

Electromagnetic Compatibility Test Report

Test Report No: AXW 220117 Rev.2 Issued on: May 24, 2017

> Product Name RRU High Power

Tested According to FCC 47 CFR, Part 90 862MHz - 869MHz Band

Tests Performed for Axell Wireless Qiryat Matalon, Petah Tikva, 49002, Tel: +972-3-918 0180

QualiTech EMC Laboratory

30 Hasivim Street, P.O.Box 7500 Petah-Tikva, 4951169, Israel Tel: +972-3-926-6994 Fax: +972-3-928 7490

The information contained herein is the property of QualiTech, EMC Lab and is supplied without liability for errors or omissions.

The copyright for this document vests in QualiTech, EMC Lab. All rights reserved.

This Test Report may not be reproduced, by any method, without the written permission of the QualiTech, EMC Lab.

If and when such permission is granted, the report must be reproduced only in the full format.

Test Personnel

Tests Performed By: -----

Idan Zehavi

Report Prepared By: ------Bina Talkar

Report Approved By: -----

Rami Nataf EMC Lab. Manager QualiTech EMC Laboratory

Test Report details:

Commencement date:	26.04.2016
Test completion date:	29.12.2016
Customer's representative:	Boaz Reuven
Issued on:	24.05.2017

Revision details:

Version	Date	Details/Reasons
Rev. 1	22.01.2017	-
Rev. 2	24.05.2017	Updated according to TCB comments

Assessment information:

This report contains an assessment of the EUT against Radio testing based upon tests carried out on the samples submitted. The results contained in this report relate only to the items tested. Manufactured products will not necessarily give identical results due to production and measurement tolerances. QualiTech, Radio Lab does not assume responsibility for any conclusion and generalization drawn from the test results with regards to other specimens or samples of type of the equipment represented by test item.

The EUT was set up and exercised using the configuration, modes of operation and arrangements defined in this report only.

Modifications:

Modifications made to the EUT

None.

Modifications made to the Test Standard

None.

Summary of Compliance Status

Test Spec. Clause	Test Case	Remarks
Specific Requirements		
-KDB 935210 D05 v01r01, sec. 3.3	Out-of-Band Rejection	Done
General Requirements		
-47 CFR §90.219 (e) (4) (i)/(ii) -§2.1049 -KDB 935210 D05 v01r01, sec.3.4	Occupied Bandwidth - Input-versus-output signal comparison	Pass
-47 CFR §90.635 -47 CFR §2.1046 -KDB 935210 D05 v01r01, sec 3.5.4	Mean Output Power and Amplifier/Booster Gain	Pass
-47 CFR §90.219 -KDB 935210 D05v01r01, sec. 3.6.2, Conducted	Out-of-Band/Out-of-Block & Intermodulation Emissions Conducted Measurements	Pass
-47 CFR §90.219 (e) (3) -47 CFR §2.1051 -KDB 935210 D05v01r01, sec. 3.6.3, Conducted	Spurious Emission Conducted Measurement	Pass
-47 CFR §90.219 (e) (3) -47 CFR §2.1053 -KDB 935210 D05v01r01, sec. 3.6.8, Radiated	Spurious Emissions – Radiated Measurement	Pass
-47 CFR §90.213 -47 CFR §2.1055 -KDB 935210 D05v01r01, sec. 3.7	Frequency Stability	Pass

Table of Contents

1.	GENERAL	6
1.1.	Referenced documents	6
1.2.	Product Description	7
2.	TEST FACILITY & UNCERTAINTY OF MEASUREMENT	9
2.1.	Accreditation/ Registration reference	9
2.2.	Test Facility description	9
3.	EXAMINATION TEST RESULTS	
3.1.	Out-of-Band Rejection	11
3.2.	Occupied Bandwidth - Input-versus-output signal comparison	
3.3.	Mean Output Power and Amplifier/Booster Gain	14
3.4.	Out-of-Band/Out-of-Block & Intermodulation Emissions Conducted Measurements	15
3.5.	Spurious Emission Conducted Measurement	19
3.6.	Spurious Emission, Radiated Measurements	
3.7.	Frequency stability – AC Configuration	
4.	APPENDIX	

1. General

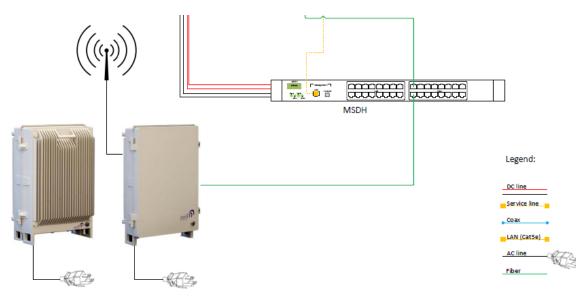
1.1. Referenced documents

KDB 935210 D05 v01r01:	Measurements Guidance for Industrial and Non-consumer Signal Booster, Repeater and Amplifiers Devices
ANSI/TIA-603-D:	Land Mobile FM or PM Communications Equipment and Performance Standards

1.2. Product Description

FCC ID: NEO43ID7D8C17C19A

IC: 8749A-43ID7817C19


Model Numbers: id-DAS-RRU-M-4307-4308-4317-4319-AC-F

Serial Number:1611D9001

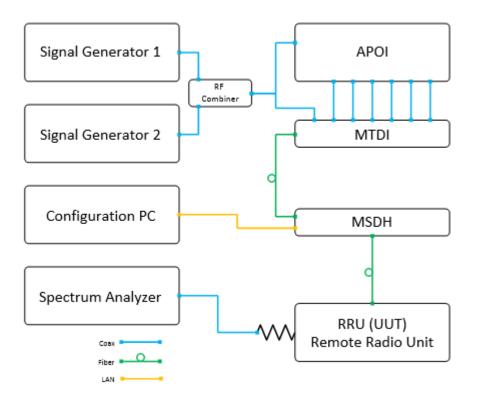
Description of the EUT system/test Item:

idRU – The idRU is an IP 65 outdoor as well as indoor four-band remote unit, where two units can be cascaded through a CPRI link to support eight bands. Each band can provide maximum power of 43 dBm ± 0.75dB per band. The Remote Units serve as the backhaul port of any IP device or switch in the neighborhood; thus, it distributes combined cellular and data services according to user defined configuration profiles. The idRU is connected to the MSDH via 10 Gbit/s CPRI interfaces, where each interface contains an Embedded 1Gbit/s IP backhaul link.

Description of the EUT system/test Item:

Bands and Modulations:

Technology	Direction	Modulation & Bandwidth	Frequency Band	Maximum Output Power
		AC Model		
GSM	Downlink	QPSK,0.2 MHz		38.24dBm ,6.67W(Fc-862.2Mhz)
CDMA	Downlink	1.25MHz		43.13dBm ,20.5w(Fc-864.5Mhz)
WCDMA	Downlink	5MHz	862 - 869 MHz	42.89dBm ,19.5w(Fc-864.5Mhz)
LTE	Damuliala	64 QAM 1.4MHz		43.38dBm ,21.8w(Fc-864.5Mhz)
LTE	Downlink	64 QAM 5MHz		43.34dBm ,21.6w(Fc-864.5Mhz)



Support /Ancillary Equipment:

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational features to the EUT.

The system was configured in a typical fashion, as it would be normally used. However, the ancillary equipment can influence the test results.

Test Setup and Module Description:

Signal Generator 1 and Signal Generator 2 generates a single tone or two-tones to the system. The tones can be selected to be CW or modulated. The signal can be routed either to the APOI or MTDI via Coax.

The APOI (Active Point of Interface), conditions and controls level of up to 16 low power BTS sectors of up to 30dBm. (Separate low PIM attenuators are used for higher power signals.)

The signals are conditioned by up to eight, band-specific modules, supporting two same-band sectors. The conditioned signals of each module are converged and fed to the corresponding (band–specific) MTDI module for digitization.

The MTDI (Multi Technology Digital Interface) unit digitizes and filters up to 16 conditioned cellular RF sectors from one more A-POI shelves. It then combines the signals over a single CPRI link that is routed towards the MSDH.

The MSDH (Multi Sector Digital Hub) serves as the idDAS central switching hub and control system. It routes digitized cellular resources received from MTDI units, along with data from the Ethernet network, over CPRI links towards the relevant remotes.

2. Test Facility & Uncertainty of Measurement

2.1. Accreditation/ Registration reference

- A2LA Certificate Number: 1633.01
- IC Canada: Site# 4808A-1

2.2. Test Facility description

The tests were performed at the EMC Laboratory, QualiTech Division, ECI Telecom Group

Address: 30, Hasivim St., Petah Tikva, Israel. Tel: 972-3-926-6994

3m Anechoic Chamber:

The 3m-screened chamber is used in two configurations: the semi-anechoic configuration for Radiated Emission measurements and the full-anechoic configuration for Radiated Immunity tests.

3m Anechoic Chamber:

Measurement distance	3m		
Chamber dimensions	9.5m x 6.5m x 5.2m		
Antenna height	1 - 4m		
Shielding Effectiveness	Magnetic field ≥80dB at 15 kHz ≥90dB at 100 kHz Electric field >120dB from 1MHz to 1GHz >110dB from 1GHz to 10GHz		
Absorbing material	Ferrite tiles on the walls and ceiling Emerson and Cuming absorbing material in selected positions on the walls		
Normalized Site Attenuation measured at 5 positions	±3.9dB, 30MHz to 200MHz ±3dB, 200MHz to 1000MHz		
Transmission Loss measured at 5 positions, at 1.5m height	±3dB, 1GHz to 18GHz		

Uncertainty of Measurement:

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements ". Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

		Uncertainty		
Test Name	Test Method & Range	Combined std. Uc(y)	Expanded U	
Radiated Emission	30MHz÷230MHz, Horiz. polar. 30MHz÷230MHz, Ver. polar. 230MHz÷1000MHz, Horiz. polar. 230MHz÷1000MHz, Vert. polar.	[dB] 1.8 1.967 1.487 1.499	[dB] 3.6 3.934 2.973 2.998	
Conducted Emission	9 kHz÷150 kHz 150 kHz÷30MHz	1 378		
Radio frequency	Up to 18 GHz	±1*10 -6	$<\pm1*10^{-5}$	
Total Conducted RF Power	Up to 18 GHz	±1.378 dB	< ±1.5dB	
Conducted Power density	Up to 18 GHz	±1.378 dB	< ±3dB	
Temperature	23.6 °C	±0.6°C	< ±2°C	
Humidity	54.9%	±3.1%	$<\pm 5\%$	
DC Voltage	0-60 VDC	±0.3%	< ±3%	

Note: QualiTech EMC labs expanded measurement instrumentation has less uncertainty than the industry norm and compliance is deemed to occur as no measured disturbance exceeds the disturbance limit.

Note: The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

3. Examination Test Results

3.1. Out-of-Band Rejection

Reference document:	KDB 935210 D05 v01r01			
Method of testing:	KDB 935210 D05 v01r01, Conducted	Done		
Operating conditions:	Under normal test conditions			
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: 48%Atmospheric Pressure: 1011.4 hPaSee Plot 3.1		
Test Result:	See below			

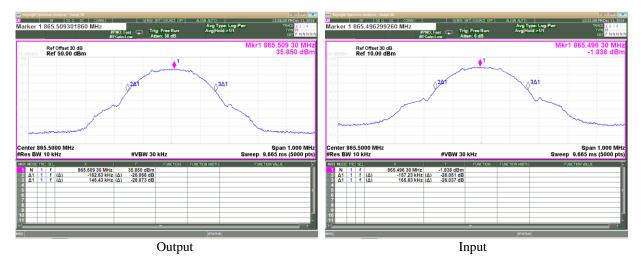
Test results:

Modulation ±250% of Passband*, MHz		Frequency fo, MHz	-20dB lowest point, MHz	-20dB highest point, MHz
CW	844.5886.5	862.034	861.751	869.271

* 7MHz passband

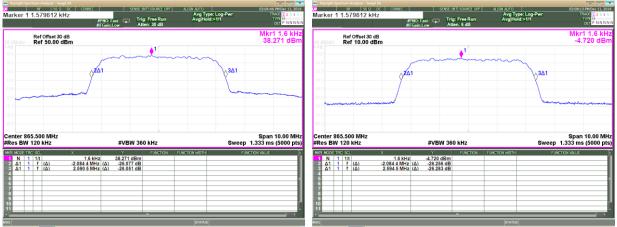
Plot 3.1: Out-of-Band rejection, CW

90	trum Analyzer - Swept SA RF 50 Ω DC 862.034306861		Trig	IT SOURCE OFF : Free Run en: 40 dB	ALIGN AUTO #Avg Type Avg Hold:>	: RMS 100/100	06:40:51 PM Dec 08,20 TRACE 1 2 3 4 TYPE M DET P N N N
10 dB/div Log	Ref Offset 30 dB Ref 60.00 dBm	#I-Gall.LOW				М	kr1 862.034 MH 43.109 dBr
50.0			1_				
40.0							
30.0			2∆1		3∆1		
20.0							
10.0							
-10.0			1				
-20.0					l.		
-30.0	weekstaalige het sterman werden de stermense stermense stermense stermense stermense stermense stermense sterme Stermense stermense st	and the factor of the factor o	anally		- And an and a star from the start of the st	***********************	water and the second shad
Start 844.: #Res BW			#VBW 300) kHz		Sweep	Stop 886.50 MH 4.332 ms (5000 pt
MKR MODE TRO			Y	FUNCTION	FUNCTION WIDTH	FUN	CTION VALUE
1 N 1 2 Δ1 1 3 Δ1 1	f (Δ)	-283 kHz (Δ) -	3.109 dBm 20.903 dB				
4	f (Δ)	7.237 MHz (Δ) -	20.962 dB				
5 6							
7 8							
9							
11							Þ
NSG					STATUS		


Reference document:	47 CFR §90.219 (e) (4) (i)/(ii), §2.1049The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.The spectral plot of the input signal shall be similar to the output signal				
Test Requirements:					
Method of testing:	KDB 935210 D05 v01r01, Conducted	35210 D05 v01r01, Conducted Pass			
Operating conditions:	Under normal test conditions				
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: 48%Atmospheric Pressure: 1011.4 hPaSee Plot 3.2.1-3.2.2			
Test Result:	See below				

3.2. Occupied Bandwidth - Input-versus-output signal comparison

Test results:


Mode	Operating	26dB Band	width, MHz
	Frequency, MHz	Output	Input
		0.5dB below AGC	0.5dB below AGC
MSK, Gaussian filter 0.3 data rate 270kbps	865.5	308.060 kHz	323.060 kHz
AWGN 4.1MHz	865.5	4.674 MHz	4.678 MHz

Note – Only at MSK modulation (GSM) the Composite Output Power transmission is 38dBm

Plot 3.2.1: Input-versus-output signal comparison, MSK, Gaussian filter 0.3 data rate 270kbps

Output

Input

3.3. Mean Output Power and Amplifier/Booster Gain

Reference document:	47 CFR §90.635, 47 CFR §2.1046							
Test Requirements:	kilowatt (30 dBw) and 304 m. (1,000 ft.) above a equivalent thereof as determined from the Table.	The effective radiated power and antenna height for base stations may not exceed 1 cilowatt (30 dBw) and 304 m. (1,000 ft.) above average terrain (AAT), respectively, or the equivalent thereof as determined from the Table. These are maximum values, and pplicants will be required to justify power levels and antenna heights requested;						
Method of testing:	KDB 935210 D05 v01r01, sec 3.5 (power meter method);	Pass						
Operating conditions:	Under normal test conditions							
Environment conditions:	Ambient Temperature: 22°c		Atmospheric Pressure: 1011.4 hPa					
Test Result:	See below							

Test results:

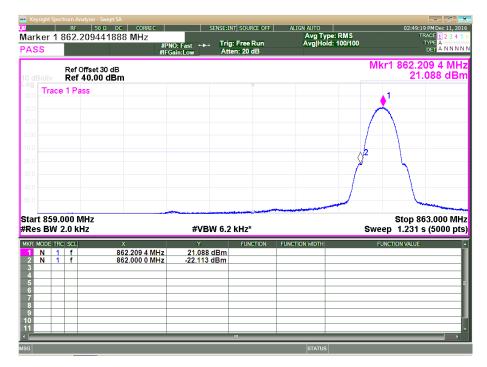
Mode	Operating		Measured	AVG Power		Mean	Max Ant	ERP	Power	Delta	Pass/
	Frequency MHz	Oı	ıtput	Input		Gain [dBm] ¹	Gain [dBd]	Calcul ated [W]	Limit [W/MHz]	[W/MHz]	Fail
MSK, Gaussia n filter 0.3 data rate 270kbps	862.200	38.33 dBm	6.808 W	0.928m W	-0.33 dBm	38.66	11.85	104.2 32	1000	-895.768	Pass
AWGN 4.1 MHz	864.500	43.25 dBm	21.135 W	0.921m W	- 0.36dB m	43.61	11.85	323.5 94	1000	-676.406	Pass

¹ Mean Gain [dB] = Measured AVG Power (Output) [W] - Measured AVG Power (Input) [W] Note – Only at MSK modulation (GSM) the Composite Output Power transmission is 38dBm

3.4. Out-of-Band/Out-of-Block & Intermodulation Emissions Conducted Measurements

Reference document:	47 CFR §90.219, 47 CFR §2.1051	47 CFR §90.219, 47 CFR §2.1051						
Test Requirements:	The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB*							
Method of testing:								
Operating conditions:	Under normal test conditions							
S.A. Settings:	RBW: minimum 1% of EBW or 100kHz or 1MHz; VBW: 3 times RBW		Pass					
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: 48%	Atmospheric Pressure: 1011.4 hPa					
Test Result:	See below	Plot 3.4.1 - Plot 3.4.6						

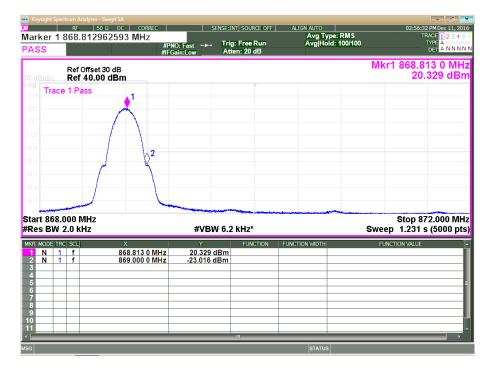
*It translates to a limit of -13dBm


Note – Only at MSK modulation (GSM) the Composite Output Power transmission is 38dBm

Test results:

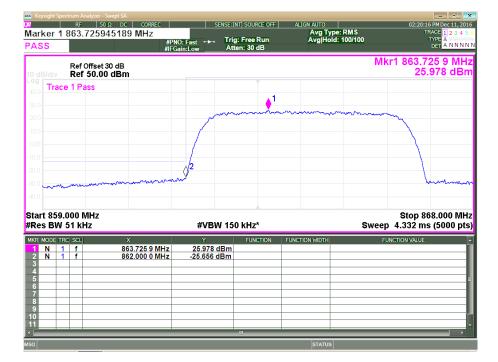
Modulation	Operating Frequency, MHz		Emission Frequency,	Emission	Limit, dBm	Delta, dB	Pass/Fail				
	Carrier 1	Carrier 2	MHz	Level, dBm							
	862.200	NA	862.000	-22.113	-13.00	-9.113	Pass				
MSK Gaussian filter 0.3 data rate 270kbps	862.200	862.400	862.000	-24.497	-13.00	-11.497	Pass				
	868.800	NA	869.000	-23.016	-13.00	-10.016	Pass				
	868.800	868.600	869.000	-26.314	-13.00	-13.314	Pass				
	964 500	NA	862.000	-25.656	-13.00	-12.656	Pass				
AWGN	864.500	NA	Two carriers operation-N.A								
4.1MHz	966 500	NA	869.000	-23.564	-13.00	-10.564	Pass				
	866.500	NA		Two carriers operation-N.A							

Plot 3.4.1: Band Edge test results, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 862.2 MHz, single test signal



Plot 3.4.2: Band Edge test results, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 862.2 + 862.4 MHz, two test signals

		Ω DC CORREC 11328 MHz #PM	lO:East ⊷⊷ Tri	NT SOURCE OFF j: Free Run en: 20 dB	ALIGN AUTO Avg Type: R Avg Hold: 10	03:26:33 PM Dec 11, M S TRACE 1 2 3 10/100 TYPE A DET A N N
) dB/div	Ref Offset 3 Ref 40.00	0 dB				Mkr1 862.206 6 M 18.412 dE
0.0 Trac	e 1 Pass					
.0					1/2	
	.000 MHz 2.0 kHz		#VBW 6.2	kHz*		Stop 864.000 № Sweep 1.539 s (5000 p
R MODE TR N 1 2 N 1 3	f	× 862.206 6 MHz 862.000 0 MHz	¥ 18.412 dBm -24.497 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
				111		


Plot 3.4.3: Band Edge test results, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 868.800 MHz, single test signal

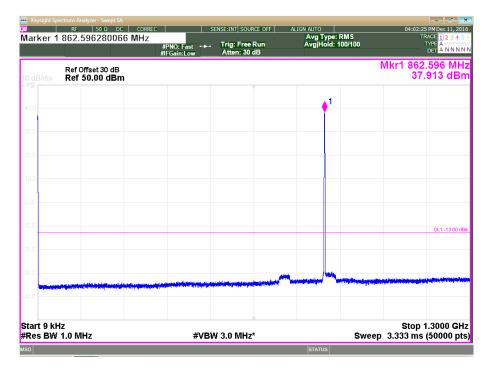
Plot 3.4.4: Band Edge test results, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 868.600 MHz + 868.800 MHz, two test signals

	ectrum Analyzer - Si RF 50 : 868.80536	Ω DC CORREC 51072 MHz #PN	O Fast Tri	NT SOURCE OFF g: Free Run en: 20 dB	ALIGN AUTO Avg Typ Avg Hold	e: RMS 1: 100/100	TF	PM Dec 11, 20 ACE 1 2 3 4 YPE A DET A N N N
d <u>B/div</u>	Ref Offset 3 Ref 40.00					М	kr1 868.80 17.)5 4 MH 522 dB
no Trac	e 1 Pass							
			<u> </u>					
		(\mathbf{v}					
		/						
			2					
		2	<u> </u>					
			~					
	.000 MHz 2.0 kHz		#VBW 6.2	kHz*		Swe	Stop 87 eep 1.539 s	2.000 M (5000 p
		× 868.805 4 MHz	¥ 17.522 dBm	FUNCTION	FUNCTION WIDTH		UNCTION VALUE	
N [*]		869.000 0 MHz	-26.314 dBm					
9								
1								

Plot 3.4.5: Band Edge test results, AWGN 4.1MHz, Fc = 864.500 MHz, single test signal

Plot 3.4.6: Band Edge test results, AWGN 4.1MHz, Fc = 866.5 MHz, single test signal

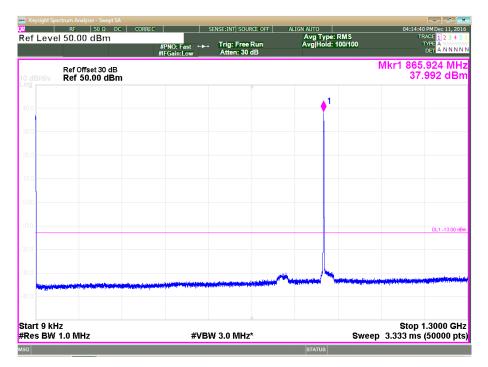
a Marker 1 PASS	RF	ialyzer - Swept SA 50 Ω DC CORRE 598719744 MHz	#PNO: Fast Ti	:INT SOURCE OFF ig: Free Run tten: 30 dB	ALIGN AUTO Avg Typ Avg Hold	e: RMS 1: 100/100	02:24:49 P	MDec 11, 2010 E 1 2 3 4 5 E A T A NNNN
10 dB/div	Ref	Offset 30 dB 50.00 dBm				М	kr1 865.598 25.2	3 7 MHz 10 dBm
40.0 30.0	ce 1 Pa	SS	1					
20.0		1	munit	m	mound			
0.00								
-20.0	~ ~~~~~	man				2 minum	ahrannon	
-40.0								~ www.vou
Start 862 Res BW			#VBW 1	50 kHz*		Swee	Stop 872 p 4.999 ms (
	51 kH	x	Y	FUNCTION	FUNCTION WIDTH			
Res BW	51 kH	Iz	Y MHz 25.210 dBm	FUNCTION	FUNCTION WIDTH		p 4.999 ms(
Res BW	51 kH	× 865.598 7 N	Y MHz 25.210 dBm	FUNCTION	FUNCTION WIDTH		p 4.999 ms(
Res BW	51 kH	× 865.598 7 N	Y MHz 25.210 dBm	FUNCTION	FUNCTION WIDTH		p 4.999 ms(
Res BW KR MODE T 1 N 2 N 3 4 5 6 7 8	51 kH	× 865.598 7 N	Y MHz 25.210 dBm	FUNCTION	FUNCTION WIDTH		p 4.999 ms(

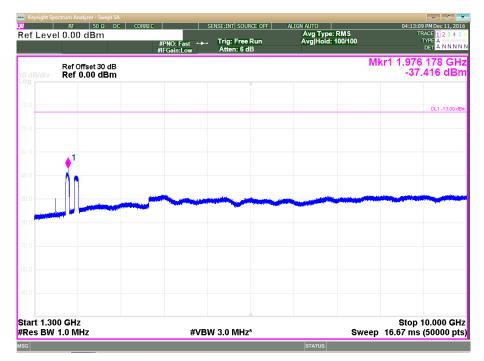

3.5. Spurious Emission Conducted Measurement

Reference document:	47 CFR §90.219, §2.1051							
Test Requirements:	Spurious emissions from a signal booster must no measurement bandwidth.	ot exceed -13 dI	3m within any 100 kHz					
Method of testing:	KDB 935210 D05 v01r01	Pass						
Operating conditions:	Under normal test conditions							
S.A. Settings:	RBW: 100kHz, VBW: 3MHz							
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: 48%	Atmospheric Pressure: 1011.4 hPa					
Test Result:	See below	See Plo	t 3.5.1 - Plot 3.5.12					

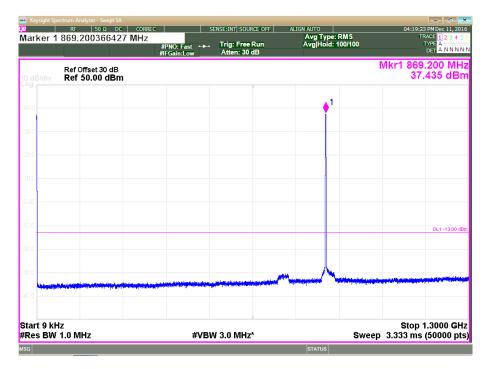
Test Results: all emission were at least 10 dB below the limit

Plot 3.5.1: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 862.200 MHz, 9.0 KHz – 1.3 GHz


Plot 3.5.2: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 862.200 MHz, 1.3 GHz – 10 GHz

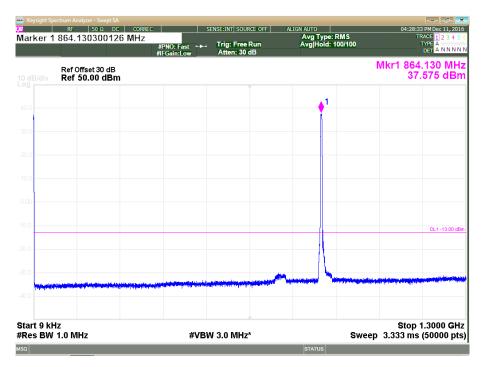

With filter WHK1.2/15GHz

Plot 3.5.3: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 865.500 MHz, 9.0 KHz – 1.3 GHz


Plot 3.5.4: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 865.500 MHz, 1.3 GHz – 10 GHz

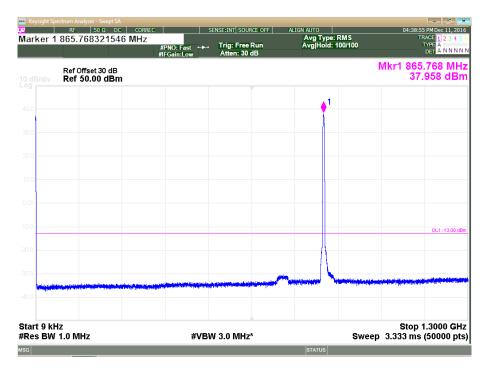

With filter WHK1.2/15GHz

Plot 3.5.5: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 868.800 MHz, 9.0 KHz – 1.3 GHz


Plot 3.5.6: Spurious Emission Conducted Measurement, MSK Gaussian filter 0.3 data rate 270kbps, Fc = 868.800 MHz, 1.3 GHz – 10 GHz

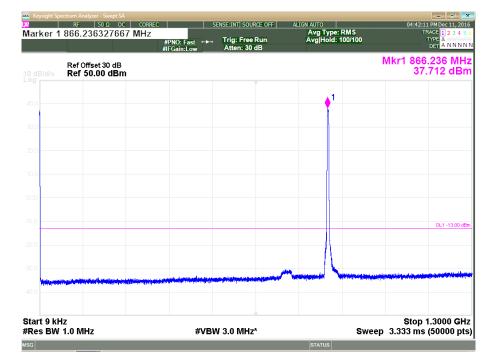


Plot 3.5.7: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 864.500 MHz, 9.0 KHz – 1.3 GHz


Plot 3.5.8: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 864.500 MHz, 1.3 GHz – 10 GHz

With filter WHK1.2/15GHz

Plot 3.5.9: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 865.500 MHz, 9.0 KHz – 1.3 GHz


Plot 3.5.10: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 865.500 MHz, 1.3 GHz – 10 GHz


With filter WHK1.2/15GHz

Plot 3.5.11: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 866.500 MHz, 9.0 KHz – 1.3 GHz

Plot 3.5.12: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 866.500 MHz, 1.3 GHz – 10 GHz

With filter WHK1.2/15GHz

Reference document:	47 CFR §90.219, §2.1053 (e) (3)					
Test Requirements:	Spurious emissions from a signal booster measurement bandwidth.	must not exceed -13 d	Bm within any 100 kHz			
Method of testing:	KDB 935210 D05v01r01, Radiated KDB 971168[R8]	Pass				
Operating conditions:	Under normal test conditions					
S.A. Settings:	RBW: 1MHz, VBW: 3MHz					
Environment conditions:	nvironment conditions: Ambient Temperature: 22°c		Atmospheric Pressure: 1011.4 hPa			
Test Result:	See below	See Plot 3.6.1 - 3.6.12				

3.6. Spurious Emission, Radiated Measurements

*It translates to a limit of -13dBm = 84 dB μ V/m @3m distance

Note: All measurements performed with 4 simultaneous transmissions:

Low frequency: 728.2 MHz, 862.2 MHz, 1930.2 MHz, 2110.2 MHz

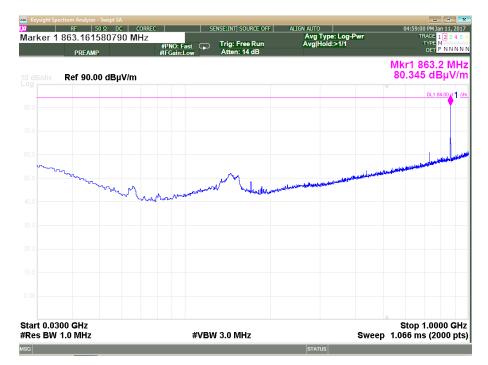
Middle frequency: 737.0 MHz, 865.5 MHz, 1962.5 MHz, 2145.0 MHz

High frequency: 745.8 MHz, 868.8 MHz, 1994.8 MHz, 2179.8 MHz

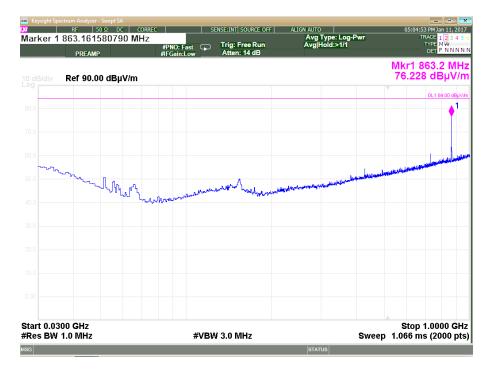
-All measurements were done in horizontal and vertical polarizations; the table below shows the worst case.

Test Results:

				Substitutio	on Method					
Frequen cy, MHz	Emission Level, dBµV/m	Antenna Polarizat ion	Signal generato r output, [dBm]	Antenna Gain, [dBd]	Cable Loss, dB	Calculat ed ERP*, [dBm]	Limit [dBm]	Margin, dB	Pass/Fail	Ref Plots
Low Frequency										
863.20	80.34									
1930.20	72.67				Transmissio	n frequencies				
2109.90	68.18									3.6.1- 3.6.4
3860.40	59.49	v	-40.0	7.50	3.50	-36.00	-13.0	-23.00	Pass	
4220.40	73.50	V	-27.0	8.40	3.61	-22.21	-13.0	-9.21	Pass	


				Substituti	on Method					
Frequen cy, MHz	Emission Level, dBµV/m	Antenna Polarizat ion	Signal generato r output, [dBm]	Antenna Gain, [dBd]	Cable Loss, dB	Calculat ed ERP*, [dBm]	Limit [dBm]	Margin, dB	Pass/Fail	Ref Plots
Mid Frequency										
866.60	75.99									
1962.20	73.83				Transmission	n frequencies				
2144.90	68.67									3.6.5- 3.6.8
3924.80	68.64	V	-30.9	7.5	3.38	-26.78	-13.0	-13.78	Pass	
4289.80	78.10	V	-22.5	8.2	3.60	-17.9	-13.0	-4.90	Pass	

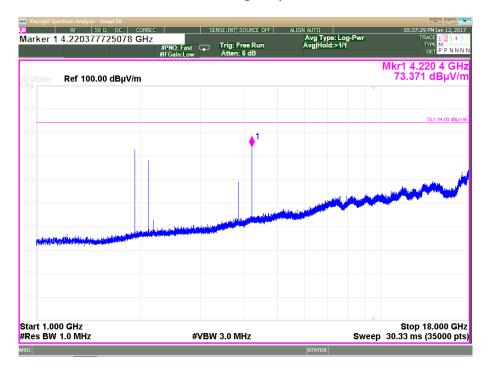
Frequen cv MHz Level,		Polarizat	Substitution Method							
	Emission Level, dBµV/m		Signal generato r output, [dBm]	Antenna Gain, [dBd]	Cable Loss, dB	Calculat ed ERP*, [dBm]	Limit [dBm]	Margin, dB	Pass/Fail	Ref Plots
High Frequency										
868.50	77.88									
1994.80	71.89	Transmission frequencies								
2179.00	68.75							3.6.9- 3.6.12		
3989.60	70.91	v	-28.7	7.56	3.38	-24.52	-13.0	-11.52	Pass	5.0.12
4359.30	71.98	V	-28.5	8.20	3.62	-23.92	-13.0	-10.92	Pass	


*Calculated ERP = Signal Generator Output + Antenna Gain – Cable Loss

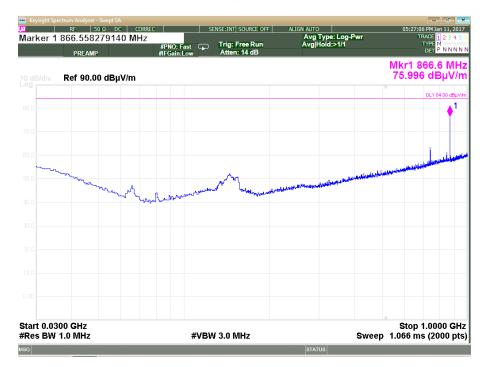
Plot 3.6.1: Spurious Emission test results, 30 MHz – 1 GHz range, Horizontal polarization, Low Frequency



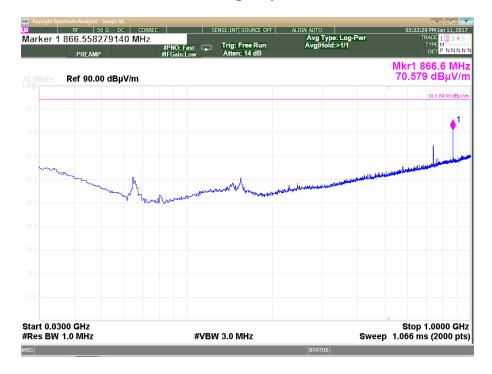
Plot 3.6.2: Spurious Emission test results, 30 MHz – 1 GHz range, Vertical polarization, Low Frequency



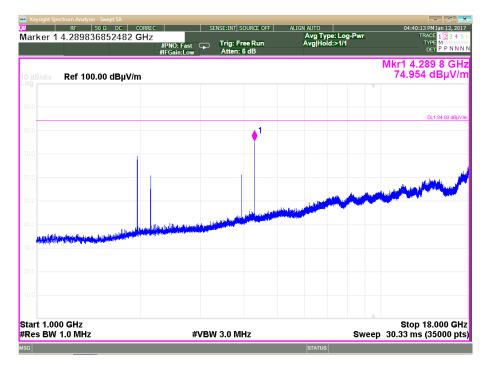
Plot 3.6.3: Spurious Emission test results, 1 GHz – 18 GHz range, Horizontal polarization, Low Frequency



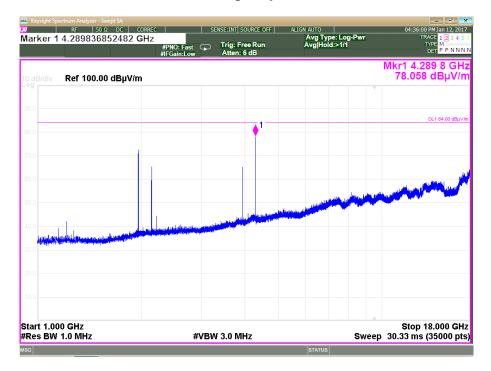
Plot 3.6.4: Spurious Emission test results, 1 GHz – 22 GHz range, Vertical polarization, Low Frequency



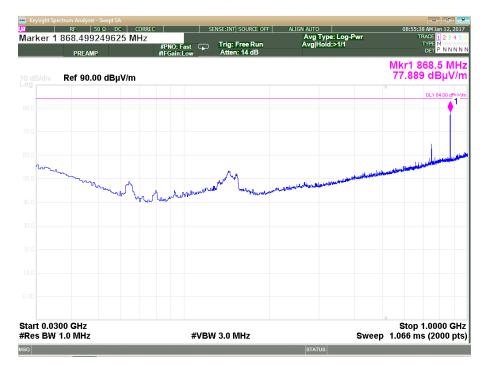
Plot 3.6.5: Spurious Emission test results, 30 MHz – 1 GHz range, Horizontal polarization, Middle Frequency



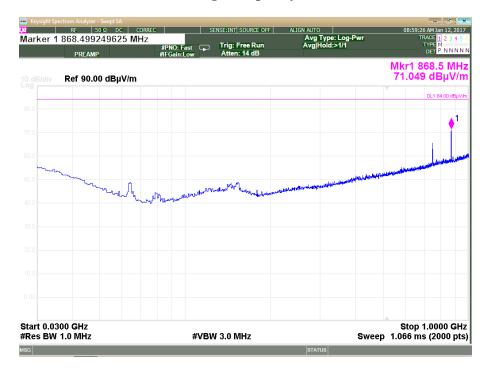
Plot 3.6.6: Spurious Emissions test results, 30 MHz – 1 GHz range, Vertical polarization, Middle Frequency



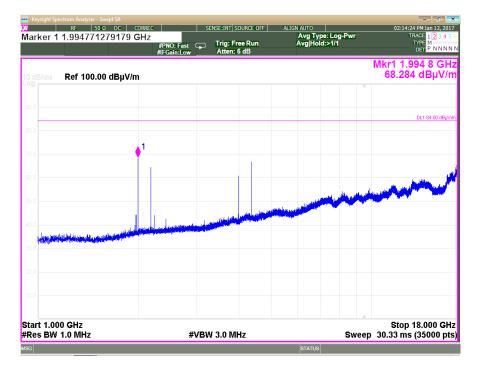
Plot 3.6.7: Spurious Emissions test results, 1 GHz – 18 GHz range, Horizontal polarization, Middle Frequency



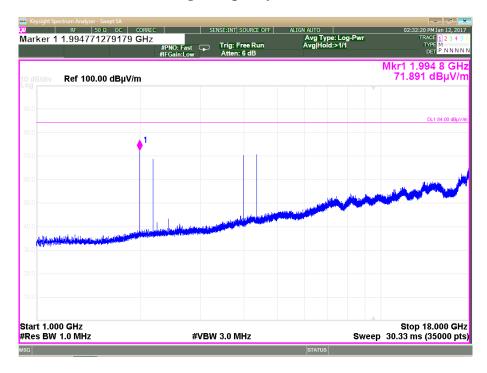
Plot 3.6.8: Spurious Emissions test results, 1 GHz – 18 GHz range, Vertical polarization, Middle Frequency



Plot 3.6.9: Spurious Emissions test results, 30 MHz – 1GHz range, Horizontal polarization, High Frequency



Plot 3.6.10: Spurious Emissions test results, 30 MHz – 1GHz range, Vertical polarization, High Frequency



Plot 3.6.11: Spurious Emissions test results, 1 GHz – 18 GHz range, Horizontal polarization, High Frequency

Plot 3.6.12: Spurious Emissions test results, 1 GHz – 18GHz range, Vertical polarization, High Frequency

Reference document:	47 CFR §90.213(a), 47 CFR §2.1055					
Test Requirements:	Transmitters used in the services governed by this part must have a minimum frequency stability of 1.5 parts per million.					
Method of testing:	KDB 935210 D05v01r01, Conducted	Dear				
Operating conditions:	Under normal and extremes test conditions	– Pass				
Environment conditions:	Environment conditions: Ambient Temperature: 22°c		Atmospheric Pressure: 1011.4 hPa			
Test Result:	See below	-				

3.7. Frequency stability – AC Configuration

Test results - Fc= 865.5 MHz

Frequency error vs. Voltage: AC Model

Voltage [Vdc]	Frequency Error [Hz]	Frequency Error [%]	Frequency Error [ppm]	Limit [ppm]	Test Result			
	Carrier frequency at 20°C (120 VAC): 865.5 MHz							
102-138	Pass							

Frequency error vs. Temperature

Temperature, °C	Reference Frequency, MHz	Measured Frequency, MHz	Frequency Error, Hz	Frequency Error, ppm	Limit, ppm	Delta	Pass/Fail
-30	865.500140	865.500100	40.00	0.020382	1.50	-1.48	Pass
-20	865.500140	865.500120	20.00	0.010191	1.50	-1.49	Pass
-10	865.500140	865.500120	20.00	0.010191	1.50	-1.49	Pass
0	865.500140	865.500120	20.00	0.010191	1.50	-1.49	Pass
10	865.500140	865.500100	40.00	0.020382	1.50	-1.48	Pass
20	Reference temperature						
30	865.500140	865.500120	20.00	0.010191	1.50	-1.49	Pass
40	865.500140	865.500120	20.00	0.010191	1.50	-1.49	Pass
50	865.500140	865.500120	20.00	0.010191	1.50	-1.49	Pass

4. Appendix

Appendix A: List of test equipment used

Description	Manufacturer	Model	Serial No.	Cal Due
Anechoic new (large) chamber				10/03/2018
Bilog Antenna	Teseq	CBL 6141B	34119	03/07/2017
EMC Analyzer	Agilent	E7405A	US41160436	02/06/2017
EMI Receiver (2.9GHz)	HP	8546A	3617A00318	23/05/2017
EMI Receiver (6.5GHz)	HP	8546A	3710A00392	09/02/2017
Horn Antenna 1-18GHz	A.R.A	DRG-118/A	17188	18/05/2017
Horn Antenna 15-40 GHz	Schwarzbeck	BBHA 9170	BBHA9170214	06/03/2018
LNA Amplifier 1 GHz to 18 GHz	AMP	7D-010180-30-10P-GW	618653	23/02/2017
Low-Noise Amplifier 18 - 26.5 GHz	Miteq	AMF-5F-18002650-30-10P	945372	23/02/2017
Power Meter	Agilent	N1911A	MY45100784	15/03/2017
RF Filter Section (2.9GHz)	HP	85460A	3448A00282	23/05/2017
RF Filter Section (6.5GHz)	HP	85460A	3704A00366	09/02/2017
Spectrum Analyzer 3Hz-44GHz	Agilent	E4446A	MY46180602	13/03/2017
Wideband Power Sensor	Agilent	N1921A	MY45241242	15/03/2017

Appendix B: Accreditation Certificate

End of the Test Report