

TEST REPORT NO: RU1181/6240

COPY NO: 2

ISSUE NO:

1

FCC ID:

NEO50-1225Series

REPORT ON THE CERTIFICATION TESTING OF A AERIAL FACILITIES LIMITED 55-122501 CELL ENHANCER WITH RESPECT TO THE FCC RULES CFR 47, PART 90 Subpart I PRIVATE LAND MOBILE REPEATER.

TEST DATE: 12th April 2005 – 14th April 2005

TESTED BY:			 J CHARTERS
APPROVED B	BY:		 P GREEN PRODUCT MANAGER EMC
DATE:		5 th January 2006	
Distribution:			
Copy Nos:	1.	Aerial Facilities Limited	

- 2. TCB: TRL Compliance Services Limited
- 3. TRL EMC

THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE

 TRL COMPLIANCE SERVICES LTD EMC DIVISION

 LONG GREEN
 FORTHAMPTON
 GLOUCESTER
 GL19 4QH
 UNITED
 KINGDOM

 TELEPHONE
 +44
 (0)1684
 833818
 FAx
 +44
 (0)1684
 833858

 E-MAIL
 test@trlcompliance.com
 www.trlcompliance.com

CONTENTS

	PAGE
CERTIFICATE OF CONFORMITY & COMPLIANCE	3
APPLICANT'S SUMMARY	4
EQUIPMENT TEST CONDITIONS	5
TESTS REQUIRED	5
TEST RESULTS	6-39

	ANNEX	
PHOTOGRAPHS	А	
PHOTOGRAPH No. 1: Test setup		
PHOTOGRAPH No. 2: Test setup		
APPLICANT'S SUBMISSION OF DOCUMENTATION LIST	В	
EQUIPMENT CALIBRATION	С	
MEASUREMENT UNCERTAINTY	D	
Notes: 1. Component failure during test	YES NO	[] [X]

2. If Yes, details of failure:

3. The facilities used for the testing of the product contain in this report are FCC Listed.

CERTIFICATE OF CONFORMITY & COMPLIANCE

FCC IDENTITY:	NEO50-1225Series	
PURPOSE OF TEST:	Certification	
TEST SPECIFICATION:	FCC RULES CFR 47, Part 90 Subpart I	
TEST RESULT:	Compliant to Specification	
EQUIPMENT UNDER TEST:	55-122501 Cell Enhancer	
EQUIPMENT TYPE:	Private Land Mobile Repeater	
MAXIMIUM GAIN	Uplink = 98.35 dB Downlink = 98.90 dB	
MAXIMUM INPUT	Uplink = -78.5 dBm Downlink = -73.0 dBm	
MAXIMUM OUTPUT	Uplink = 19.85 dBm Downlink = 25.90 dBm (radiating cable sys	stem)
ANTENNA TYPE:	Not applicable	
CHANNEL SPACING:	Uplink 12.5 kHz Downlink 12.5 kHz	
NUMBER OF CHANNELS:	Uplink = 6 Downlink = 6	
FREQUENCY GENERATION:	N/A	
MODULATION TYPE:	F3E	
POWER SOURCE(s):	+110Vac	
TEST DATE(s):	12 th April 2005 – 14 th April 2005	
ORDER No(s):	30090	
APPLICANT:	Aerial Facilities Limited	
ADDRESS:	Aerial House Asheridge Road Chesham Buckinghamshire HP5 1TU United Kingdom	
TESTED BY:		J CHARTERS
APPROVED BY:		P GREEN PRODUCT MANAGER EMC

APPLICANT'S SUMMARY

EQUIPMENT UNDER TEST (EUT):	55-122501 Cell Enhancer
EQUIPMENT TYPE:	Private Land Mobile Repeater
PURPOSE OF TEST:	Certification
TEST SPECIFICATION(s):	FCC RULES CFR 47, Part 90 Subpart I
TEST RESULT:	COMPLIANT Yes [X] No []
APPLICANT'S CATEGORY:	MANUFACTURER[X]IMPORTER[DISTRIBUTOR[TEST HOUSE[AGENT[
APPLICANT'S ORDER No(s):	30090
APPLICANT'S CONTACT PERSON(s):	Mr Peter Bradfield
E-mail address:	Peterb@aerial.co.uk
APPLICANT:	Aerial Facilities Limited
ADDRESS:	Aerial House Asheridge Road Chesham Buckinghamshire HP5 1TU United Kingdom
TEL:	+44 (0)1494 777000
FAX:	+44 (0)1494 778456
MANUFACTURER:	Aerial Facilities Limited
EUT(s) COUNTRY OF ORIGIN:	United Kingdom
TEST LABORATORY:	TRL EMC
UKAS ACCREDITATION No:	0728
TEST DATE(s)	12 th April 2005 – 14 th April 2005
TEST REPORT No:	RU1181/6240

EQUIPMENT TEST / EXAMINATIONS REQUIRED

1	
I	

TEST/EXAMINATION	RULE PART	APPLICABILITY	RESULT
RF Power Output	90.205	Yes	Complies
Audio Frequency Response	TIA EIA-603.3.2.6	N/A	N/A
Audio Low-Pass Filter Response	TIA EIA-603.3.2.6	N/A	N/A
Modulation Limiting	TIA EIA-603.3.2.6	N/A	N/A
Occupied Bandwidth	90.210	Yes	Complies
Spurious Emissions at Antenna Terminals	90.210	Yes	Complies
Field Strength of Spurious Emissions	90.210	Yes	Complies
Frequency Stability	90.213	N/A(note 1)	N/A
Transient behaviour	90.214	N/A(note 2)	N/A

Notes:

1 The EUT does not contain modulation circuitry; therefore the test was not performed.

2 The EUT is not a keyed carrier system; therefore the test was not performed.

2.	Product class:	Uplink	Class A [X]	Class B []
		Downlink	Class A [X]	Class B []
3.	Product Use:	Private Land Mo	bile Repeater	
4.	Emission Designator:	F3E		
5.	Temperatures:	Ambient (Tnom)	25°C	
6.	Supply Voltages:	Vnom	+110Vac	
	Note: Vnom voltages are as stated above	e unless otherwise shown on th	e test report page	е
7.	Equipment Category:	Single channel Two channel Multi-channel	[] [] [X]	
8.	Channel spacing:	Narrowband Wideband	[X] []	12.5 kHz
9.	Test Location	TRL Compliance Services Up Holland Long Green	[X] []	

11. Modifications made during test program

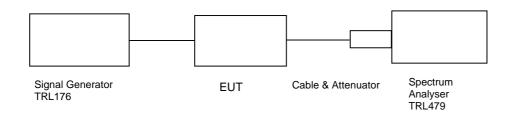
No modifications were performed.

System description:

The 55-122501 cell enhancer is a Bi-directional amplifier, consisting of an uplink and a downlink. The uplink operates in the frequency band 162 - 165.25 MHz, the uplink is narrowband and is capable of supporting 6 channels with a channel spacing of 12.5 kHz. The downlink operates in the frequency band 167 - 175.2 MHz, the downlink is narrowband and is capable of supporting 6 channels with a channel spacing of 12.5 kHz.

COMPLIANCE TESTS

AMPLIFIER GAIN - CONDUCTED - PART 2.1046 - UPLINK

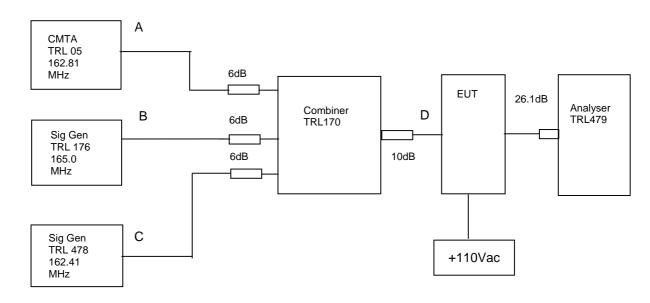

Ambient temperature	
Relative humidity	
Supply voltage	
Channel number	

25°C = 37% =

Radio Laboratory

= See test results

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Gain after 10dB input level increase dBm
162.0 MHz	-75.0	26.6	-6.25	95.35	85.56
163.5 MHz	-78.5	26.6	-6.75	98.35	89.81
165.0 MHz	-75.0	26.6	-6.39	95.21	85.57


Notes:

The level of the signal generator takes into consideration the loss from the cable.
 The signal generator input was increased by 20dBs and the level of the output signal remeasured

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
ATTENUATOR	BIRD	8304-300-N	N/A	220	x
CABLE	ROSENBERGER	MICRO COAX	N/A	280	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	x

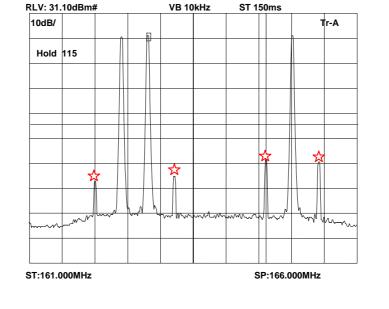
AMPLIFIER INTERMODULATION SPURIOUS EMISSIONS - CONDUCTED - PART 2.1053- UPLINK

Ambient temperature Relative humidity Supply voltage = 20°C = 46% = +110Vac Radio Laboratory

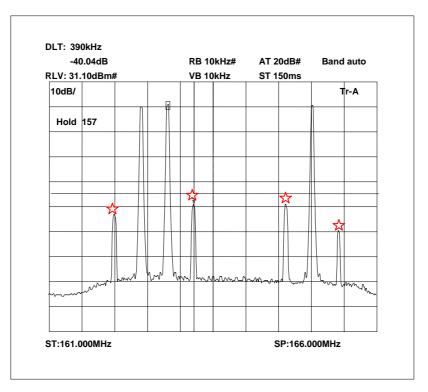
The Intermodulation and spurious products were measured with the amplifier operating at maximum gain. A three tone test was conducted using the equipment as above. The input power level was adjusted so the level at point D was 10dBm above the maximum input of -75.0 dBm. The cable and attenuator loss between the EUT and the spectrum analyser was 26.1dB.

RF Input Frequency (MHz)			Highest Intermodulation Product Level (dBm)	Limit (dBm)
162.81	165.00	162.41	-27.67 dBm @164.600 MHz	-13
162.81	165.00	162.41	-18.14 dBm @ 163.200MHz (note 1)	-13

Note 1 6 active channels, 3 as above 3 channels set to frequencies where intermodulation products occur

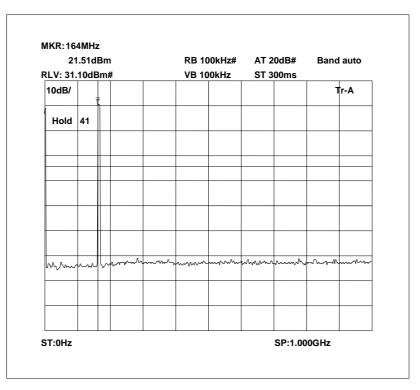

Sweep data is shown on the next page:

Test equipment used for intermodulation test

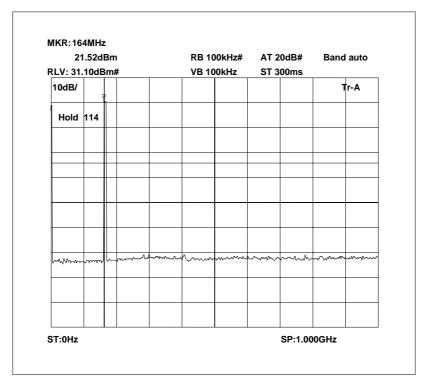

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
SIGNAL GENERATOR	MARCONI	2042	119562/02	254	х
СМТА	ROHDE & SCHWARZ	CMTA52	894715/033	05	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	x
COMBINER	ELCOM	RC-4-50	N/A	170	x

DLT: 1.790MHz -49.57dB RB 10kHz# AT 20dB# Band auto RLV: 31.10dBm# VB 10kHz ST 150ms

Intermodulation Inband



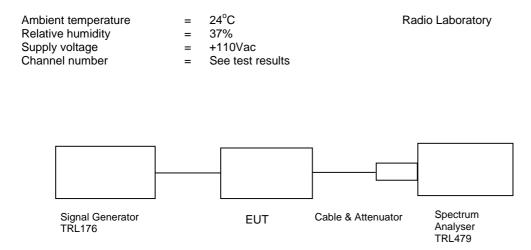
3 active channels, frequencies as per setup diagram above


6 active channels, 3 as per above, 3 channels set to frequencies where intermodulation products occur

The above plots show that all products (designated by $\stackrel{\scriptstyle \leftarrow}{\rightarrowtail}$) are at least 40dB below the fundamentals.

Intermodulation Wideband

3 active channels

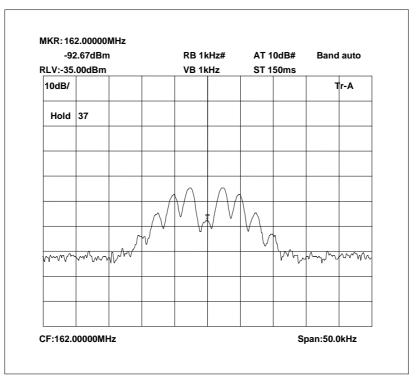


6 active channels

The above plots show that there are no products outside the bands.

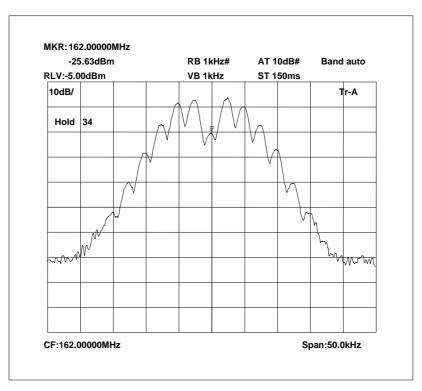
TRANSMITTER TESTS

AMPLIFIER MODULATED CHANNEL TEST - CONDUCTED - Part 2.1049- UPLINK

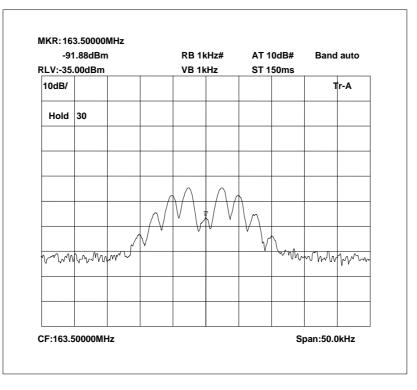


This test was performed to show that the amplifier does not alter the input signal in any way. The input signal was set to the maximum input level (-75dBm) and modulated with a 2500Hz tone. The plots show the signal measured at the signal generator and the signal measured at the output of the EUT.

Note: The cables and attenuators had the following losses.

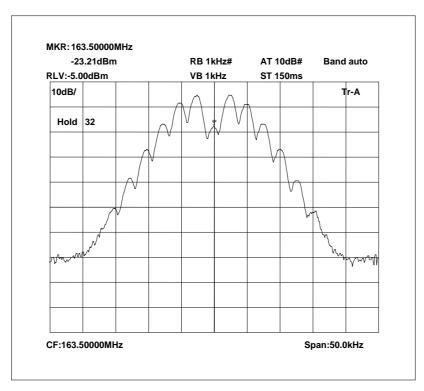

- 1. Cable and attenuator between EUT and spectrum analyser 26.1dB
- 2. Cable between signal generator and EUT 0.5dB

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
ATTENUATOR	BIRD	8304-300-N	N/A	220	x
CABLE	ROSENBERGER	MICRO COAX	N/A	280	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	x

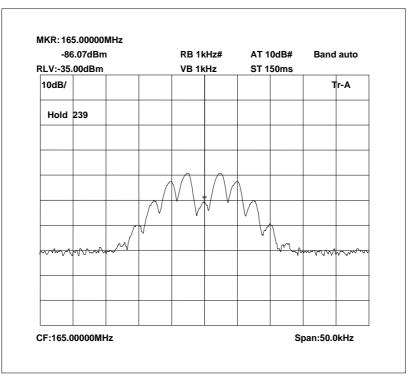


162.0 MHz Signal Generator, deviation set to 5kHz

172.0 MHz Signal Generator and EUT, deviation set to 5kHz

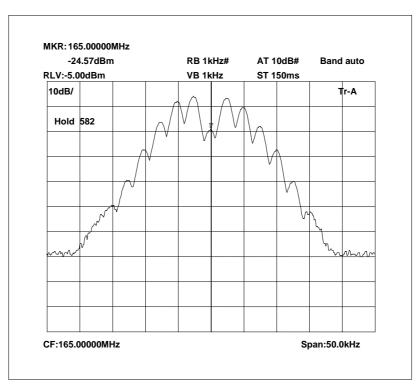


The above plots depicting the output waveshape show no measurable distortion visible when compared to the input signal.



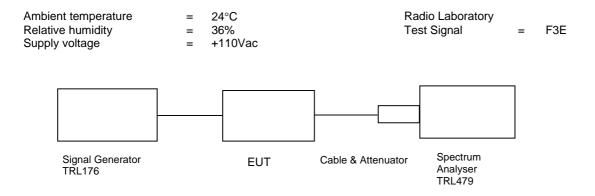
163.5 MHz Signal Generator, deviation set to 5kHz

163.5 MHz Signal Generator and EUT, deviation set to 5kHz



The above plots depicting the output waveshape show no measurable distortion visible when compared to the input signal.

165.0 MHz Signal Generator, deviation set to 5kHz


165.0 MHz Signal Generator deviation and EUT, set to 5kHz

The above plots depicting the output waveshape show no measurable distortion visible when compared to the input signal.

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - CONDUCTED - Part 2.1053 - UPLINK

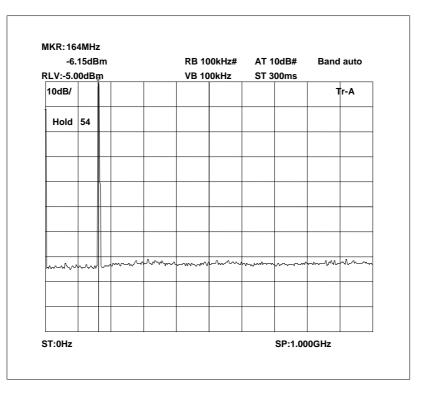
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating at maximum power and on three test frequencies.

The Spurious limit was calculated as follows:

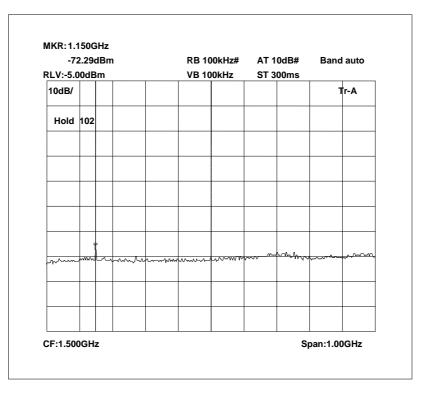
On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

At least 43 + 10 log PdB

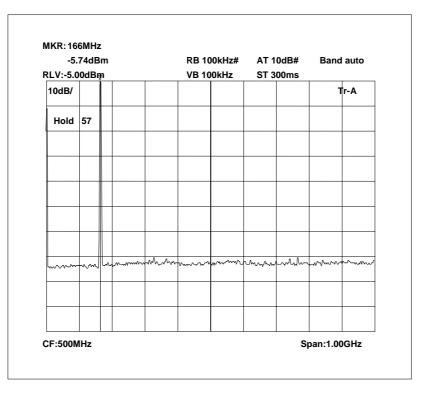
(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm

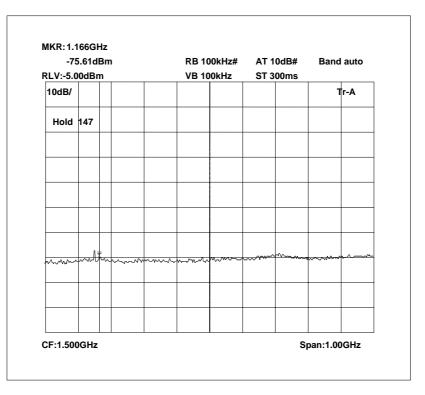

RESULTS

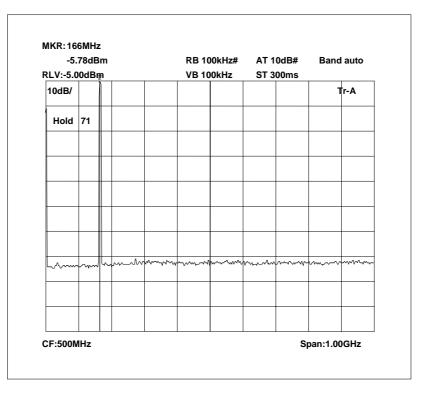
FREQUENCY RANGE	FREQ. (MHz)	MEASURED LEVEL (dBm)	ATTENUATOR & CABLE LOSSES (dB)	EMISSION LEVEL (dBm)	LIMIT (dBm)
0 – 2GHz		No Signifi	cant Emissions		-13

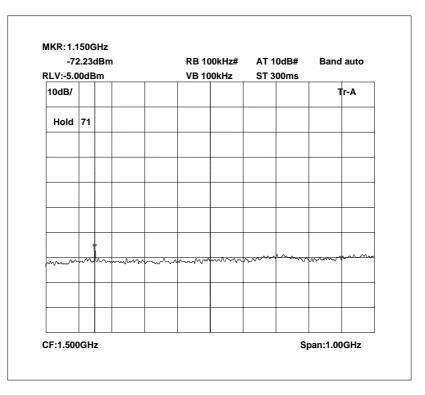

The test equipment used for the Transmitter Conducted Emissions:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
ATTENUATOR	BIRD	8304-300-N	N/A	220	x
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х


Conducted emissions 162.0 MHz 0 - 1GHz


Conducted emissions 162.0 MHz 1 - 2GHz


Conducted emissions 163.5 MHz 0 - 1GHz


Conducted emissions 163.5 MHz 1 – 2GHz

Conducted emissions 165.0 MHz 0 - 1GHz

Conducted emissions 165.0 MHz 1 – 2GHz

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - RADIATED - Part 2.1053- UPLINK

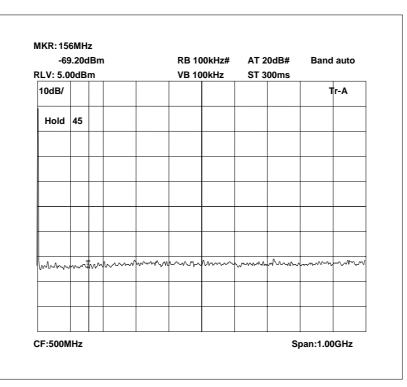
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating maximum power on three test frequencies with a 50 ohm load on the output. The unit was also tested with the signal generator replaced by another 50 ohm load.

The Spurious limit was calculated as follows:

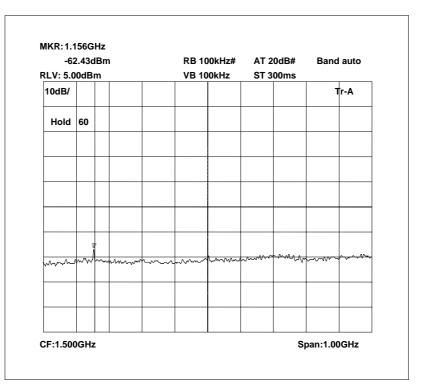
On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

At least 43 + 10 log PdB

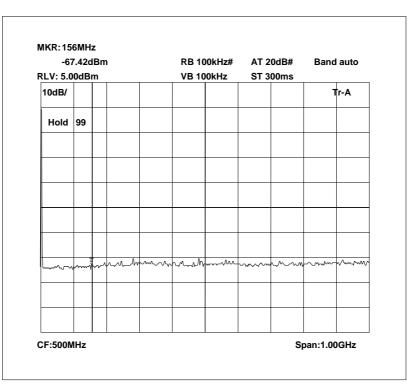
 $(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT = -13 dBm$

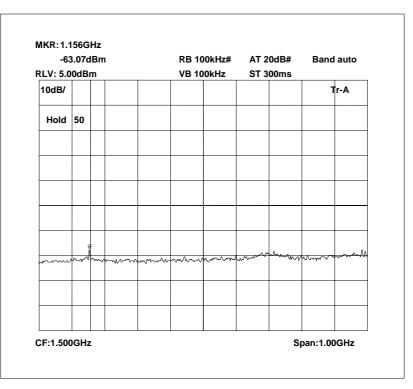

RESULTS

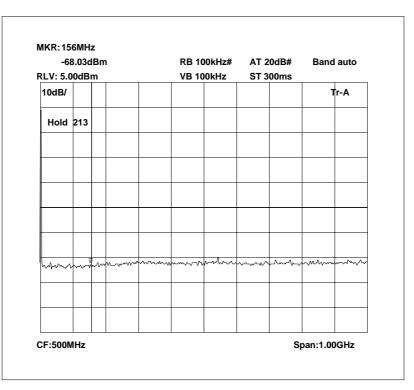
FREQUENCY RANGE	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	ANT FACTOR	FIELD STRENGTH (dBµV/m)	CALCULATED EIRP (dBm)	LIMIT (dBm)
0 – 2 GHz			No Signifi	cant Emiss	ions		-13

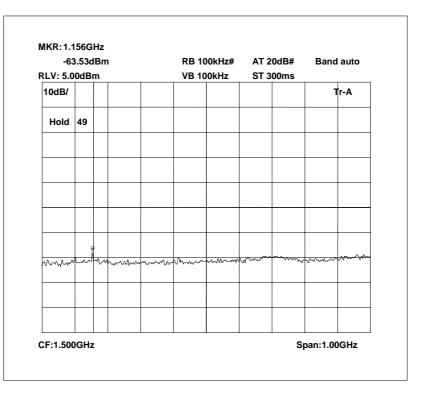

The test equipment used for the Transmitter Spurious Emissions:

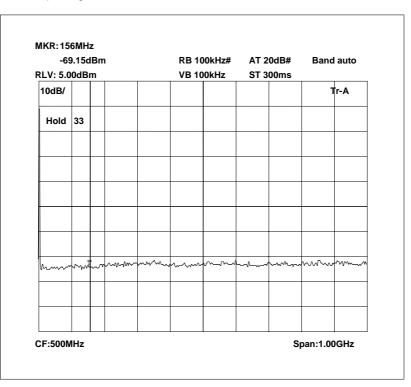
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
HORN	EMCO	3115	9010-3581	139	x
ATTENUATOR	BIRD	8304-300-N	N/A	220	х
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

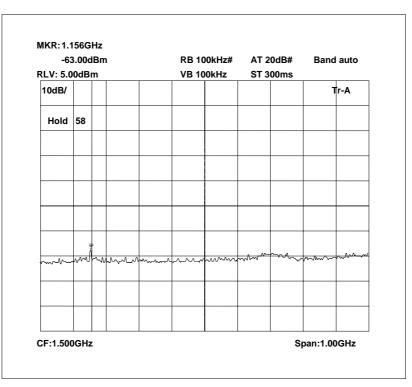

Radiated emissions 162.0 MHz 0 - 1GHz


Radiated emissions 162.0 MHz 1 - 2GHz


Radiated emissions 163.5 MHz 0 - 1GHz


Radiated emissions 163.5 MHz 1 - 2GHz


Radiated emissions 165.0 MHz 0 - 1GHz


Radiated emissions 165.0 MHz 1 - 2GHz

Radiated emissions no input signal 0 - 1GHz

Radiated emissions no input signal 1 - 2GHz

AMPLIFIER GAIN - CONDUCTED - PART 2.1046 - DOWNLINK

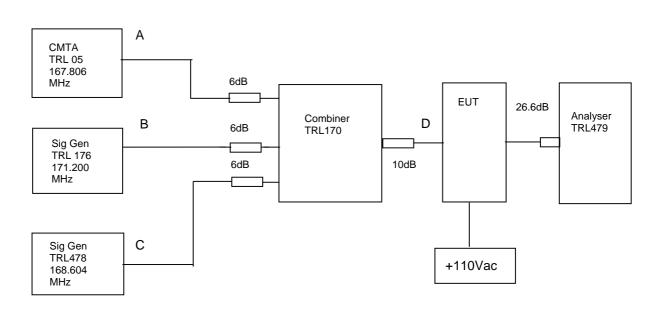
Ambient temperature Relative humidity Supply voltage

25°C = 37% =

Radio Laboratory

- Channel number
- = +110Vac
- = See test results

Frequency MHz	Signal Generator input level dBm	Cable & Attenuator loss dB	Level at Spectrum Analyser dBm	Gain dB	Gain after 10dB input level increase dBm
167.0	-70	26.6	-3.02	93.58	83.72
169.5	-73	26.6	-0.07	99.53	89.12
172.0	-71	26.6	-0.98	96.62	86.83


Notes:

The level of the signal generator takes into consideration the loss from the cable.
 The signal generator input was increased by 20dBs and the level of the output signal remeasured.

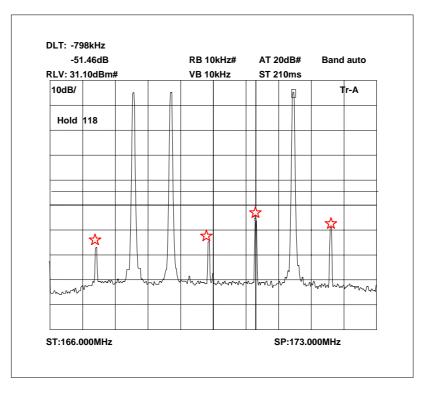
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
ATTENUATOR	BIRD	8304-200	N/A	103	x
ATTENUATOR	BIRD	8304-300-N	N/A	220	x
CABLE	ROSENBERGER	MICRO COAX	N/A	280	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

AMPLIFIER INTERMODULATION SPURIOUS EMISSIONS – CONDUCTED – PART 2.1053– DOWNLINK

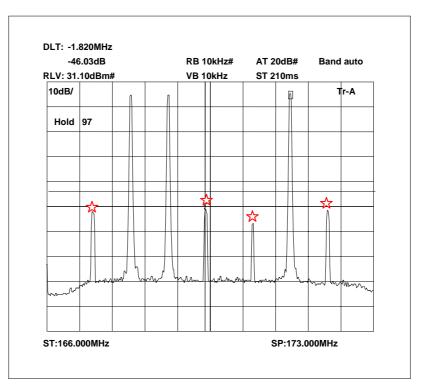
Ambient temperature Relative humidity Supply voltage = 20°C = 46% = +110Vac Radio Laboratory

The Intermodulation and spurious products were measured with the amplifier operating at maximum gain. A three tone test was conducted using the equipment as above. The input power level was adjusted so the level at point D was 10dBm above the maximum input of -70.0dBm. The cable and attenuators loss between the EUT and the spectrum analyser was 26.6 dB.

RF Input Frequency (MHz)		су	Highest Intermodulation Product Level (dBm)	Limit (dBm)
167.806	168.604	171.200	-26.3 dBm @ 170.402MHz	-13
167.806	168.604	171.200	-20.87 dBm @ 169.380 MHz (note1)	-13


Note 1 6 active channels, 3 as above 3 channels set to frequencies where intermodulation products occur

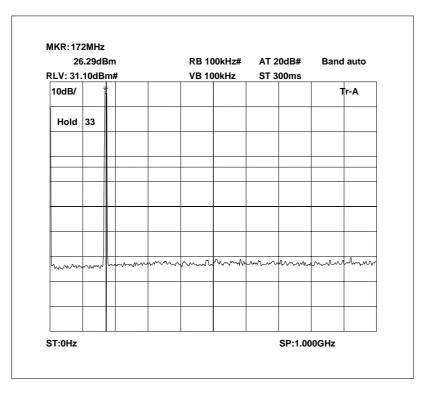
Sweep data is shown on the next page:


Test equipment used for intermodulation test

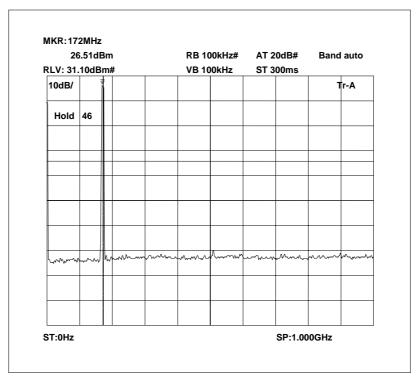
TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
SIGNAL GENERATOR	MARCONI	2042	119562/02	254	x
СМТА	ROHDE & SCHWARZ	CMTA52	894715/033	05	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х
COMBINER	ELCOM	RC-4-50	N/A	170	x

Intermodulation Inband

3 active channels, frequencies as per setup diagram above



6 active channels, 3 as per above, 3 channels set to frequencies where intermodulation products occur


The above plot shows that all products (designated by $\stackrel{\bigstar}{\rightarrowtail}$) are at least 40dB below the fundamentals.

RF335 iss02

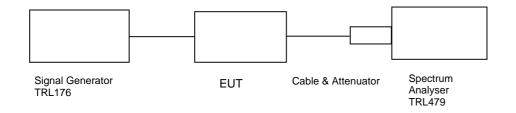
Intermodulation Wideband

3 active channels

6 active channels

The above plots show that there are no products outside the bands.

TRANSMITTER TESTS


AMPLIFIER MODULATED CHANNEL TEST – CONDUCTED – Part 2.1049– DOWNLINK

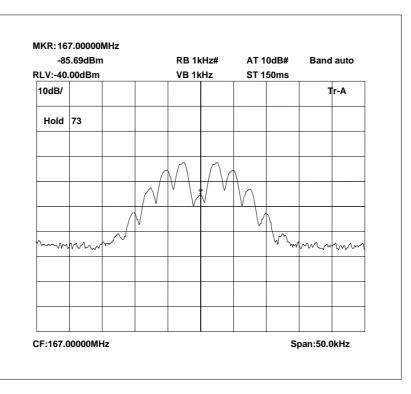
Ambient temperature
Relative humidity
Supply voltage
Channel number

24°C = 37% +110Vac =

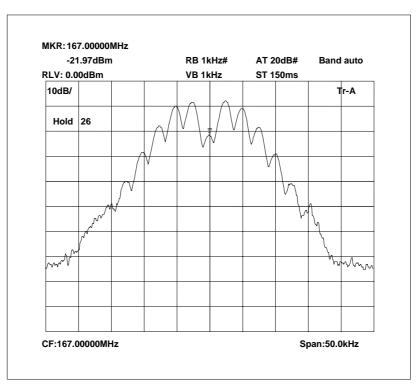
=

See test results =

This test was performed to show that the amplifier does not alter the input signal in any way. The input signal was set to the maximum input level (-70dBm) and modulated with a 2500Hz tone. The plots show the signal measured at the signal generator and the signal measured at the output of the EUT.

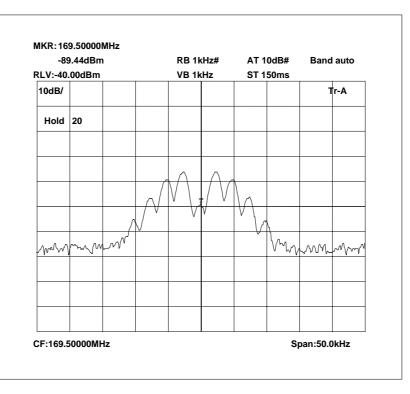

Radio Laboratory

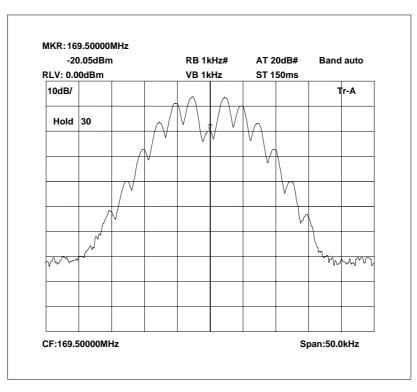
Note: The cables and attenuators had the following losses.


- 1. Cable and attenuator between EUT and spectrum analyser = 26.1dB
- Cable between signal generator and EUT = 0.5dB 2.

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
ATTENUATOR	BIRD	8304-200	N/A	103	
ATTENUATOR	BIRD	8304-300-N	N/A	220	x
CABLE	ROSENBERGER	MICRO COAX	N/A	280	x
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	х

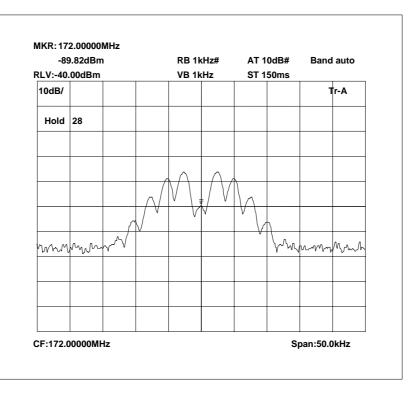
167.0 MHz Signal Generator, deviation set to 5kHz

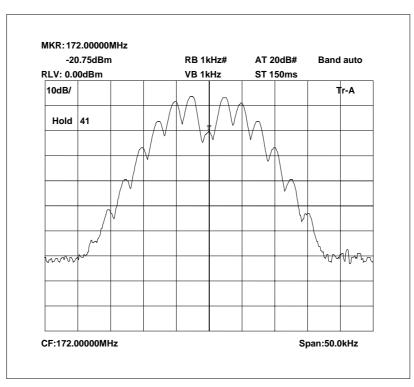

167.0 MHz Signal Generator and EUT, deviation set to 5kHz


The above plots depicting the output waveshape show no measurable distortion visible when compared to the input signal.

RF335 iss02

169.5 MHz Signal Generator, deviation set to 5kHz

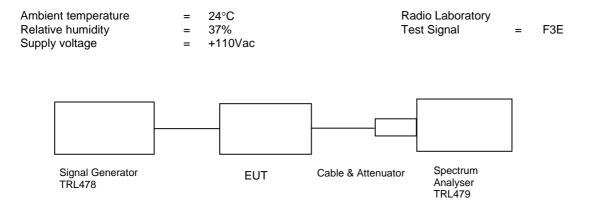

169.5 MHz Signal Generator and EUT, deviation set to 5kHz


The above plots depicting the output waveshape show no measurable distortion visible when compared to the input signal.

RF335 iss02

172.0 MHz Signal Generator, deviation set to 5kHz

172.0 MHz Signal Generator and EUT, deviation set to 5kHz



The above plots depicting the output waveshape show no measurable distortion visible when compared to the input signal.

RF335 iss02

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - CONDUCTED - Part 2.1053 - DOWNLINK

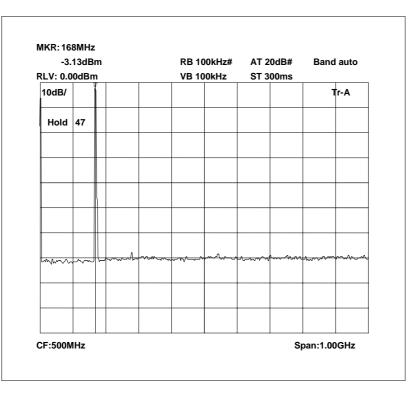
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating at maximum power and on three test frequencies.

The Spurious limit was calculated as follows:

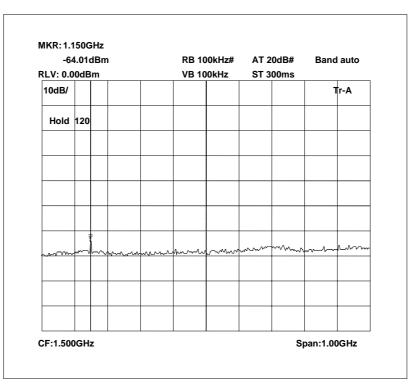
On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

At least 43 + 10 log PdB

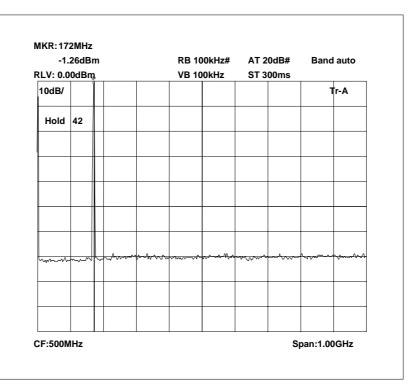
(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT =-13 dBm

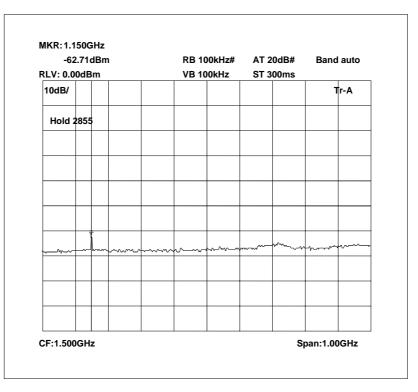

RESULTS

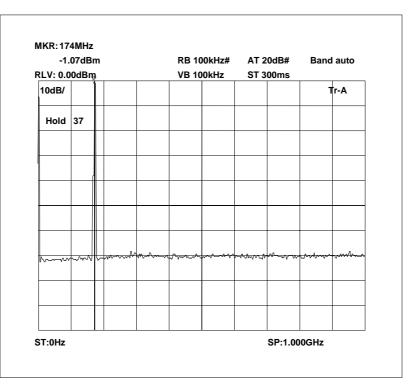
FREQUENCY RANGE	FREQ. (MHz)	MEASURED LEVEL (dBm)	ATTENUATOR & CABLE LOSSES (dB)	EMISSION LEVEL (dBm)	LIMIT (dBm)
0 – 2 GHz		No Significant Emissions			

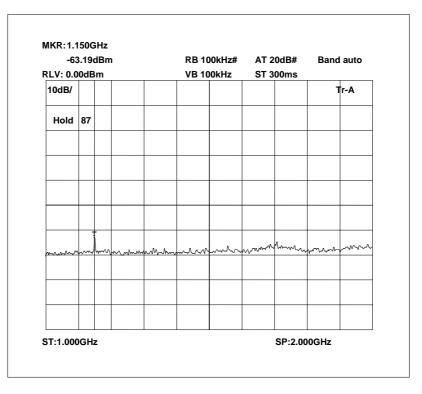

The test equipment used for the Transmitter Conducted Emissions:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
ATTENUATOR	BIRD	8304-200	N/A	103	
ATTENUATOR	BIRD	8304-300-N	N/A	220	x
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
SIGNAL GENERATOR	RHODE & SCHWARZ	SMR 20	834671/003	478	х


Conducted emissions 167.0 MHz 0 - 1GHz


Conducted emissions 167.0 MHz 1 – 2GHz


Conducted emissions 169.5 MHz 0 - 1GHz


Conducted emissions 169.5 MHz 1 – 2GHz

Conducted emissions 172.0 MHz 0 - 1GHz

Conducted emissions 172.0 MHz 1 – 2GHz

TRANSMITTER TESTS

AMPLIFIER SPURIOUS EMISSIONS - RADIATED - Part 2.1053- DOWNLINK

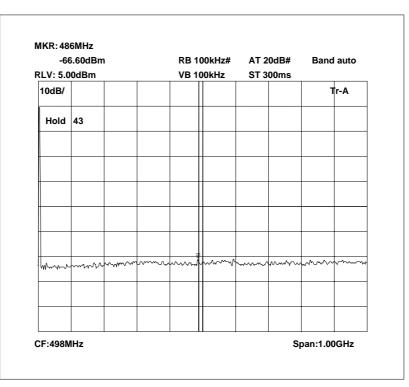
The test was set up as per the diagram. The level at the input was adjusted to compensate for the loss of the interconnecting cable. The unit was tested operating maximum power on three test frequencies with a 50 ohm load on the output. The unit was also tested with the signal generator replaced by another 50ohm load.

The Spurious limit was calculated as follows:

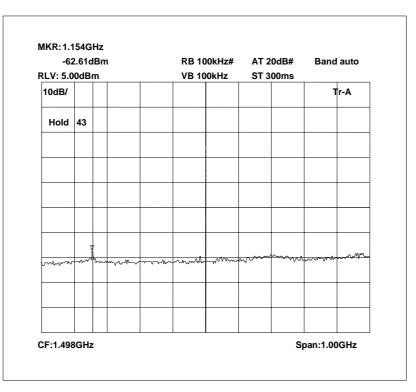
On any frequency removed from the assigned frequency by more that 250% of the authorised bandwidth

At least 43 + 10 log PdB

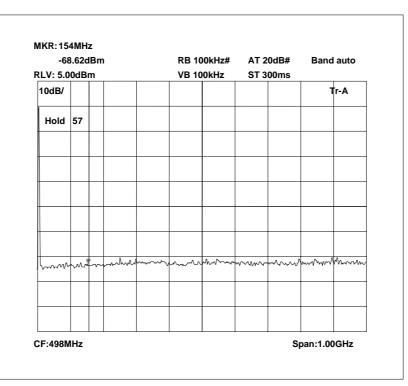
(10logP_{watts}) - (43+10log (P_{watts} * 1000)) = LIMIT =-13 dBm

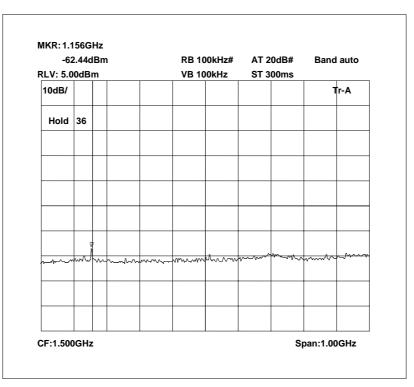

RESULTS

FREQUENCY RANGE	FREQ. (MHz)	MEAS. Rx. (dBµV)	CABLE LOSS (dB)	ANT FACTOR	FIELD STRENGTH (dBµV/m)	CALCULATED EIRP (dBm)	LIMIT (dBm)
0 – 2GHz	No Significant Emissions within						

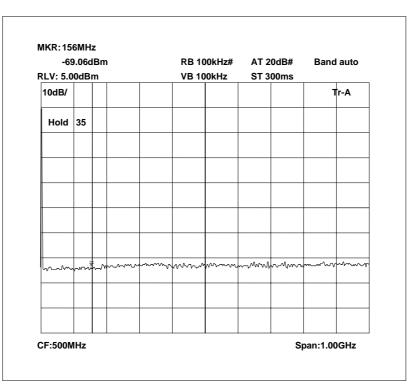

The test equipment used for the Transmitter Spurious Emissions:

TYPE OF EQUIPMENT	MAKER/ SUPPLIER	MODEL No	SERIAL No	TRL No	ACTUAL EQUIPMENT USED
SPECTRUM ANALYSER	ANRITSU	MS2665C	MT26089	479	x
HORN	EMCO	3115	9010-3581	139	x
ATTENUATOR	BIRD	8304-300-N	N/A	220	
ATTENUATOR	BIRD	8308-100	N/A	112	
CABLE	ROSENBERGER	MICRO COAX	N/A	280	х
SIGNAL GENERATOR	MARCONI	2042	119388/080	176	x
RF335 iss02		•	Page 35 of 48		

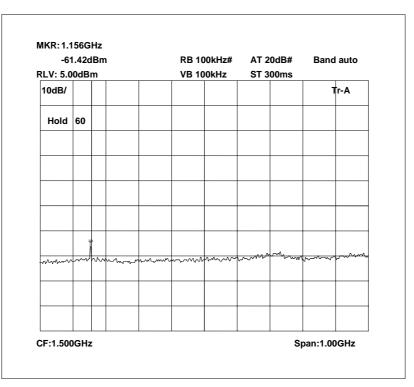

Radiated emissions 167.0 MHz 0 - 1GHz


Radiated emissions 167.0 MHz 1 - 2GHz

Radiated emissions 169.5 MHz 0 - 1GHz



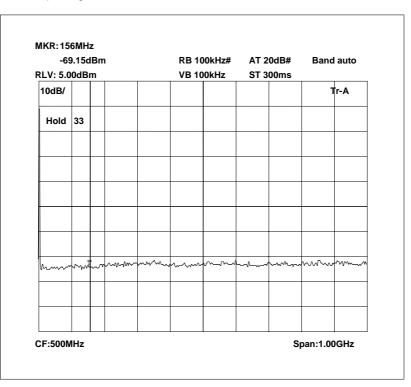
Radiated emissions 169.5 MHz 1 – 2GHz



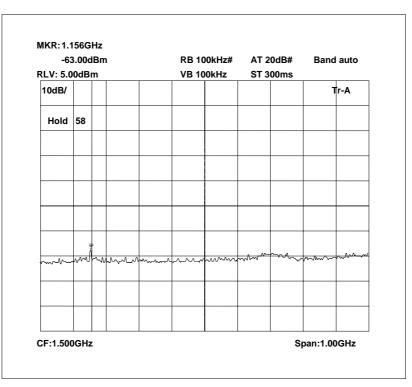
The above test results show that there were no emissions within 20dBs of the -13dBm limit.

Radiated emissions 172.0 MHz 0 - 1GHz

Radiated emissions 172.0 MHz 1 – 2GHz



The above test results show that there were no emissions within 20dBs of the -13dBm limit.


RF335 iss02

RU1181/6240

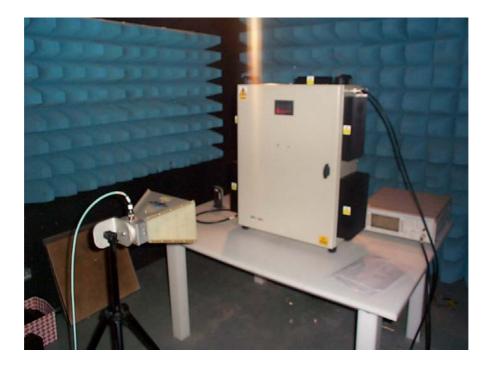
Radiated emissions no input signal 0 - 1GHz

Radiated emissions no input signal 1 - 2GHz

The above test results show that there were no emissions within 20dBs of the -13dBm limit.

ANNEX A

PHOTOGRAPHS


PHOTOGRAPH No. 1

TEST SETUP

PHOTOGRAPH No. 2

TEST SETUP

ANNEX B

APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

APPLICANT'S SUBMISSION OF DOCUMENTATION LIST

a.	ТСВ	-	APPLICATION FEE	[X] [X]
b.	AGENT'S LETTER OF AUTHORISATION	-		[X]
C.	MODEL(s) vs IDENTITY	-		[]
d.	ALTERNATIVE TRADE NAME DECLARATION(s)	-		[]
e.	LABELLING	- -	PHOTOGRAPHS DECLARATION DRAWINGS	[] [] []
f.	TECHNICAL DESCRIPTION	-		[X]
g.	BLOCK DIAGRAMS	- - -	Tx Rx PSU AUX	[X] [] [] []
h.	CIRCUIT DIAGRAMS	- - -	Tx Rx PSU AUX	[] [] [] []
i.	COMPONENT LOCATION	- - -	Tx Rx PSU AUX	[] [] [] []
j.	PCB TRACK LAYOUT		Tx Rx PSU AUX	[] [] [] []
k.	BILL OF MATERIALS	- - -	Tx Rx PSU AUX	[] [] []
I.	USER INSTALLATION / OPERATING INSTRUCTIONS	-		[X]

RF335 iss02

RU1181/6240

EQUIPMENT CALIBRATION

ANNEX C

TRL	Equipment		Last Cal	Calibration	Due For
Number	Туре	Manufacturer	Calibration	Period	Calibration
UH006	3m Range ERP CAL	TRL	01/03/2005	12	01/03/2006
UH028	Log Periodic Ant	Schwarbeck	28/04/2005	24	28/04/2007
UH029	Bicone Antenna	Schwarbeck	27/04/2005	24	27/04/2007
UH041	Multimeter	AVOmeter	14/12/2004	12	14/12/2005
UH120	Spectrum Analyser	Marconi	15/03/2005	12	15/03/2006
UH122	Oscilloscope	Tektronix	07/06/2005	24	07/06/2007
UH132	Power meter	Marconi	15/12/2004	12	15/12/2005
UH162	ERP Cable Cal	TRL	23/05/2005	12	23/05/2006
UH253	1m Cable N type	TRL	10/01/2005	12	10/01/2006
UH254	1m Cable N type	TRL	10/01/2005	12	10/01/2006
UH265	Notch filer	Telonic	24/06/2005	12	24/06/2006
L005	CMTA	R&S	05/12/2005	12	05/12/2006
L007	Loop Antenna	R&S	29/03/2005	24	29/03/2007
L103	Attenuator	Bird		Calibrate in use	
L112	Attenuator	Bird		Calibrate in use	
L138	1-18GHz Horn	EMCO	15/04/2005	24	15/04/2007
L139	1-18GHz Horn	EMCO	03/05/2005	24	03/05/2007
L176	Signal Generator	Marconi	31/01/2005	12	31/01/2006
L254	Signal Generator	Marconi	13/12/2004	12	13/12/2005
L280	18GHz Cable	Rosenberger	10/01/2005	12	10/01/2006
L343	CCIR Noise Filter	TRL	07/06/2005	12	07/06/2006
L426	Temperature Indicator	Fluke	14/12/2004	12	14/12/2005
L479	Analyser	Anritsu	18/11/2005	12	18/11/2006
L552	Signal Generator	Agilent	25/04/2005	12	25/04/2006

ANNEX D

MEASUREMENT UNCERTAINTY

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95% confidence where no required test level exists.

[1] Adjacent Channel Power

Uncertainty in test result = 1.86dB

[2] Carrier Power

Uncertainty in test result (Equipment - TRLUH120) = **2.18dB** Uncertainty in test result (Equipment – TRL05) = **1.08dB** Uncertainty in test result (Equipment – TRL479) = **2.48dB**

[3] Effective Radiated Power

Uncertainty in test result = 4.71dB

[4] Spurious Emissions

Uncertainty in test result = 4.75dB

[5] Maximum frequency error

Uncertainty in test result (Equipment - TRLUH120) = **119ppm** Uncertainty in test result (Equipment – TRL05) = **0.113ppm** Uncertainty in test result (Equipment – TRL479) = **0.265ppm**

[6] Radiated Emissions, field strength OATS 14kHz-18GHz Electric Field

Uncertainty in test result (14kHz - 30MHz) = 4.8dB, Uncertainty in test result (30MHhz - 1GHz) = 4.6dB, Uncertainty in test result (1GHz-18GHz) = 4.7dB

[7] Frequency deviation

Uncertainty in test result = 3.2%

[8] Magnetic Field Emissions

Uncertainty in test result = 2.3dB

[9] Conducted Spurious

Uncertainty in test result (Equipment TRL479) Up to 8.1GHz = **3.31dB** Uncertainty in test result (Equipment TRL479) 8.1GHz – 15.3GHz = **4.43dB** Uncertainty in test result (Equipment TRL479) 15.3GHz – 21GHz = **5.34dB** Uncertainty in test result (Equipment TRLUH120) Up to 26GHz = **3.14dB**

[10] Channel Bandwidth

Uncertainty in test result = **15.5%**

[11] Amplitude and Time Measurement – Oscilloscope

Uncertainty in overall test level = 2.1dB, Uncertainty in time measurement = 0.59%, Uncertainty in Amplitude measurement = 0.82%

[11] Power Line Conduction

Uncertainty in test result = **3.4dB**