable and attenuators loss between the EUT and the spectrum analyser was 29.85 dB.


Sweep data is shown on the next page:

RF335 iss02 RU1099/5314 Page 37 of 70

## Intermodulation Inband

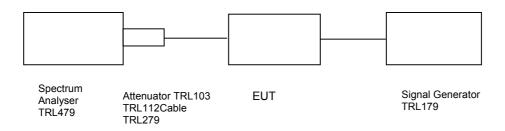


The above plot shows that all products (designated by ?) are at least 46dB below the fundamentals level detailed on previous page .



The above plot shows that there are no products outside the transmit band.

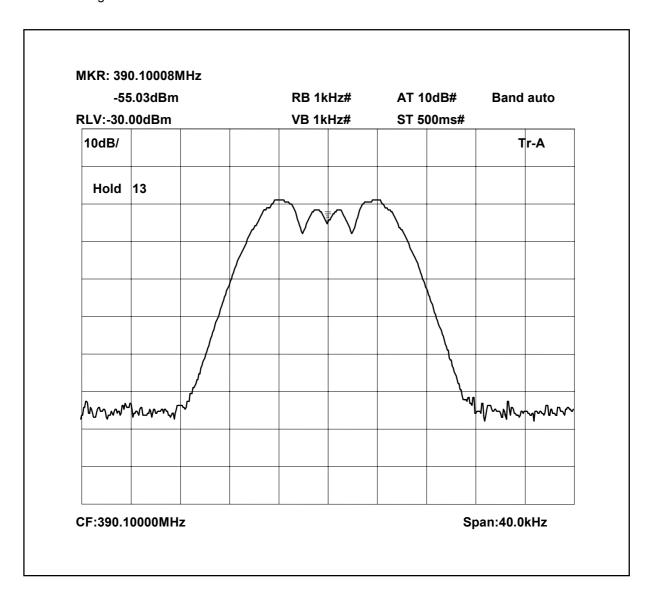
## Test equipment used for intermodulation test


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
SIGNAL GENERATOR	ROHDE & SCHWARZ	SMR 20	834671/003	478	x
СМТА	ROHDE & SCHWARZ	CMTA52	894715/033	05	х
SIGNAL GENERATOR	MARCON	2042	119388/080	179	х
COMBINER	ELCOM	RC-4-50	N/A	170	х

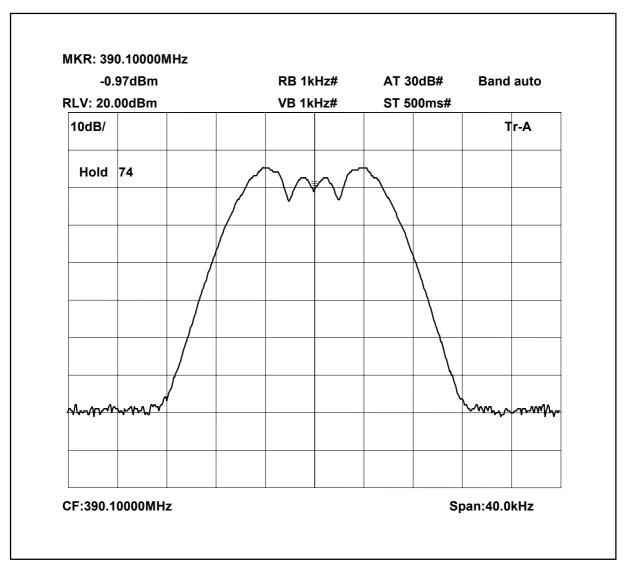
#### TRANSMITTER TESTS

## AMPLIFER MODULATED CHANNEL TEST - CONDUCTED - Part 2.1049- DOWNLINK

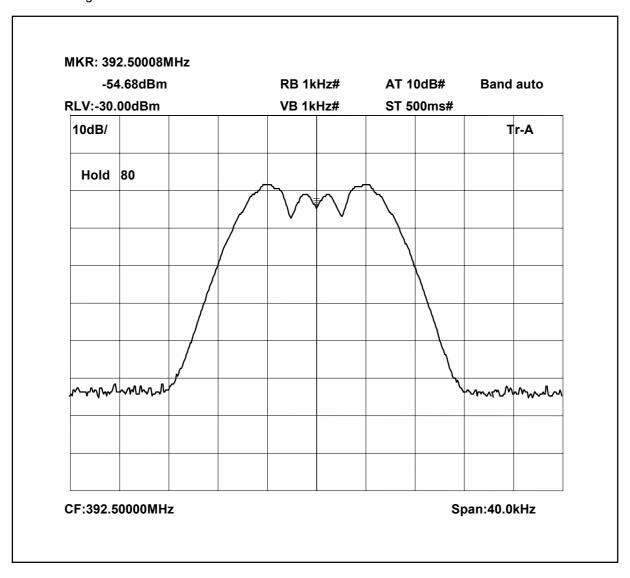
Ambient temperature = 24°C Radio Laboratory Relative humidity = 48%


Supply voltage = +24 Vdc Channel number = See test results

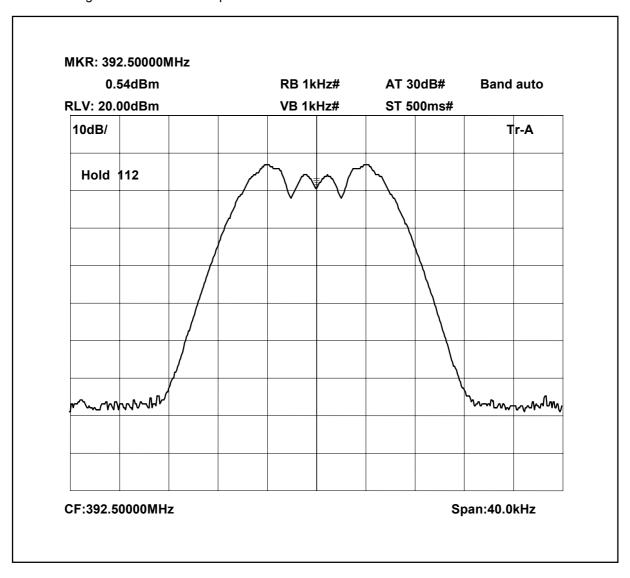



This test was performed to show that the amplifier does not alter the input signal in any way. The input signal was set to the maximum input level (-55.4Bm) and modulated with a 2500Hz tone. The plots show the signal measured at the signal generator and the signal measured at the output of the EUT.

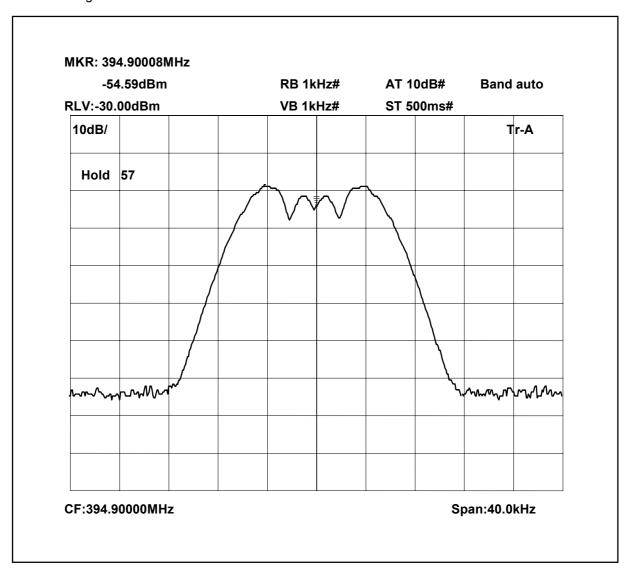
Note: The cables and attenuators had the following losses.

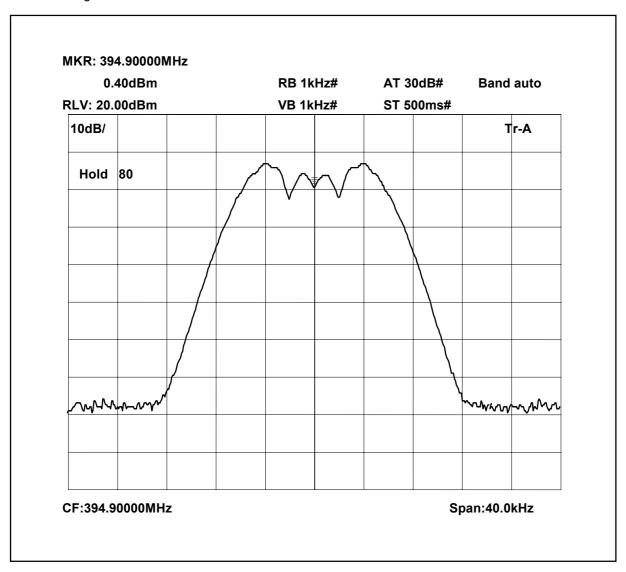

- 1. Cable TRL279 and attenuators TRL220 = 29.85dB
- 2. Cable between signal generator and EUT = 0.4dB




390.1MHz Signal Generator and EUT deviation set to 5kHz




The above plots depicting the output waveshape show no measurable distortion visible. When compared to the input signal.




392.5MHz Signal Generator and amplifier deviation set to 5kHz



The above plots depicting the output waveshape show no measurable distortion visible. When compared to the input signal.

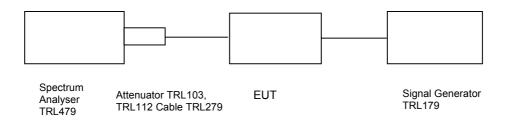




The above plots depicting the output waveshape show no measurable distortion visible. When compared to the input signal.

The test equipment used for the Transmitter modulated channel tests is shown overleaf:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8304-200	N/A	103	х
ATTENUATOR	BIRD	8304-100	N/A	112	x
CABLE	ROSENBERGER	MICRO COAX	N/A	279	x
SIGNAL GENERATOR	MARCON	2042	119388/080	179	х


#### TRANSMITTER TESTS

### AMPLIFIER SPURIOUS EMISSIONS - CONDUCTED - Part 2.1057 dBm- DOWNLINK

Ambient temperature = 24°C Radio Laboratory

= 48% = +24 Vdc Relative humidity Test Signal F3E

Supply voltage

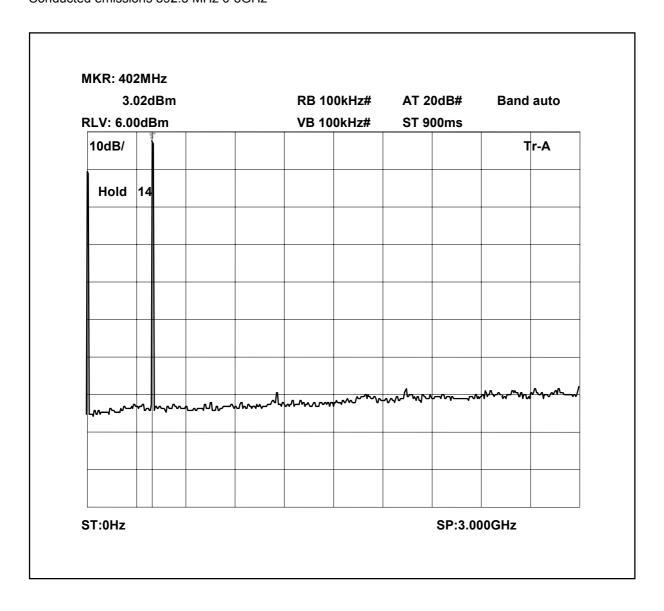


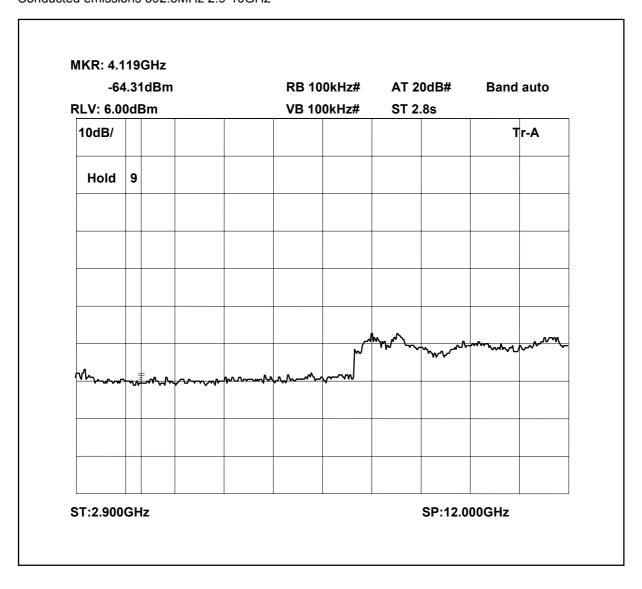
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating at maximum power and on three test frequencies.

The Spurious limit was calculated as follows:

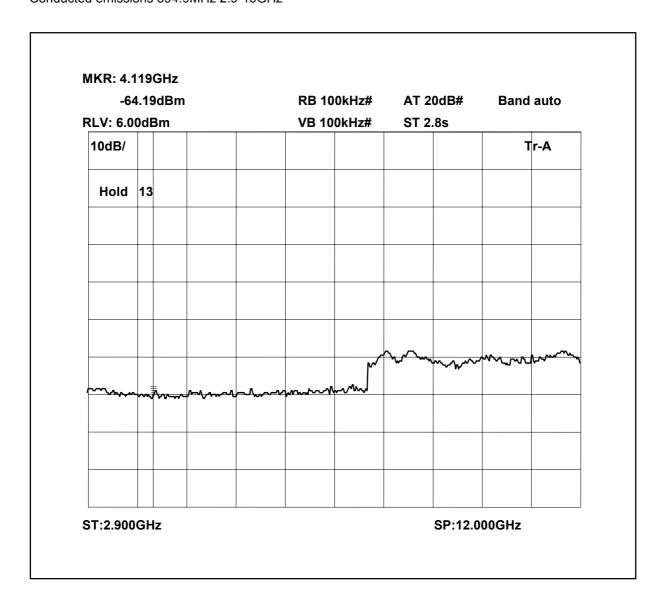
On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

At least 43 + 10 log PdB


 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$ 


The test equipment used for the Transmitter Conducted Emissions:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8304-200	N/A	103	х
ATTENUATOR	BIRD	8304-100	N/A	112	х
CABLE	ROSENBERGER	MICRO COAX	N/A	279	х
SIGNAL GENERATOR	MARCON	2042	119388/080	179	х

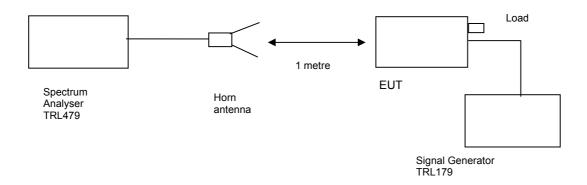



-62	2.15dBn	า		RB 10	0kHz#	AT 2	0dB#	Band	auto	
RLV: 6.0				VB 10	VB 100kHz# ST 2.8s					
10dB/								1	r-A	
Hold	8									
									mhm.	
			200	~~~~	- ~~ M	**\\ _\	W	- MANA-A-A	mmm	
******	W. CANBOA	-14-44	MANUAL V	, , , , , , , , , , , , , , , , , , ,						
ST:2.900	CU-						SP:12.0	0004-		





3.	03d	Bm			RB 10	0kHz#	AT 2	0dB#	<b>Band auto</b>		
RLV: 6.0	0dB	m			VB 10	0kHz#	ST 9	ST 900ms			
10dB/	1								٦	r-A	
Hold	39										
	+										
								~~~^		m m_	
~~~~	الهم	~~~	M	ما ^م ەرىپ	~~~~~	**************************************	who was	·			
ST:0Hz								SP:3.00			




#### TRANSMITTER TESTS

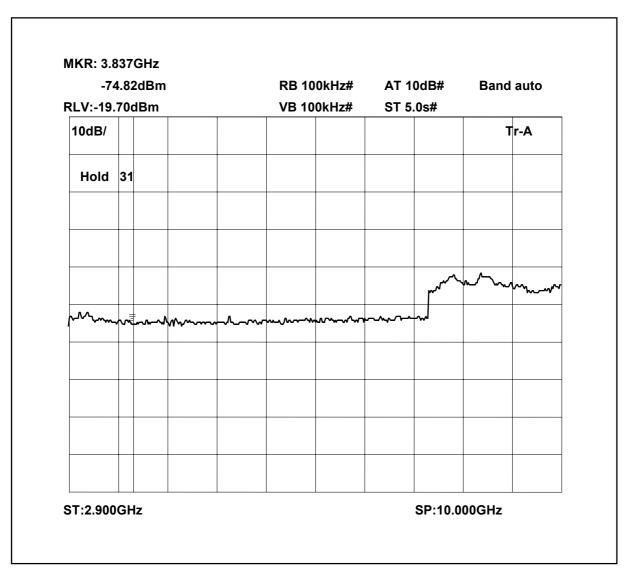
### AMPLIFIER SPURIOUS EMISSIONS - RADIATED - Part 2.1053- DOWNLINK

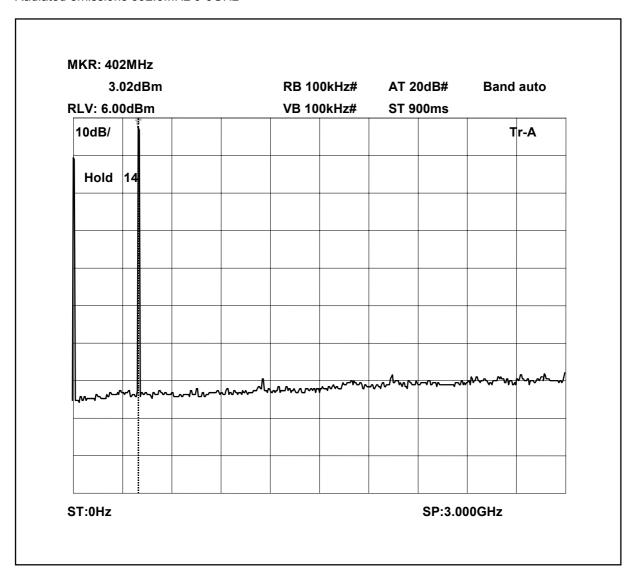
Ambient temperature = 10°C Test Signal = F3E Relative humidity = 43%

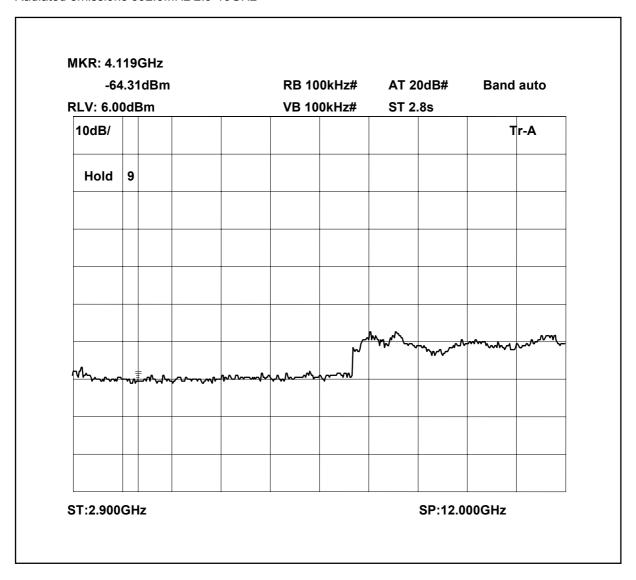
Relative humidity = 43%
Conditions = OATS
Supply voltage = +24 Vdc
Supply Frequency = N/A

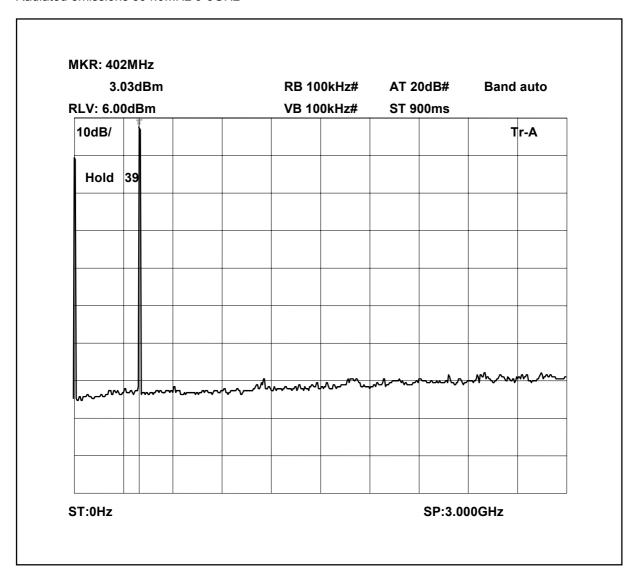


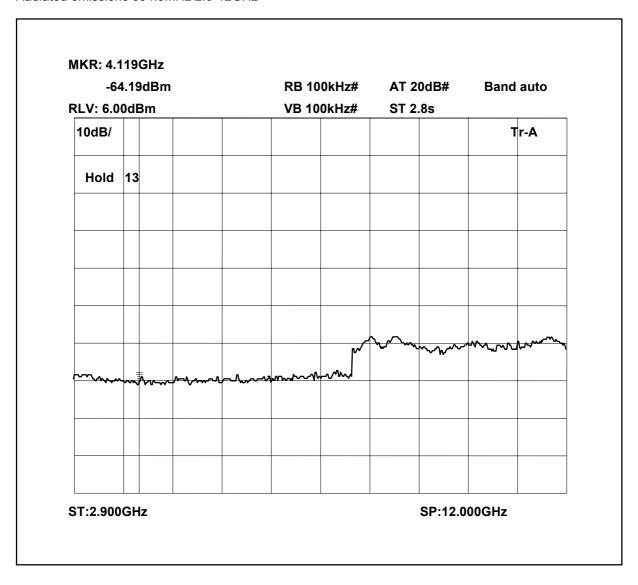
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating maximum power on three test frequencies with a 50 ohm load on the output. The unit was also tested with the signal generator replaced by another 50ohm load.


The Spurious limit was calculated as follows:

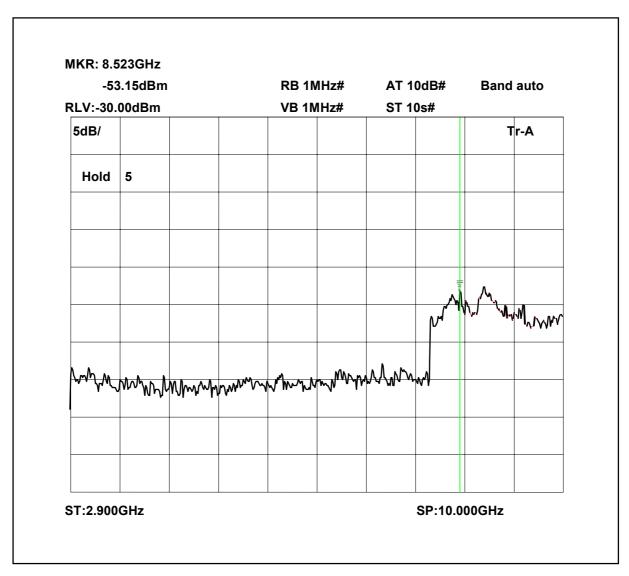

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth


At least 43 + 10 log PdB


 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$ 












-7 ⁻	1.83dBm	1		RB 10	0kHz#	AT 1	0dB#	Ва	nd auto
RLV: 0.0	0dBm			VB 10	0kHz#	ST 2	0s#		
10dB/									Tr-A
Hold	25								
			<u> </u>		~~~~~		<b>~~~</b>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MJV 1 WAT MENN
الہیہ	······································	~~~~~	~~~~~~~	w	,				
ST:0Hz							6D-3	.000GHz	-



# The test equipment used for the Transmitter Spurious Emissions:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	X
HORN	EMCO	3115	9010-3581	139	х
ATTENUATOR	BIRD	8308-200	N/A	103	х
ATTENUATOR	BIRD	8308-100	N/A	112	x
CABLE	ROSENBERGER	MICRO COAX	N/A	279	x
SIGNAL GENERATOR	MARCON	2042	119388/080	179	х

# ANNEX A PHOTOGRAPHS

# PHOTOGRAPH No. 1

# **TEST SETUP - General**



# PHOTOGRAPH No. 2 **TEST SETUP – Radiated Emissions**



# ANNEX B APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

# APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

a.	ТСВ	- -	APPLICATION FEE	[X]
b.	AGENT'S LETTER OF AUTHORISATION	-		[X]
C.	MODEL(s) vs IDENTITY	-		[]
d.	ALTERNATIVE TRADE NAME DECLARATION(s)	-		[]
e.	LABELLING	- - -	PHOTOGRAPHS DECLARATION DRAWINGS	[ ] [ ] [ ]
f.	TECHNICAL DESCRIPTION	-		[X]
g.	BLOCK DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [ ] [ ]
h.	CIRCUIT DIAGRAMS	- - -	Tx Rx PSU AUX	[ ] [ ] [ ]
i.	COMPONENT LOCATION	- - -	Tx Rx PSU AUX	[ ] [ ] [ ]
j.	PCB TRACK LAYOUT	- - -	Tx Rx PSU AUX	[ ] [ ] [ ]
k.	BILL OF MATERIALS	- - -	Tx Rx PSU AUX	[X] [ ] [ ]
I.	USER INSTALLATION / OPERATING INSTRUCTIONS	-		[X]

RF335 iss02 RU1099/5314 Page 70 of 70