

TEST REPORT NO: RU1194/6803

COPY NO: 2

FCC ID: NEO50-1285Series

1

ISSUE NO:

REPORT ON THE CERTIFICATION TESTING OF A AERIAL FACILITIES LIMITED 50-128501 CELL ENHANCER WITH RESPECT TO THE FCC RULES CFR 47, PART 90 Subpart I PRIVATE LAND MOBILE REPEATER.

TEST DATE: 5th June 2005 – 8th August 2005

TESTED BY:		J CHARTERS
APPROVED BY:		P GREEN PRODUCT MANAGER
		EMC
DATE:	27 th January 2006	
Distribution:		

2. TCB: TRL Compliance Limited

3. TRL Compliance Ltd

1. Aerial Facilities Limited

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

TRL COMPLIANCE LTD EMC DIVISION

Copy Nos:

LONG GREEN FORTHAMPTON GLOUCESTER GL19 4QH UNITED KINGDOM
TELEPHONE +44 (0)1684 833818 FAX +44 (0)1684 833858
E-MAIL test@trlcompliance.com www.trlcompliance.com

CONTENTS

		PAGE	
CERTIF	CATE OF CONFORMITY & COMPLIANCE	3	
APPLICA	ANT'S SUMMARY	4	
EQUIPM	ENT TEST CONDITIONS	5	
TESTS I	REQUIRED	5	
TEST R	ESULTS	6-71	
		ANNEX	
PHOTO	GRAPHS	Α	
PHC	TOGRAPH No. 1: Test setup		
APPLICA	ANT'S SUBMISSION OF DOCUMENTATION LIST	В	
EQUIPM	ENT CALIBRATION	С	
MEASU	REMENT UNCERTAINTY	D	
SYSTEM	I DIAGRAM	E	
Notes: 1.	Component failure during test		[] [X]
2.	If Yes, details of failure:		

The facilities used for the testing of the product contain in this report are FCC Listed.

3.

RU1194/6803 Page 2 of 79

CERTIFICATE OF CONFORMITY & COMPLIANCE

NEO50-1285Series

FCC IDENTITY:

PURPOSE OF TEST:	Certification	
TEST SPECIFICATION:	FCC RULES CFR 47, Part 90 Subpart I	
TEST RESULT:	Compliant to Specification	
EQUIPMENT UNDER TEST:	50-128501 Cell Enhancer	
EQUIPMENT TYPE:	Private Land Mobile Repeater	
MAXIMIUM GAIN	Uplink = 67.74 dB Downlink = 72.48 dB	
MAXIMUM INPUT	Uplink = -44 dBm Downlink = -41 dBm	
MAXIMUM OUTPUT	Uplink = 22.69 dBm Downlink = 31.13 dBm (radiating cable sys	stem)
ANTENNA TYPE:	Not applicable	
CHANNEL SPACING:	Uplink = 1 x 275 kHz channel & 1 x 1.45 Downlink =1 x 275 kHz channel & 1 x 1.45	
NUMBER OF CHANNELS:	Uplink 2 Downlink 2	
FREQUENCY GENERATION:	N/A	
MODULATION TYPE:	F3E	
POWER SOURCE(s):	+110 Vac	
TEST DATE(s):	5 th June 2005 – 8 th August 2005	
ORDER No(s):	32088	
APPLICANT:	Aerial Facilities Limited	
ADDRESS:	Aerial House Asheridge Road Chesham Buckinghamshire HP5 1TU United Kingdom	
TESTED BY:		J CHARTERS
APPROVED BY:		P GREEN PRODUCT MANAGER EMC

RU1194/6803 Page 3 of 79

APPLICANT'S SUMMARY

EQUIPMENT UNDER TEST (EUT):	50-128501 Cell Enhancer
EQUIPMENT TYPE:	Private Land Mobile Repeater
PURPOSE OF TEST:	Certification
TEST SPECIFICATION(s):	FCC RULES CFR 47, Part 90 Subpart I
TEST RESULT:	COMPLIANT Yes [X] No []
APPLICANT'S CATEGORY:	MANUFACTURER [X] IMPORTER [] DISTRIBUTOR [] TEST HOUSE [] AGENT []
APPLICANT'S ORDER No(s):	32088
APPLICANT'S CONTACT PERSON(s):	Mr Peter Bradfield
E-mail address:	Peterb@aerial.co.uk
APPLICANT:	Aerial Facilities Limited
ADDRESS:	Aerial House Asheridge Road Chesham Buckinghamshire HP5 1TU United Kingdom
TEL:	+44 (0)1494 777000
FAX:	+44 (0)1494 778456
MANUFACTURER:	Aerial Facilities Limited
EUT(s) COUNTRY OF ORIGIN:	United Kingdom
TEST LABORATORY:	TRL EMC
UKAS ACCREDITATION No:	0728
TEST DATE(s)	5 th June 2005 – 8 th August 2005
TEST REPORT No:	RU1194/6803

RU1194/6803 Page 4 of 79

EQUIPMENT TEST / EXAMINATIONS REQUIRED

1.	TEST/EXAMINATION	RULE PART	APPLICABILITY	RESULT
	RF Power Output	90.205	Yes	Complies
	Audio Frequency Response	TIA EIA-603.3.2.6	N/A	N/A
	Audio Low-Pass Filter Response	TIA EIA-603.3.2.6	N/A	N/A
	Modulation Limiting	TIA EIA-603.3.2.6	N/A	N/A
	Occupied Bandwidth	90.210	Yes	Complies
	Spurious Emissions at Antenna Terminals	90.210	Yes	Complies
	Field Strength of Spurious Emissions	90.210	Yes	Complies
	Frequency Stability	90.213	N/A(note 1)	N/A
	Transient behaviour	90.214	N/A(note 2)	N/A

Notes:

2 The EUT is not a keyed carrier system, therefore the test was not performed.

2.	Product class:	Up	link	Class	A [X]	Class B []
		Do	wnlink	Class	A [X]	Class B []
3.	Product Use:	Pri	vate Land Mobile Re	peater		
4.	Emission Designator:	F3	E			
5.	Temperatures:	An	nbient (Tnom)	21°C		
6.	Supply Voltages:	Vn	om +	110 Vac		
	Note: Vnom voltages are as stated above	unless otherwise	e shown on the test re	eport page		
7.	Equipment Category:		ngle channel o channel	[]		
			ulti-channel	[] [X]		
8.	Channel spacing:	Na	rrowband	[X]		75 kHz .45 MHz
		Wi	deband	[]	2 1	.43 IVII IZ
9.	Test Location	TRL Compliance		IVI.		
			Holland ng Green	[X] []		

System description:

Modifications made during test program

10.

The 50-128501 is a bidirectional amplifier consisting of an uplink and a downlink. The uplink has 2 channels, a 275 kHz channel operating over the frequency range 499.3375MHz - 499.6125MHz and a 1.45MHz channel operating over the frequency range 492.5125MHz - 493.9625MHz. The downlink has 2 channels, a 275 kHz channel operating over the frequency range 496.3375MHz - 496.6125MHz and a 1.45MHz channel operating over the frequency range 489.5000MHz - 490.9625MHz.

RU1194/6803 Page 5 of 79

No modifications were performed.

¹ The EUT does not contain modulation circuitry, therefore the test was not performed.


COMPLIANCE TESTS

AMPLIFIER GAIN - CONDUCTED - PART 2.1046 - UPLINK

Ambient temperature = 23°C Radio Laboratory

Relative humidity = 47%

Supply voltage = +110 Vac & +12 Vdc Channel number = See test results

Frequency Band - 492.5125MHz - 493.9625MHz

Frequency MHz	Voltage	Signal Generator input level dBm	Output Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
492.5125	110 Vac	-42.05	30.78	-5.70	67.13	25.08	57.08
493.2375	110 Vac	-45.05	30.78	-4.92	70.91	25.86	61.33
493.9625	110 Vac	-45.05	30.78	-4.75	71.08	26.03	61.34

Notes:

1. The signal generator input was increased by 10dBs and the level of the output signal remeasured

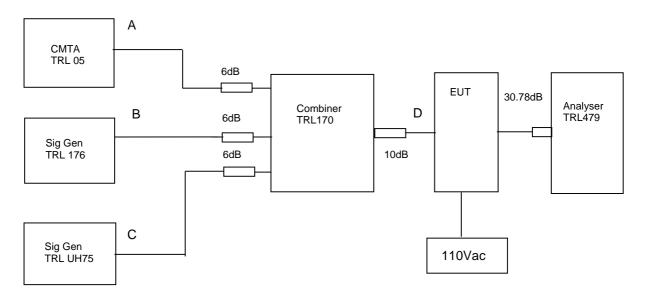
2. Input level is adjusted for the input cable loss.

Frequency Band - 499.3375 MHz - 499.6125 MHz

Frequency MHz	Voltage	Signal Generator input level dBm	Output Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
499.3375	110 Vac	-44.05	30.78	-8.15	66.68	22.63	56.96
499.4750	110 Vac	-45.05	30.78	-8.09	67.74	22.69	58.01
499.6125	110 Vac	-44.05	30.78	-8.27	66.56	22.51	56.94

Notes:

- 1. The signal generator input was increased by 10dBs and the level of the output signal remeasured
- 2. Input level is adjusted for the input cable loss


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8304-300-N	N/A	220	х
ATTENUATOR	BIRD	8308-200	N/A	103	х
CABLE	ROSENBERGER	MICRO COAX	N/A	280	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

RU1194/6803 Page 6 of 79

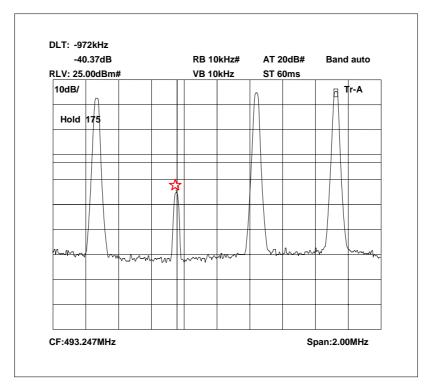
AMPLIFIER INTERMODULATION SPURIOUS EMISSIONS - CONDUCTED - PART 2.1053- UPLINK

Ambient temperature = 26°C Radio Laboratory

Relative humidity = 39% Supply voltage = +110 Vac

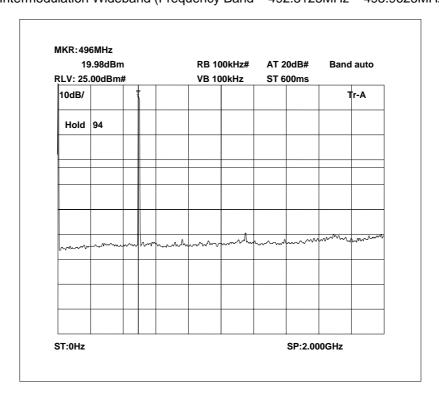
The intermodulation and spurious products were measured with the amplifier operating at maximum gain. A three tone test was conducted using the equipment as above. The input power level was adjusted so the level at point D was 10dB above the maximum input of –44dBm. The cable and attenuator loss between the EUT and the spectrum analyser was 30.78dB.

RF Input Frequency (MHz)			Highest Intermodulation Product Level	Limit
TRL05	TRL176	TRLUH75	(dBm)	(dBm)
492.5125	493.4765	493.9625	-17.25 dBm @ 492.9900MHz	-13
499.3375	499.5210	499.6125	-17.45 dBm @ 499.4315MHz	-13


Sweep data is shown on the next page:

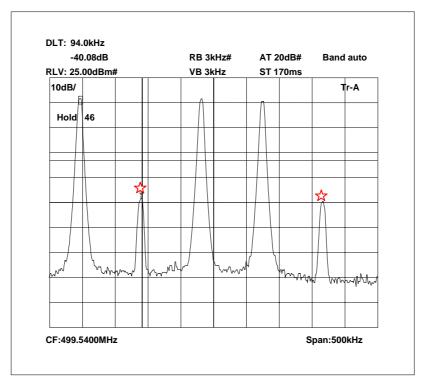
Test equipment used for intermodulation test

rest equipment used for intermodulation test						
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED	
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х	
SIGNAL GENERATOR	MARCONI	2022D	119215/058	UH75	х	
СМТА	ROHDE & SCHWARZ	CMTA52	894715/033	05	х	
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х	
COMBINER	ELCOM	RC-4-50	N/A	170	х	

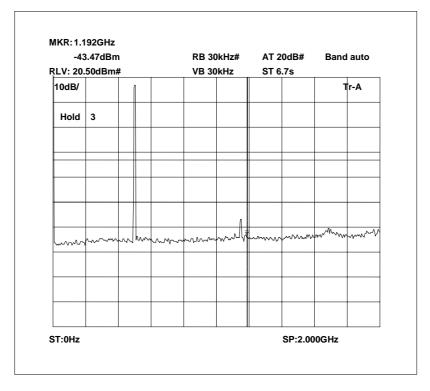

RU1194/6803 Page 7 of 79

Intermodulation Inband (Frequency Band – 492.5125MHz – 493.9625MHz)

The above plot shows that all products (designated by ☆) below the Spurious Lmit.


Intermodulation Wideband (Frequency Band – 492.5125MHz – 493.9625MHz)

The above plot shows that there are no products outside the bands.

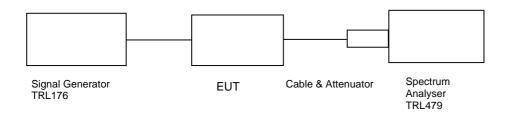

RU1194/6803 Page 8 of 79

Intermodulation Inband (Frequency Band – 499.3375 MHz – 499.6125 MHz)

The above plot shows that all products (designated by ☆) below the Spurious Limit.

Intermodulation Wideband (Frequency Band – 499.3375 MHz – 499.6125 MHz)

The above plot shows that there are no products outside the bands.


RU1194/6803 Page 9 of 79

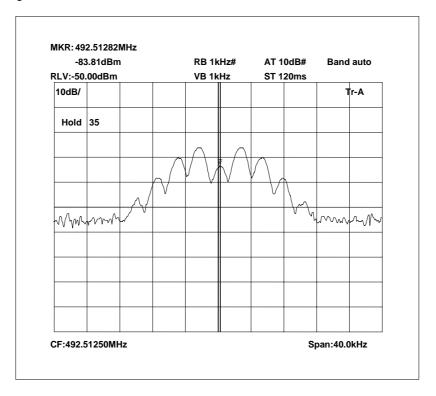
TRANSMITTER TESTS

AMPLIFIER MODULATED CHANNEL TEST - CONDUCTED - Part 2.1049- UPLINK

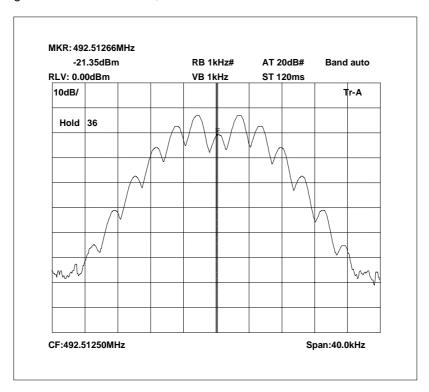
Ambient temperature = 26°C Radio Laboratory

Relative humidity = 41% Supply voltage = +110 Vac Channel number = See test results

This test was performed to show that the amplifier does not alter the input signal in any way. The input signal was set to the maximum input level (-41dBm) and modulated with a 2500Hz tone. The plots show the signal measured at the signal generator and the signal measured at the output of the EUT.

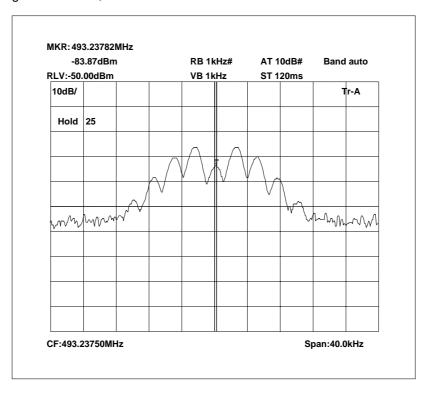

Note: The cables and attenuators had the following losses.

- 1. Cable and attenuator between EUT and Spectrum analyser 30.78dB
- 2. Cable between signal generator and EUT 1.05dB

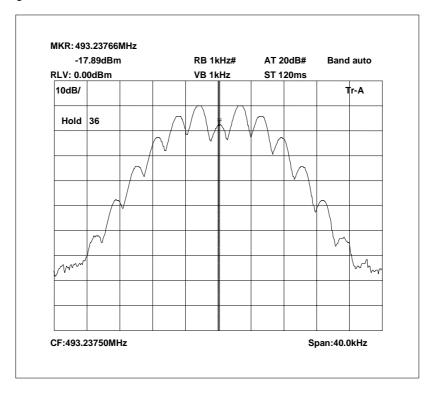

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8304-300-N	N/A	220	х
ATTENUATOR	BIRD	8308-200	N/A	103	x
CABLE	ROSENBERGER	MICRO COAX	N/A	280	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

RU1194/6803 Page 10 of 79

492.5125 MHz Signal Generator, deviation set to 5kHz

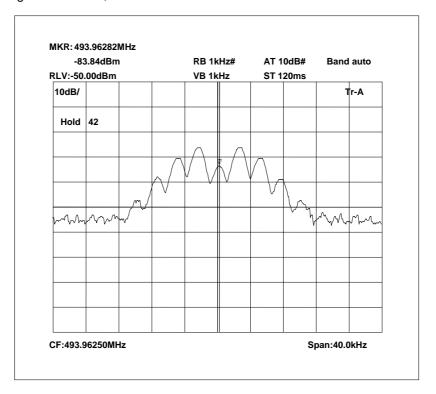


492.5125 MHz Signal Generator and EUT, deviation set to 5kHz

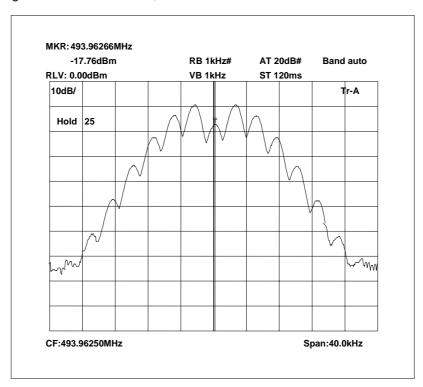


RU1194/6803 Page 11 of 79

493.2375 MHz Signal Generator, deviation set to 5kHz

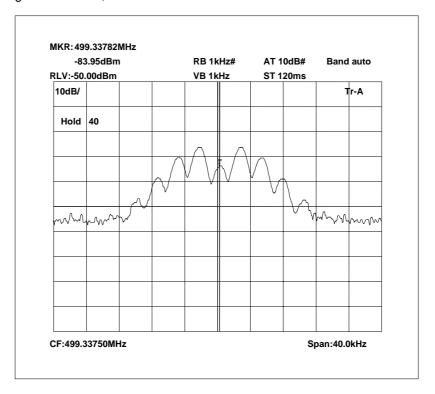


493.2375 MHz Signal Generator and EUT, deviation set to 5kHz

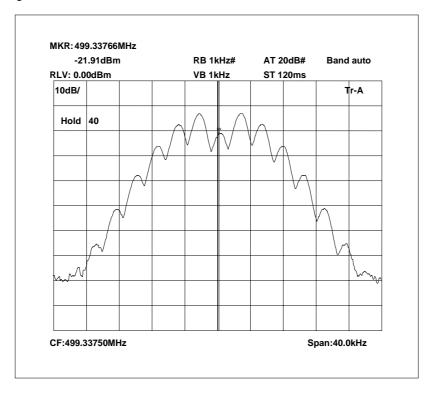


RU1194/6803 Page 12 of 79

493.9625 MHz Signal Generator, deviation set to 5kHz

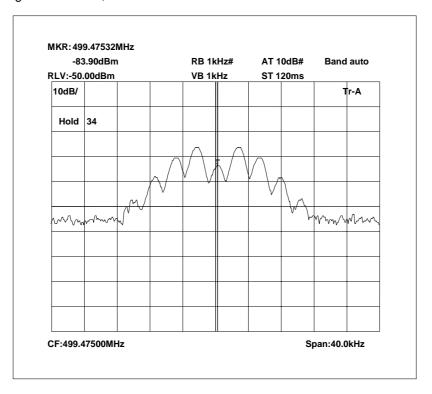


493.9625 MHz Signal Generator and EUT, deviation set to 5kHz

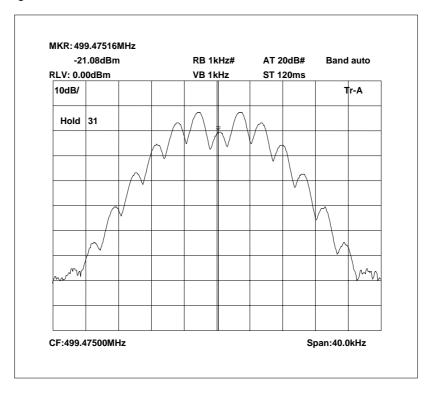


RU1194/6803 Page 13 of 79

499.3375 MHz Signal Generator, deviation set to 5kHz

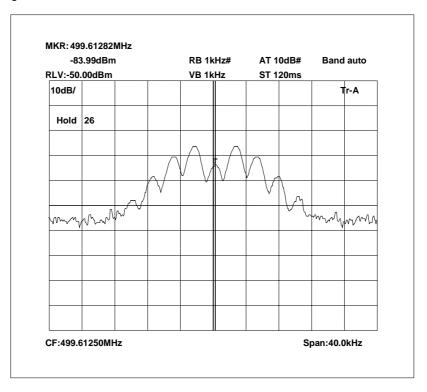


499.3375 MHz Signal Generator and EUT, deviation set to 5kHz

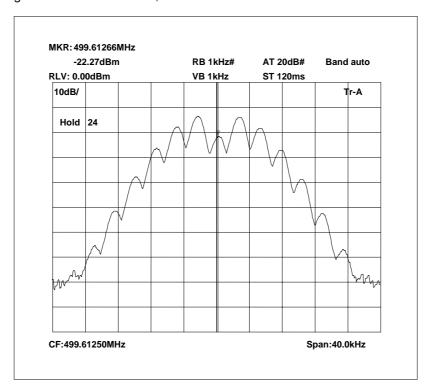


RU1194/6803 Page 14 of 79

499.4750 MHz Signal Generator, deviation set to 5kHz

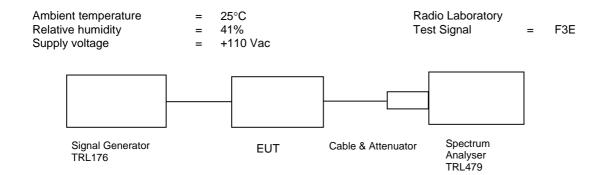


499. 4750 MHz Signal Generator and EUT, deviation set to 5kHz



RU1194/6803 Page 15 of 79

499.6125 MHz Signal Generator, deviation set to 5kHz


499.6125 MHz Signal Generator and EUT, deviation set to 5kHz

RU1194/6803 Page 16 of 79

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - CONDUCTED - Part 2.1053 - UPLINK

The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating at maximum power and on three test frequencies.

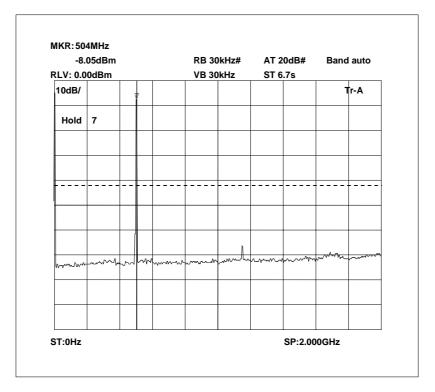
The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

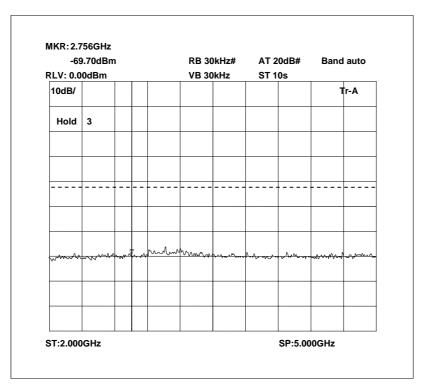
At least 43 + 10 log PdB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$

RESULTS

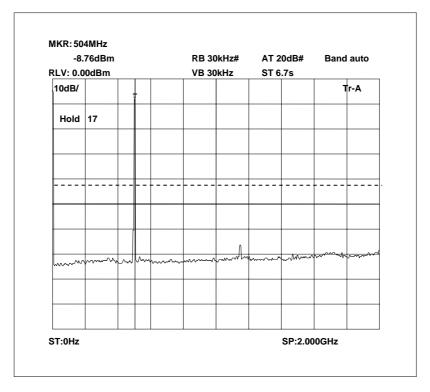

FREQUENCY RANGE	FREQ. (MHz)	MEASURED LEVEL (dBm)	ATTENUATOR & CABLE LOSSES (dB)	EMISSION LEVEL (dBm)	LIMIT (dBm)
0 Hz – 5 GHz	١	lo Significant Emissio	ns Within 20 dBs of the	limit	-13

The test equipment used for the Transmitter Conducted Emissions:

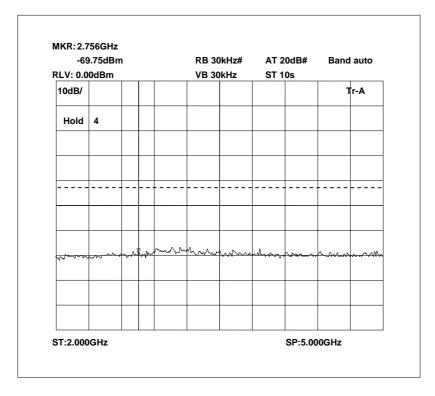

The test equipment t	ased for the Transmitte	Outladdica Ettilosioi	io.		
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8304-300-N	N/A	220	х
ATTENUATOR	BIRD	8308-200	N/A	103	х
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х
CABLE	N/A	N/A	N/A	UH254	х

RU1194/6803 Page 17 of 79

Conducted emissions 492.5125 MHz 0 - 2GHz

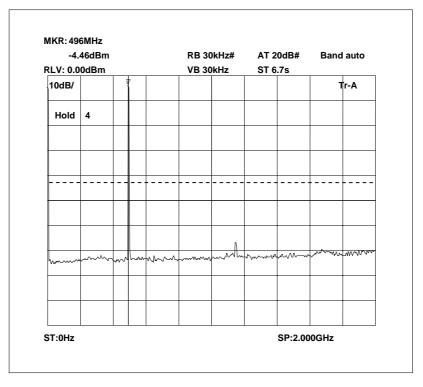


Conducted emissions 492.5125 MHz 2 - 5GHz

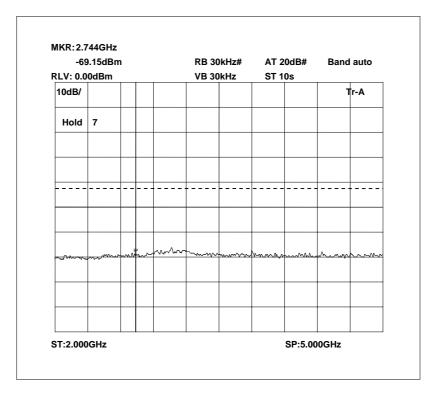


RU1194/6803 Page 18 of 79

Conducted emissions 493.2375 MHz 0 - 2GHz

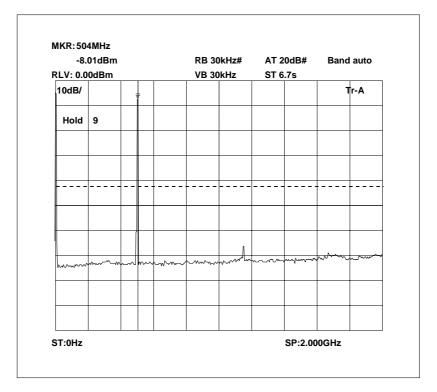


Conducted emissions 493.2375 MHz 2 - 5GHz

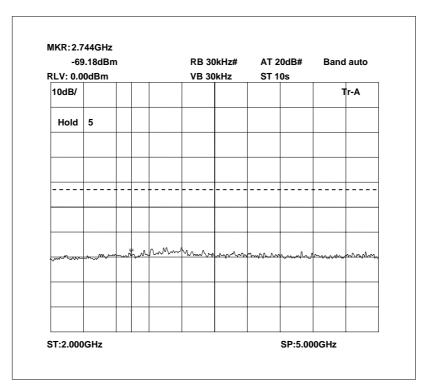


RU1194/6803 Page 19 of 79

Conducted emissions 493.9625 MHz 0 - 2GHz

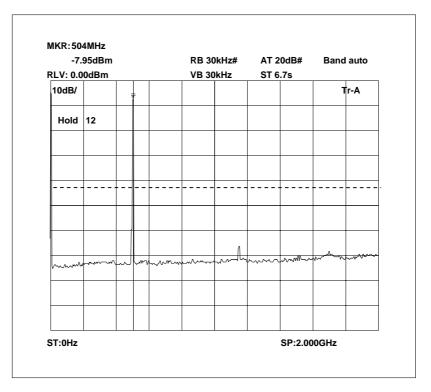


Conducted emissions 493.9625 MHz 2 - 5GHz

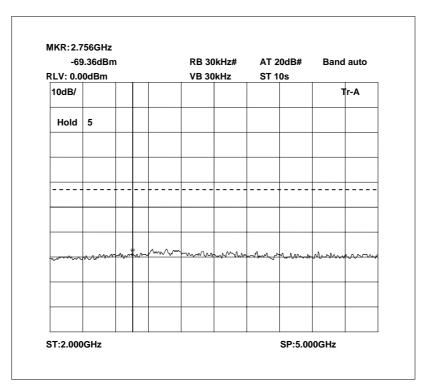


RU1194/6803 Page 20 of 79

Conducted emissions 499.3375 MHz 0 - 2GHz

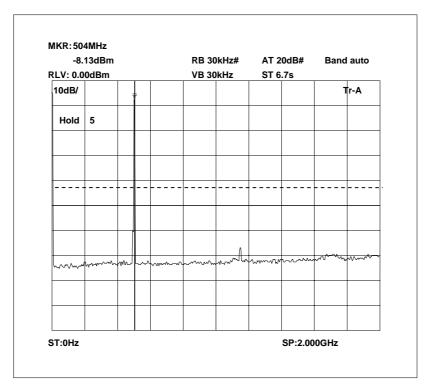


Conducted emissions 499.3375 MHz 2 - 5GHz

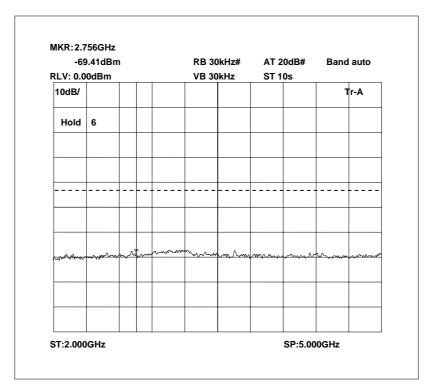


RU1194/6803 Page 21 of 79

Conducted emissions 499.4750 MHz 0 - 2GHz

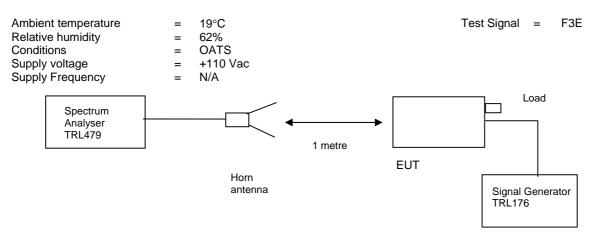


Conducted emissions 499.4750 MHz 2 - 5GHz



RU1194/6803 Page 22 of 79

Conducted emissions 499.6125 MHz 0 - 2GHz


Conducted emissions 499.6125 MHz 2 - 5GHz

RU1194/6803 Page 23 of 79

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - RADIATED - Part 2.1053- UPLINK

The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating maximum power on three test frequencies with a 50 ohm load on the output. The unit was also tested with the signal generator replaced by another 50ohm load.

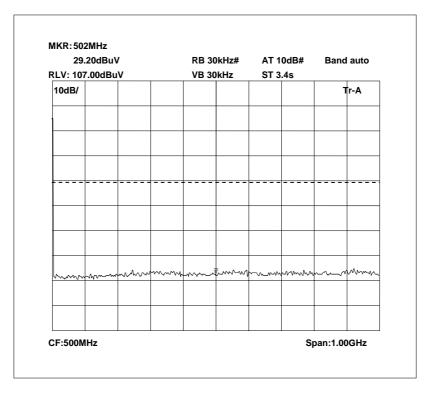
The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

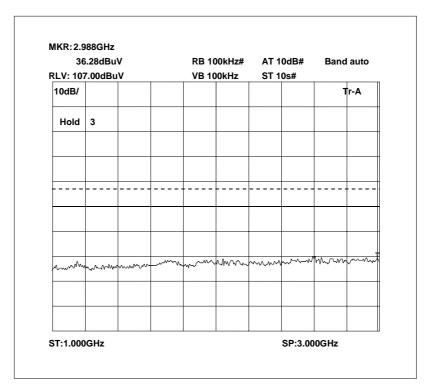
At least 43 + 10 log PdB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$

RESULTS


FREQUENCY RANGE	FREQ. (MHz)	MEAS. Rx. (dBμV)	CABLE LOSS (dB)	ANT FACTOR	FIELD STRENGTH (dBµV/m)	CALCULATED EIRP (dBm)	LIMIT (dBm)
0 Hz – 5 GHz	N	lo Significa	nt Emissio	ns Within 2	20 dBs of the	limit	-13

The test equipment used for the Transmitter Spurious Emissions:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
HORN	EMCO	3115	9010-3581	139	х
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

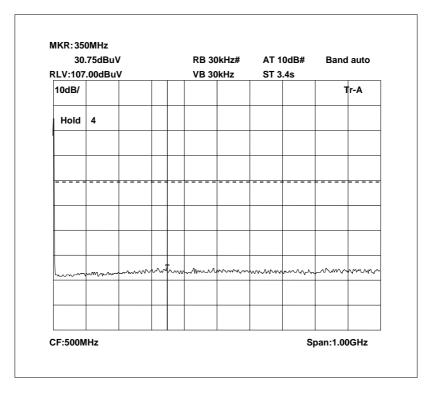
RU1194/6803 Page 24 of 79

Radiated emissions 492.5125 MHz 0 - 1GHz

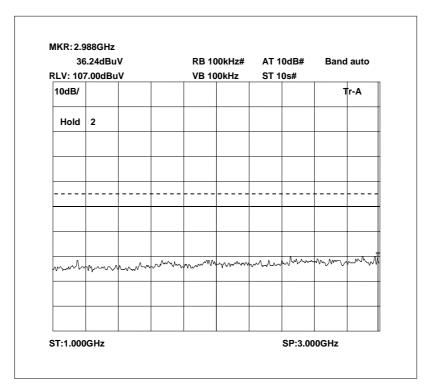
Radiated emissions 492.5125 MHz 1 - 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 25 of 81


Radiated emissions 492.5125 MHz 3 - 5GHz

33.23dBuV RLV: 107.00dBuV					00kHz#		0dB#	Band	l auto
				VB 10	00kHz	ST 1	ST 10s#		
10dB/							7	Tr-A	
Hold	6								
www	m	~~~~~	~~~~	M-10	~~~~	Www		~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~~~~
ĺ									


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

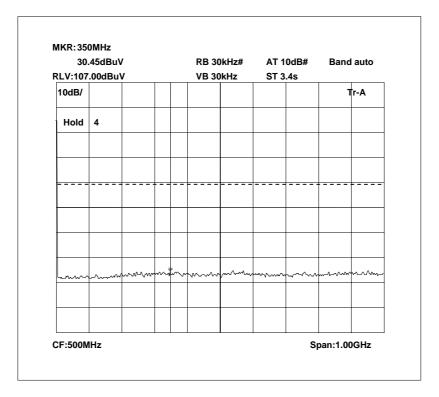
RU1194/6803 Page 26 of 81

Radiated emissions 493.2375 MHz 0 - 1GHz

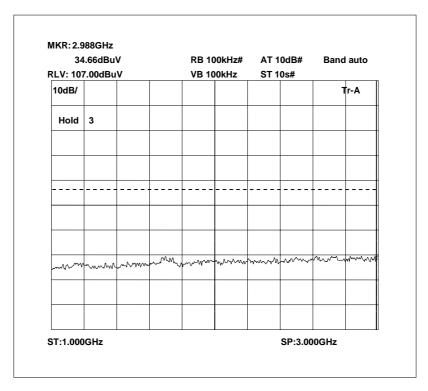
Radiated emissions 493.2375 MHz 1 – 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 27 of 81

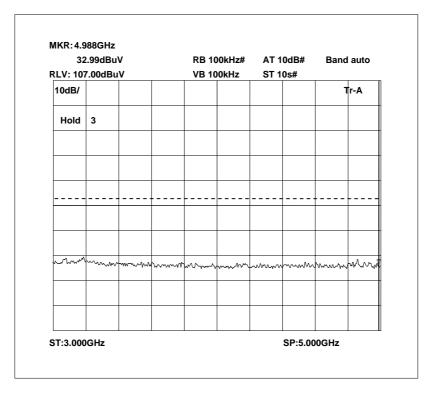

Radiated emissions 493.2375 MHz 3 - 5GHz

32.66dBuV				RB 10	00kHz#	AT 1	0dB#	Band	d auto	
RLV: 107.00dBuV			VB 10	00kHz	ST 1	ST 10s#				
10dB/								Tr-A		
Hold	3									
1-M-M-MM	mww	H-www.	~~~~	mmm	www	www	~~~~~	rwww	······	
) GHz						SP:5.00			


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

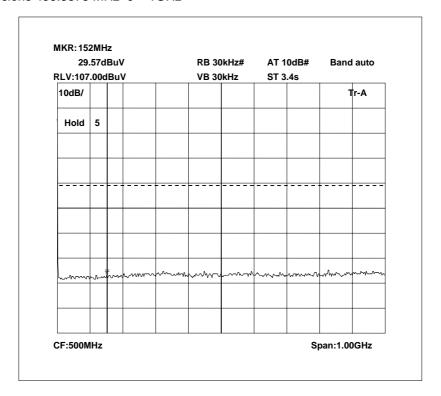
RU1194/6803 Page 28 of 81

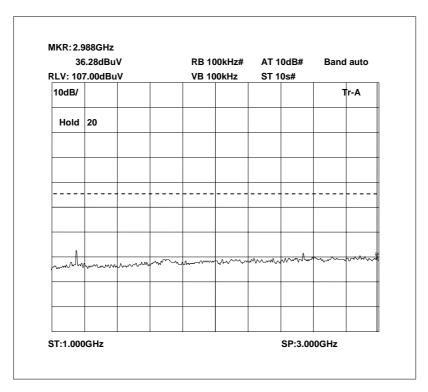
Radiated emissions 493.9625 MHz 0 - 1GHz


Radiated emissions 493.9625 MHz 1 - 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

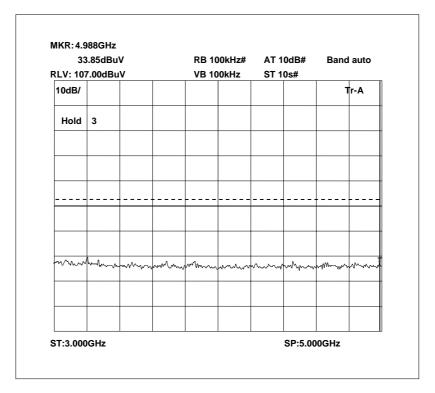
RU1194/6803 Page 29 of 81


Radiated emissions 493.9625 MHz 3 - 5GHz


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

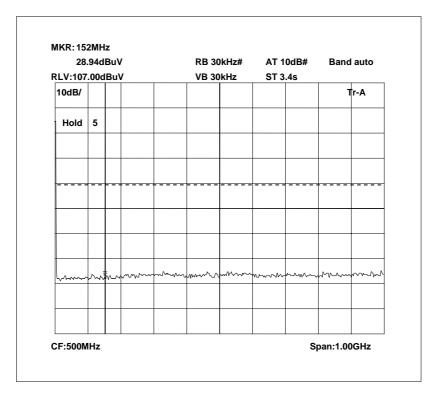
RU1194/6803 Page 30 of 81

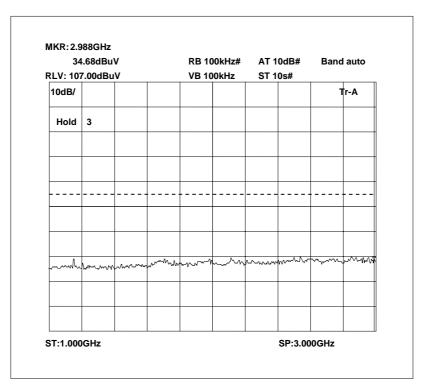
Radiated emissions 499.3375 MHz 0 - 1GHz


Radiated emissions 499.3375 MHz 1 – 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 31 of 81


Radiated emissions 499.3375 MHz 3 - 5GHz


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

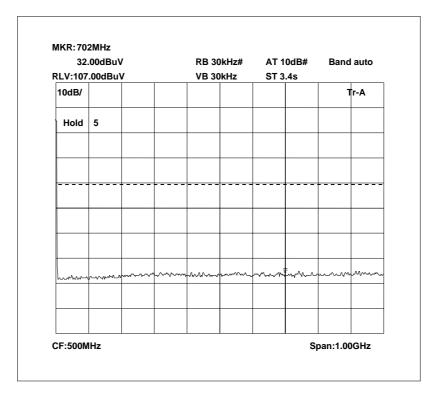
RU1194/6803 Page 32 of 81

Radiated emissions 499.4750 MHz 0 - 1GHz

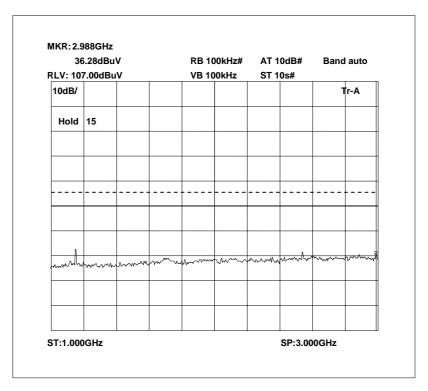
Radiated emissions 499.4750 MHz 1 - 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 33 of 81


Radiated emissions 499.4750 MHz 3 - 5GHz

33.33dBuV				RB 10	00kHz#	AT 1	0dB#	Band	l auto
RLV: 107.00dBuV			VB 10	VB 100kHz		ST 10s#			
10dB/								٦	Tr-A
Hold	3								
. 0	. .								
	~~~~~~	www	hww	www	w.~~	M	~~~~	-w- _w -w	~~\\\.^\\.
ST:3.000							SP:5.00		


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 34 of 81

## Radiated emissions 499.6125 MHz 0 - 1GHz

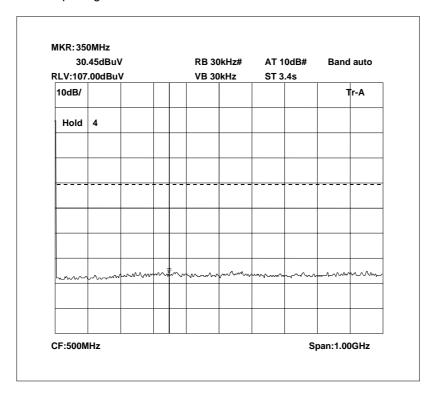


Radiated emissions 499.6125 MHz 1 - 3GHz

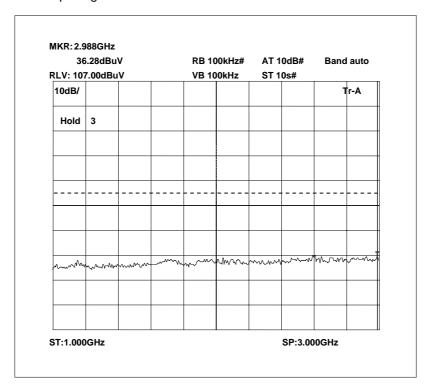


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 35 of 81


# Radiated emissions 499.6125 MHz 3 - 5GHz

33.57dBuV					00kHz#		0dB#	Band	d auto
RLV: 107.00dBuV			VB 10	00kHz	ST 1	ST 10s#			
10dB/									Tr-A
Hold	3								
www	mmm	man	-~~~	nhann	www	www.	~~~~	www	m


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 36 of 81

## Radiated emissions no input signal 0 - 1GHz



Radiated emissions no input signal 1 – 3GHz



The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 37 of 81

Radiated emissions no input signal 3 – 5GHz

32	2.66dBu	V		RB 10	00kHz#	AT 1	0dB#	Band	d auto
RLV: 10	7.00dBu	ıV		VB 10	0kHz	ST 1	0s#		
10dB/								-	Tr-A
Hold	3								
LW WWW	mwww	H-mm	www.	mmm	~~~~~	www	~~~~~	www	·············
	GHz						SP:5.00		

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 38 of 81

#### AMPLIFIER GAIN - CONDUCTED - PART 2.1046 - DOWNLINK

Ambient temperature = 25°C Radio Laboratory

Relative humidity = 40% Supply voltage = +110 Vac Channel number = See test results



#### Frequency Band - 489.5125 MHz - 490.9625 MHz

Frequency MHz	Voltage	Signal Generator input level dBm	Output Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
489.5000	110 Vac	-41.35	31.2	-0.07	72.48	31.13	61.55
490.23125	110 Vac	-39.35	31.2	1.43	71.98	32.63	61.75
490.9625	110 Vac	-38.35	31.2	-0.16	69.39	31.04	61.31

#### Notes:

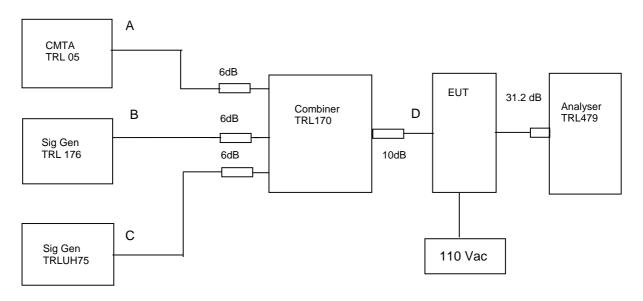
- 1. The signal generator input was increased by 10dBs and the level of the output signal remeasured
- 2. Input level is adjusted for the input cable loss.

## Frequency Band - 499.3375 MHz - 499.6125 MHz

Frequency MHz	Voltage	Signal Generator input level dBm	Output Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Output Power dBm	Gain after 10dB input level increase dBm
496.3375	110 Vac	-41.35	31.2	-2.22	70.33	28.98	61.15
496.4750	110 Vac	-41.35	31.2	-1.53	71.02	29.67	60.97
496.6125	110 Vac	-41.35	31.2	-1.23	71.32	29.97	61.32

#### Notes:

- 1. The signal generator input was increased by 10dBs and the level of the output signal remeasured
- 2. Input level is adjusted for the input cable loss


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8304-200	N/A	103	х
ATTENUATOR	BIRD	8304-300-N	N/A	220	х
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

RU1194/6803 Page 39 of 81

#### AMPLIFIER INTERMODULATION SPURIOUS EMISSIONS - CONDUCTED - PART 2.1053- DOWNLINK

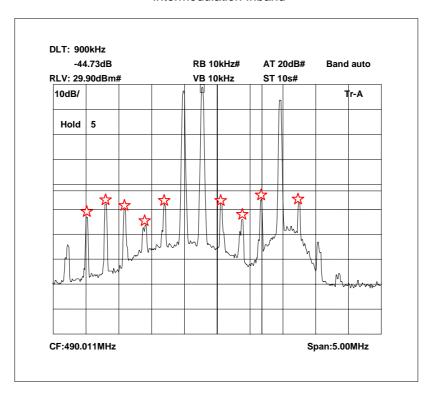
Ambient temperature = 25°C Radio Laboratory

Relative humidity = 40% Supply voltage = +110 Vac



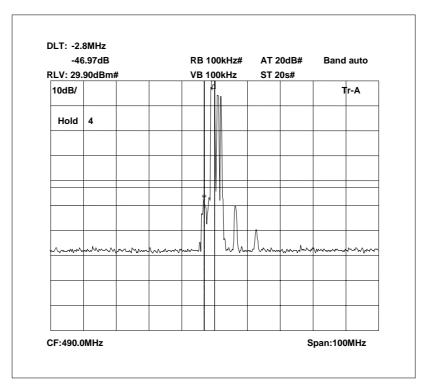
The Intermodulation and spurious products were measured with the amplifier operating at maximum gain. A three tone test was conducted using the equipment as above. The input power level was adjusted so the level at point D was 10 dB above the maximum input of -38dBm. The cable and attenuators loss between the EUT and the spectrum analyser was 31.20 dB.

RF	Input Frequenc (MHz)	СУ	Highest Intermodulation Product Level	Limit
TRL05	TRL176	TRLUH75	(dBm)	(dBm)
490.9625	489.786	489.5000	-15.73 dBm @ 490.6860 MHz	-13
496.6125	496.4125	496.3375	-13.69 dBm @ 496.5125 MHz	-13


Sweep data is shown on the next page:

Test equipment used for intermodulation test

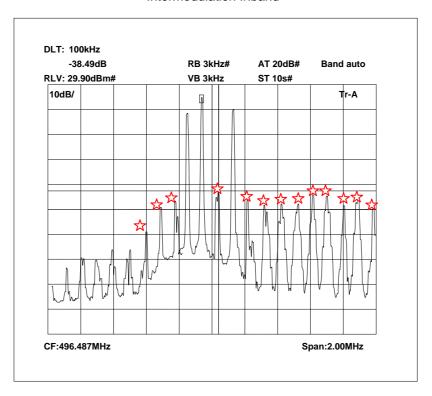
Tool oquipinont as					
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
SIGNAL GENERATOR	MARCONI	2022D	119215/058	UH75	х
СМТА	ROHDE & SCHWARZ	CMTA52	894715/033	05	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х
COMBINER	ELCOM	RC-4-50	N/A	170	х


RU1194/6803 Page 40 of 81

## Intermodulation Inband

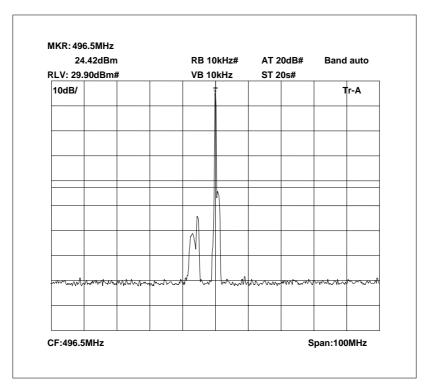


The above plot shows that all products (designated by ☆) are within 20 dB of the spurious limit.


## Intermodulation Wideband



The above plot shows that there are no products outside the bands.


RU1194/6803 Page 41 of 81

## Intermodulation Inband

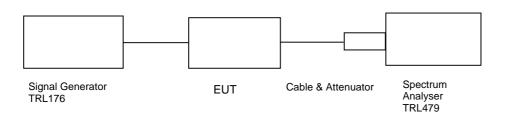


The above plot shows that all products (designated by ☆) are within 20 dB of the spurious limit.

Intermodulation Wideband



The above plot shows that there are no products outside the bands.


RU1194/6803 Page 42 of 81

#### TRANSMITTER TESTS

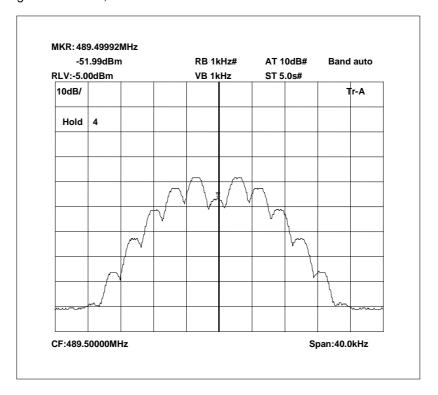
#### AMPLIFIER MODULATED CHANNEL TEST - CONDUCTED - Part 2.1049- DOWNLINK

Ambient temperature = 26°C Radio Laboratory

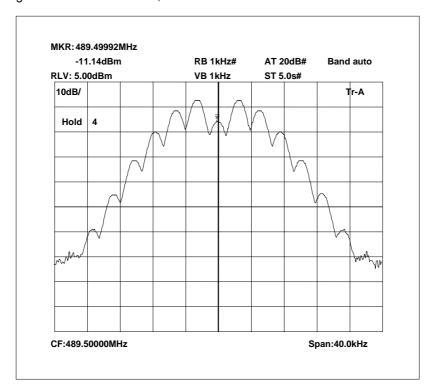
Relative humidity = 37% Supply voltage = +110 Vac Channel number = See test results



This test was performed to show that the amplifier does not alter the input signal in any way. The input signal was set to the maximum input level (-40dBm) and modulated with a 2500Hz tone. The plots show the signal measured at the signal generator and the signal measured at the output of the EUT.

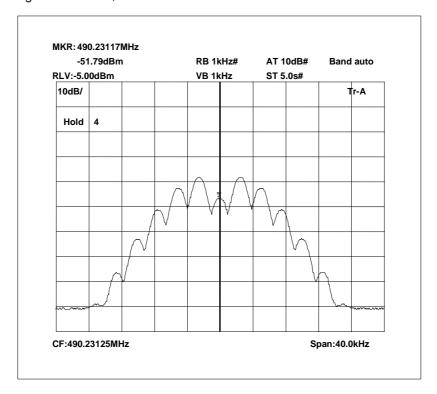

Note: The cables and attenuators had the following losses.

- 1. Cable attenuators between spectrum analyser and EUT = 32.1dB
- 2. Cable between signal generator and EUT = 0.35dB

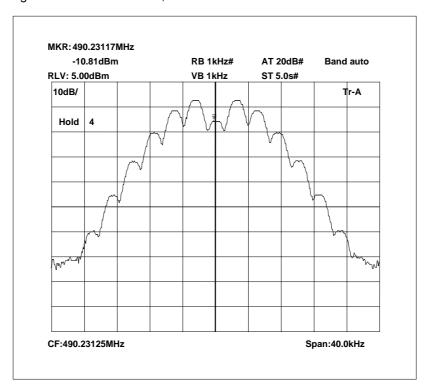

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8304-200	N/A	103	х
ATTENUATOR	BIRD	8304-300-N	N/A	220	х
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

RU1194/6803 Page 43 of 81

489.5000 MHz Signal Generator, deviation set to 5kHz

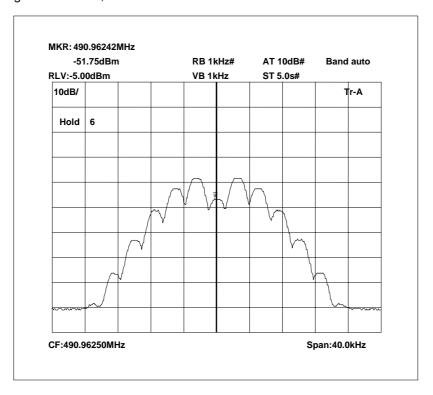



489.5000 MHz Signal Generator and EUT, deviation set to 5kHz

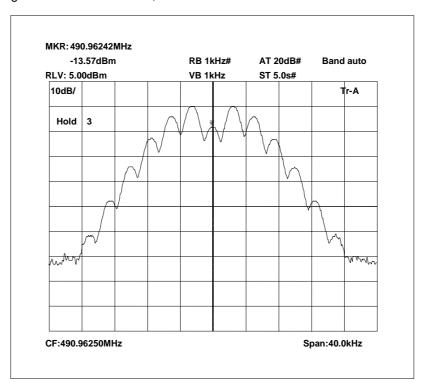



RU1194/6803 Page 44 of 81

490.23125 MHz Signal Generator, deviation set to 5kHz

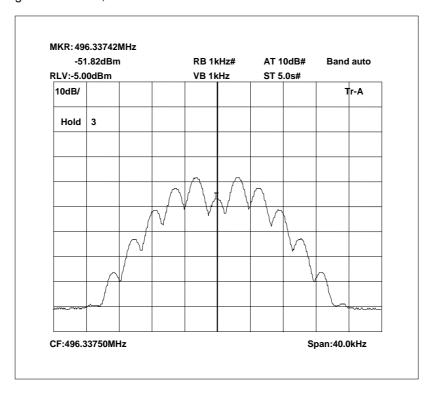



490.23125 MHz Signal Generator and EUT, deviation set to 5kHz

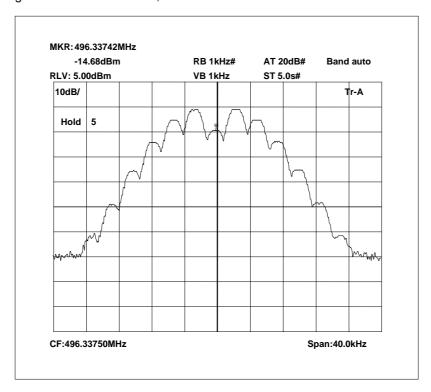



RU1194/6803 Page 45 of 81

490.9625 MHz Signal Generator, deviation set to 5kHz

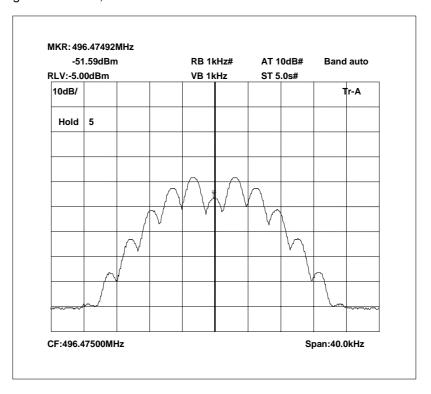



490.9625 MHz Signal Generator and EUT, deviation set to 5kHz

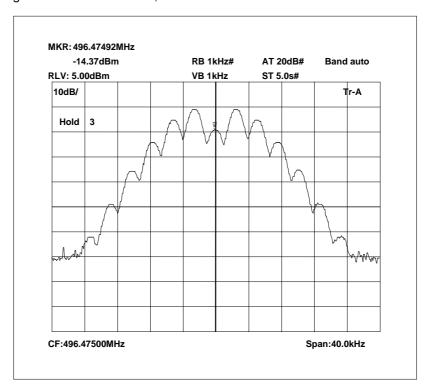



RU1194/6803 Page 46 of 81

496.3375 MHz Signal Generator, deviation set to 5kHz

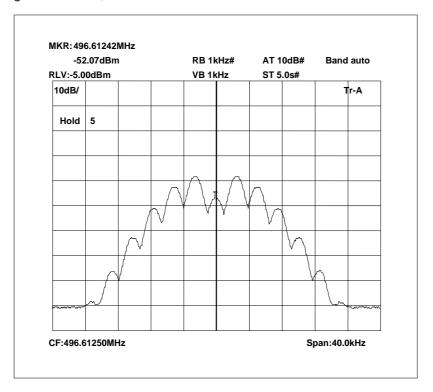



496.3375 MHz Signal Generator and EUT, deviation set to 5kHz

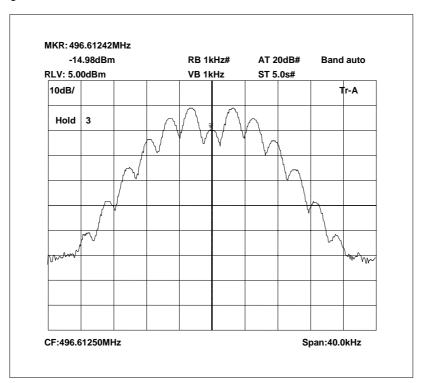



RU1194/6803 Page 47 of 81

496.4750 MHz Signal Generator, deviation set to 5kHz




496.4750 MHz Signal Generator and EUT, deviation set to 5kHz

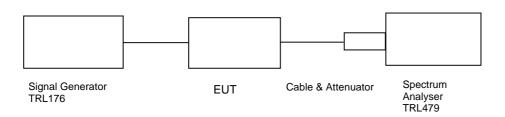



RU1194/6803 Page 48 of 81

496.6125 MHz Signal Generator, deviation set to 5kHz



496.6125 MHz Signal Generator and EUT, deviation set to 5kHz




RU1194/6803 Page 49 of 81

#### TRANSMITTER TESTS

#### AMPLIFIER SPURIOUS EMISSIONS - CONDUCTED - Part 2.1053 - DOWNLINK

Ambient temperature = 25°C Radio Laboratory
Relative humidity = 40% Test Signal = F3E
Supply voltage = +110 Vac



The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating at maximum power and on three test frequencies.

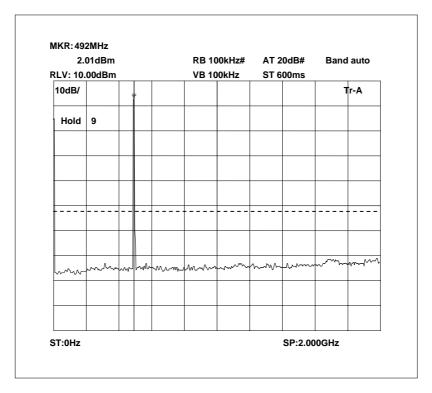
The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

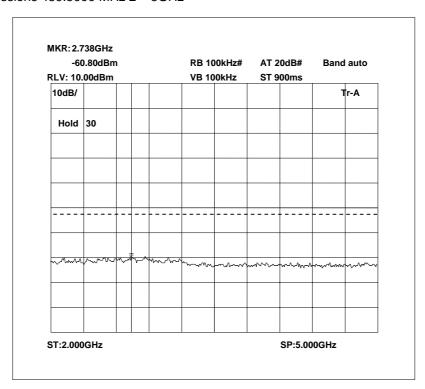
At least 43 + 10 log PdB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$ 

## **RESULTS**

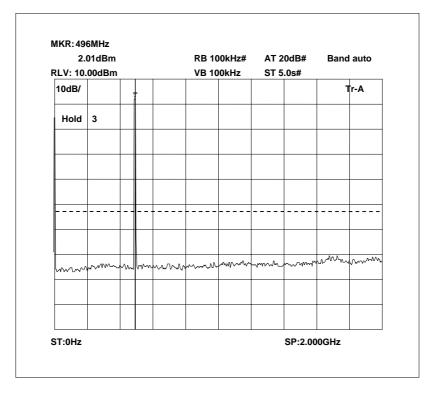

FREQUENCY RANGE	FREQ. (MHz)	MEASURED LEVEL (dBm)	ATTENUATOR & CABLE LOSSES (dB)	EMISSION LEVEL (dBm)	LIMIT (dBm)
0 Hz – 5 GHz		No Significant Emission	ons within 20 dB of the I	imit	-13

The test equipment used for the Transmitter Conducted Emissions:

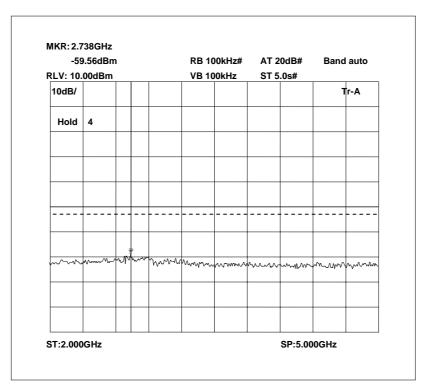

The test equipment	1		<u> </u>	t	1
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
ATTENUATOR	BIRD	8304-200	N/A	103	х
ATTENUATOR	BIRD	8304-300-N	N/A	220	х
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
CABLE	N/A	N/A	N/A	UH254	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

RU1194/6803 Page 50 of 81

## Conducted emissions 489.5000 MHz 0 - 2GHz

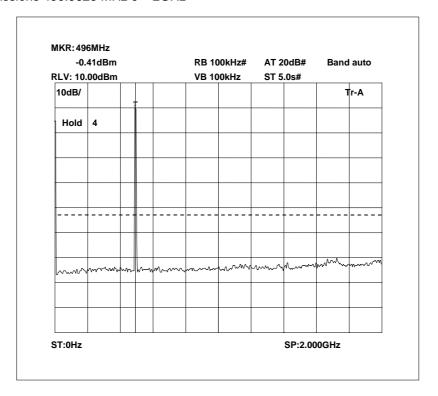



## Conducted emissions 489.5000 MHz 2 - 5GHz

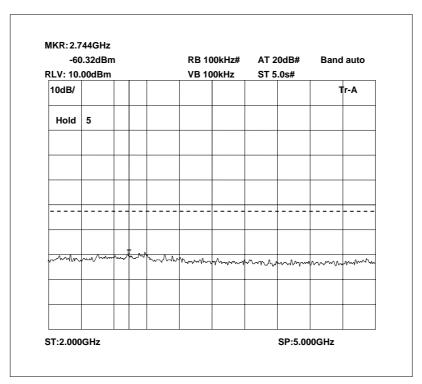



RU1194/6803 Page 51 of 81

## Conducted emissions 490.23125 MHz 0 - 2GHz

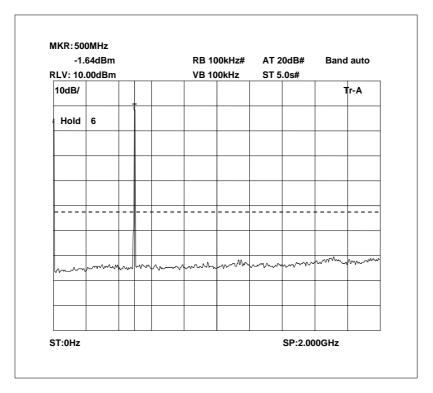



#### Conducted emissions 490.23125 MHz 2 - 5GHz

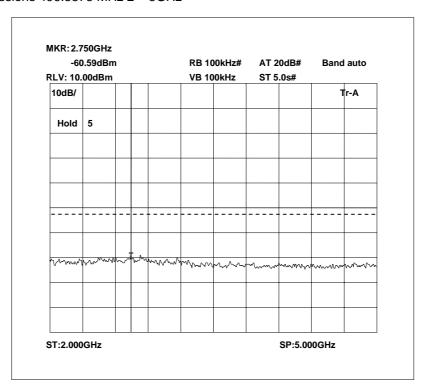



RU1194/6803 Page 52 of 81

## Conducted emissions 490.9625 MHz 0 - 2GHz

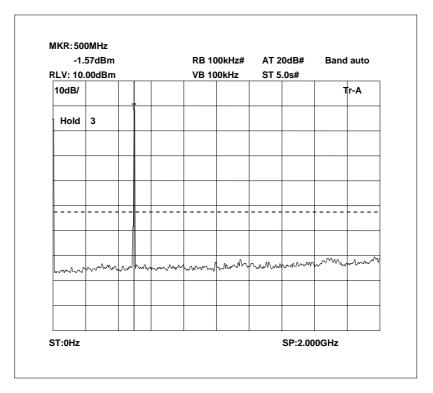



## Conducted emissions 490.9625 MHz 2 - 5GHz

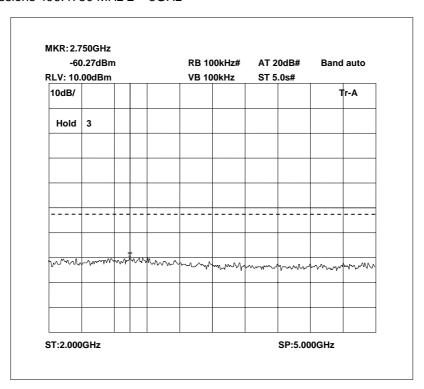



RU1194/6803 Page 53 of 81

## Conducted emissions 496.3375 MHz 0 - 2GHz

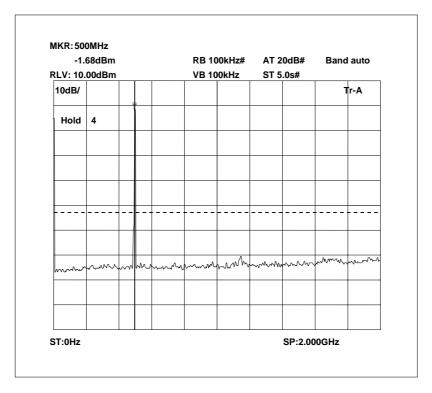



## Conducted emissions 496.3375 MHz 2 - 5GHz

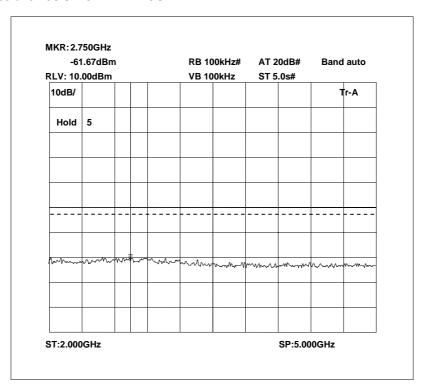



RU1194/6803 Page 54 of 81

## Conducted emissions 496.4750 MHz 0 - 2GHz



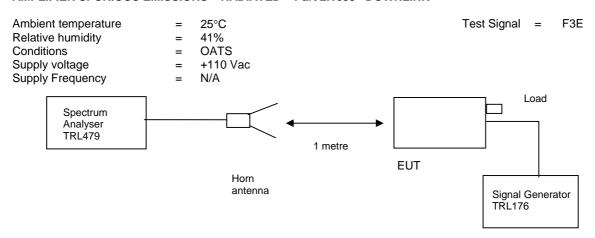

## Conducted emissions 496.4750 MHz 2 - 5GHz




RU1194/6803 Page 55 of 81

## Conducted emissions 496.6125 MHz 0 - 2GHz




## Conducted emissions 496.6125 MHz 2 - 5GHz



RU1194/6803 Page 56 of 81

#### TRANSMITTER TESTS

#### AMPLIFIER SPURIOUS EMISSIONS - RADIATED - Part 2.1053- DOWNLINK



The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating maximum power on three test frequencies with a 50 ohm load on the output. The unit was also tested with the signal generator replaced by another 50ohm load.

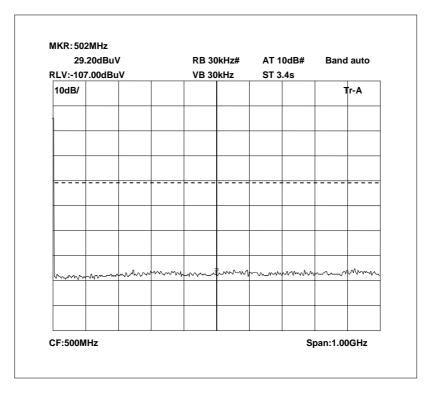
The Spurious limit was calculated as follows:

On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

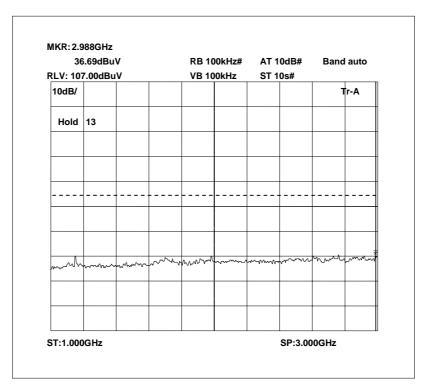
At least 43 + 10 log PdB

 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$ 

#### **RESULTS**


FREQUENCY RANGE	FREQ. (MHz)	MEAS. Rx. (dBμV)	CABLE LOSS (dB)	ANT FACTOR	FIELD STRENGTH (dBµV/m)	CALCULATED EIRP (dBm)	LIMIT (dBm)
0 Hz – 5 GHz		No Signific	ant Emissio	ons within 2	20 dB of the l	limit	-13

The test equipment used for the Transmitter Spurious Emissions:


TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	х
HORN	EMCO	3115	9010-3581	139	x
CABLE	ROSENBERGER	MICRO COAX	N/A	280	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

RU1194/6803 Page 57 of 81

## Radiated emissions 489.5000 MHz 0 - 1GHz

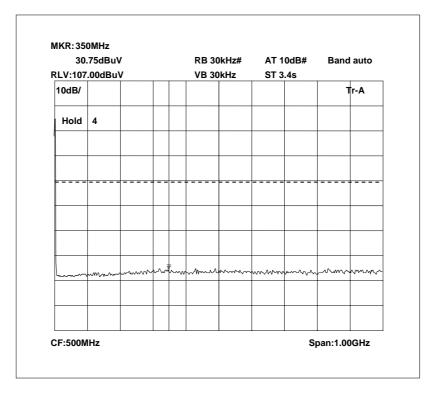


## Radiated emissions 489.5000 MHz 1 - 3GHz

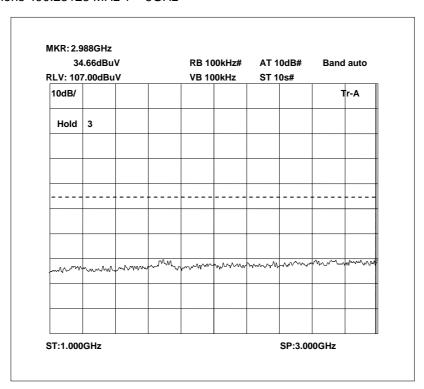


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 58 of 81

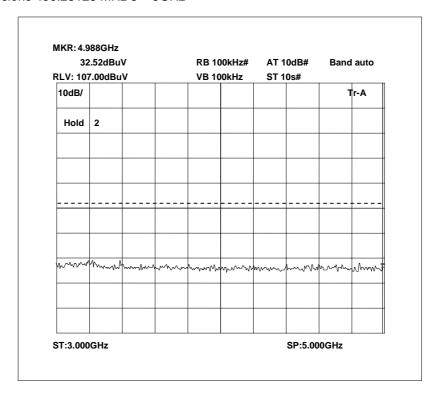

## Radiated emissions 489.5000 MHz 3 - 5GHz

.00dBuV VB 100kHz ST 10s#  Tr-A  3
3
manufacture and the second sec
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

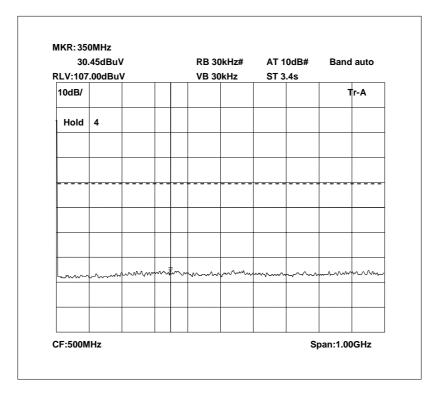
RU1194/6803 Page 59 of 81

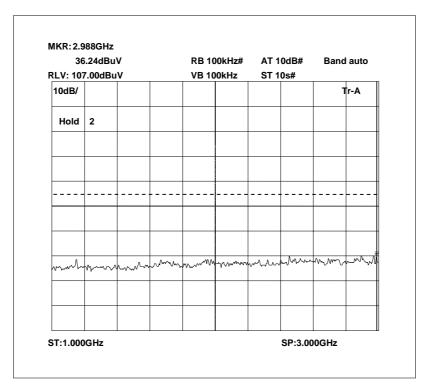
Radiated emissions 490.23125 MHz 0 - 1GHz


Radiated emissions 490.23125 MHz 1 - 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 60 of 81


Radiated emissions 490.23125 MHz 3 - 5GHz


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

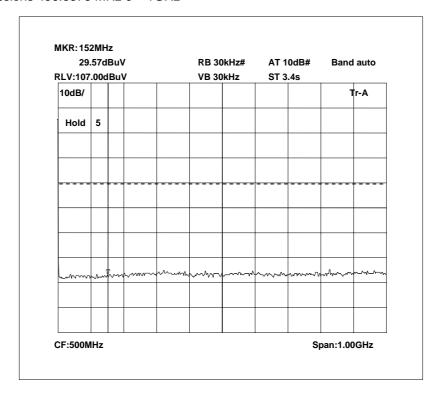
RU1194/6803 Page 61 of 81

Radiated emissions 490.9625 MHz 0 - 1GHz

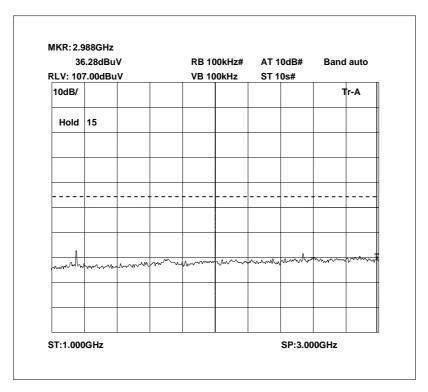
Radiated emissions 490.9625 MHz 1 - 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 62 of 81


Radiated emissions 490.9625 MHz 3 - 5GHz

				RB 100kHz# VB 100kHz		AT 10dB# ST 10s#		Band auto	
10dB/						<u> </u>		-	Tr-A
Hold	6								
unnum	M	~~~~~	www	Mann	\~~\^	www		~~~~	/~~~
T:3.000)GHz						SP:5.00	0GHz	


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

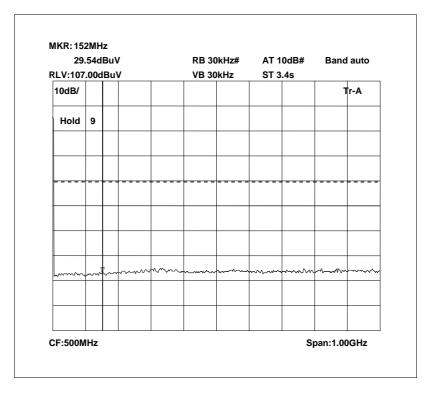
RU1194/6803 Page 63 of 81

Radiated emissions 496.3375 MHz 0 - 1GHz

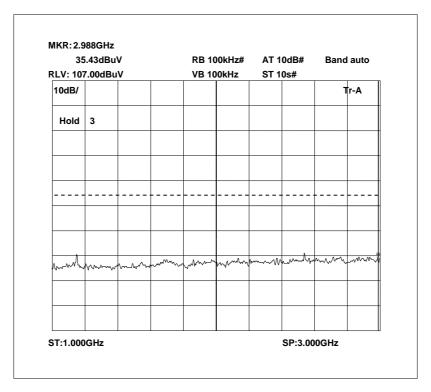
Radiated emissions 496.3375 MHz 1 - 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 64 of 81


Radiated emissions 496.3375 MHz 3 - 5GHz

33.85dBuV				RB 100kHz#		AT 10dB#		Band auto	
RLV: 10	7.00dBu	V		VB 10	00kHz	ST 10s#			
10dB/								7	r-A
Hold	10								
m	Mymmy	~~~~		~~~~		~~~~~	mm	~~~~^	man


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

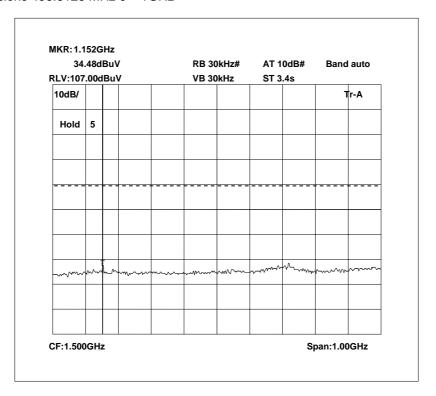
RU1194/6803 Page 65 of 81

Radiated emissions 496.4750 MHz 0 - 1GHz

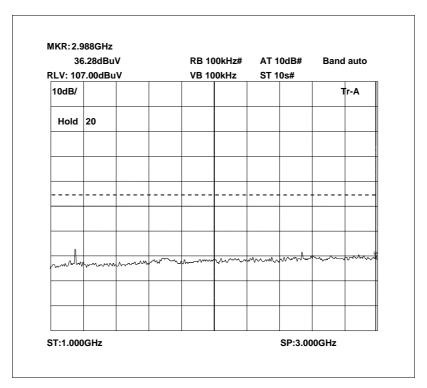
Radiated emissions 496.4750 MHz 1 - 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 66 of 81


Radiated emissions 496.4750 MHz 3 - 5GHz

33.57dBuV RLV: 107.00dBuV			RB 100kHz#		AT 10dB#		Band auto		
			VB 10	VB 100kHz		ST 10s#		-	
10dB/								-	Tr-A
Hold	3								
									+
0 mil									
W-W-V-	M. COLON	who	~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	mmm	Mmn	M~~~	~~~~	mm	1
ST:3.000							SP:5.00		


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

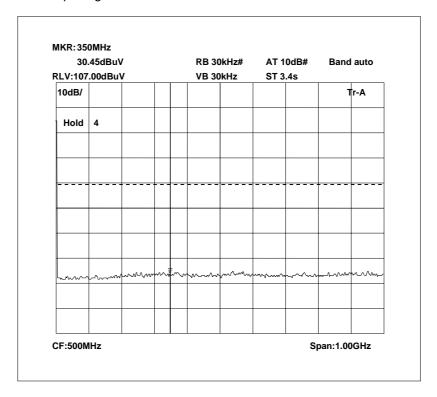
RU1194/6803 Page 67 of 81

Radiated emissions 496.6125 MHz 0 - 1GHz

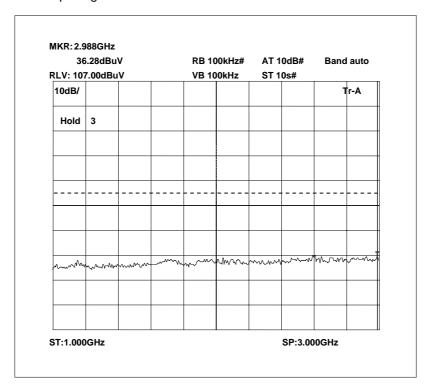
Radiated emissions 496.6125 MHz 1 - 3GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 68 of 81


Radiated emissions 496.6125 MHz 3 - 5GHz

33			AT 1	AT 10dB# Band ST 10s#		Band auto			
RLV: 107.00dBuV			ST 1						
10dB/								-	Tr-A
Hold	3								
	.								
D.W. 1-W. 0.	, mwww	mm	Marra 1	W.W.W.W.	www	M	~~~~	-~~~~	M-NI\-M
ST:3.000							SP:5.00		


The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 69 of 81

Radiated emissions no input signal 0 - 1GHz

Radiated emissions no input signal 1 – 3GHz

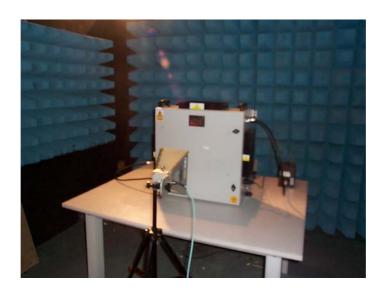
The above test results show that there were no emissions within 20dBs of the -13dBm limit.

RU1194/6803 Page 70 of 81

Radiated emissions no input signal 3 – 5GHz

32.66dBuV RLV: 107.00dBuV			RB 100kHz# VB 100kHz		AT 10dB# ST 10s#		Band auto		
									10dB/
Hold	3								
~~~~~w	Man. 1	A		m.a					=
	~ vov	2400mhr	ma hor	rrw_~.	www	www	~~~~~	~~~~	MAN MAN

The above test results show that there were no emissions within 20dBs of the -13dBm limit.


RU1194/6803 Page 71 of 81

## ANNEX A PHOTOGRAPHS

RU1194/6803 Page 72 of 81

## PHOTOGRAPH No. 1

## **TEST SETUP**



RU1194/6803 Page 73 of 81

# ANNEX B APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

RU1194/6803 Page 74 of 81

## APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

a.	ТСВ	-	APPLICATION FEE	[X]
b.	AGENT'S LETTER OF AUTHORISATION	-		[X]
C.	MODEL(s) vs IDENTITY	-		[]
d.	ALTERNATIVE TRADE NAME DECLARATION(s)	-		[]
e.	LABELLING	- - -	PHOTOGRAPHS DECLARATION DRAWINGS	[ ] [ ] [ ]
f.	TECHNICAL DESCRIPTION	-		[X]
g.	BLOCK DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [ ] [ ]
h.	CIRCUIT DIAGRAMS	- - -	Tx Rx PSU AUX	[ ] [ ] [ ]
i.	COMPONENT LOCATION	- - -	Tx Rx PSU AUX	[ ] [ ] [ ]
j.	PCB TRACK LAYOUT	- - -	Tx Rx PSU AUX	[] [] []
k.	BILL OF MATERIALS	- - -	Tx Rx PSU AUX	[] [] []
l.	USER INSTALLATION / OPERATING INSTRUCTIONS	-		[X]

RU1194/6803 Page 75 of 81

# ANNEX C EQUIPMENT CALIBRATION

RU1194/6803 Page 76 of 81

## **EQUIPMENT CALIBRATION**

TRL	Equipment		Last Cal	Calibration	Due For
Number	Type	Manufacturer	Calibration	Period	Calibration
UH006	3m Range ERP CAL	TRL	06/01/2006	12	06/01/2007
UH028	Log Periodic Ant	Schwarbeck	28/04/2005	24	28/04/2007
UH029	Bicone Antenna	Schwarbeck	27/04/2005	24	27/04/2007
UH041	Multimeter	<b>AVOmeter</b>	14/12/2004	12	14/12/2005
UH075	Signal Generator	Marconi	22/03/2005	12	22/03/2006
UH120	Spectrum Analyser	Marconi	15/03/2005	12	15/03/2006
UH122	Oscilloscope	Tektronix	07/06/2005	24	07/06/2007
UH132	Power meter	Marconi	15/12/2004	12	15/12/2005
UH162	ERP Cable Cal	TRL	06/01/2006	12	06/01/2007
UH179	Power Sensor	Marconi	14/12/2004	12	14/12/2005
UH228	Power Sensor	Marconi	15/12/2004	12	15/12/2005
UH253	1m Cable N type	TRL	05/01/2006	12	05/01/2007
UH254	1m Cable N type	TRL	05/01/2006	12	05/01/2007
UH265	Notch filer	Telonic	24/06/2005	12	24/06/2006
L005	CMTA	R&S	05/12/2005	12	05/12/2006
L007	Loop Antenna	R&S	29/03/2005	24	29/03/2007
L103	Attenuator	Bird		Calibrate in use	
L138	1-18GHz Horn	EMCO	15/04/2005	24	15/04/2007
L139	1-18GHz Horn	EMCO	03/05/2005	24	03/05/2007
L176	Signal Generator	Marconi	31/01/2005	12	31/01/2006
L193	Bicone Antenna	Chase	12/10/2003	24	12/10/2005
L203	Log Periodic Ant	Chase	21/10/2003	24	21/10/2005
L220	Attenuator	Bird		Calibrate in use	
L280	18GHz Cable	Rosenberger	05/01/2006	12	05/01/2007
L343	CCIR Noise Filter	TRL	07/06/2005	12	07/06/2006
L426	Temperature Indicator	Fluke	14/12/2004	12	14/12/2005
L479	Analyser	Anritsu	18/11/2005	12	18/11/2006
L552	Signal Generator	Agilent	25/04/2005	12	25/04/2006

RU1194/6803 Page 77 of 81

## ANNEX D MEASUREMENT UNCERTAINTY

RU1194/6803 Page 78 of 81

#### Radio Testing - General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

#### [1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

#### [2] Carrier Power

```
Uncertainty in test result (Equipment - TRLUH120) = 2.18dB
Uncertainty in test result (Equipment – TRL05) = 1.08dB
Uncertainty in test result (Equipment – TRL479) = 2.48dB
```

#### [3] Effective Radiated Power

Uncertainty in test result = 4.71dB

#### [4] Spurious Emissions

Uncertainty in test result = 4.75dB

#### [5] Maximum frequency error

```
Uncertainty in test result (Equipment - TRLUH120) = 119ppm Uncertainty in test result (Equipment – TRL05) = 0.113ppm Uncertainty in test result (Equipment – TRL479) = 0.265ppm
```

## [6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz - 30MHz) = 4.8dB, Uncertainty in test result (30MHz - 1GHz) = 4.6dB, Uncertainty in test result (16Hz-18GHz) = 4.7dB

#### [7] Frequency deviation

Uncertainty in test result = 3.2%

#### [8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

#### [9] Conducted Spurious

```
Uncertainty in test result (Equipment TRL479) Up to 8.1GHz = 3.31dB
Uncertainty in test result (Equipment TRL479) 8.1GHz – 15.3GHz = 4.43dB
Uncertainty in test result (Equipment TRL479) 15.3GHz – 21GHz = 5.34dB
Uncertainty in test result (Equipment TRLUH120) Up to 26GHz = 3.14dB
```

#### [10] Channel Bandwidth

Uncertainty in test result = 15.5%

#### [11] Amplitude and Time Measurement - Oscilloscope

Uncertainty in overall test level = 2.1dB, Uncertainty in time measurement = 0.59%, Uncertainty in Amplitude measurement = 0.82%

#### [11] Power Line Conduction

Uncertainty in test result = 3.4dB

RU1194/6803 Page 79 of 81

## ANNEX E SYSTEM DIAGRAM

RU1194/6803 Page 80 of 81

#### 50-128501 Low noise Amplifier Low noise 1 Watt Power Channel Selective 489.5125-490.9625 Bandpass Filter 489.5125-490.9625 Bandpass Filter Amplifier Amplifier Module **₹**| dΒ 30dB 30dB 30dB∕ Switched Low noise Low noise 1 Watt Power Attenuator **Channel Selective** 496.3375-496.6125 Bandpass Filter 496.3375-496.6125 Bandpass Filter Amplifier Amplifier Amplifier Module +++++++ ₹ DodB dΒ 30dB 30dB 30dB BASE 30dB Switched Attenuator Notch Reject Filter 30dB **MOBILE** Switched Attenuator Low noise Channel Selective 1 Watt Power Low noise Amplifier Amplifier Module Directional Directional Bandpass Filter Amplifier Bandpass Filter Coupler Coupler $\approx$ $\approx$ dB 30dE 30d₽ Switched Attenuator 492.5125-493.9625 492.5125-493.9625 1 Watt Power Low noise **Channel Selective** Module Bandpass Filter Amplifier Amplifier Bandpass Filter Amplifier 0dB ○ 350 dB 37d**B** 30dB **3**0d₿ 499.3375-499.6125 499.3375-499.6125

RU1194/6803 Page 81 of 81