

Electromagnetic Compatibility Test Report

Test Report No: AXW 051016 rev.2 Issued on: December 7, 2016

Product Name RRU Mid Power FCC ID:NEO30ID7D8C17A19A

> Tested According to FCC 47 CFR, Part 27 728 - 746 MHz Band

Tests Performed for Axell Wireless Qiryat Matalon, Petah Tikva, 49002, Tel: +972-3-918 0180

QualiTech EMC Laboratory, ECI Telecom

30 Hasivim Street, Petah-Tikva, 49517, Israel Tel: +972-3-926 6994 Fax: +972-3-928 7490

The information contained herein is the property of QualiTech, EMC Lab and is supplied without liability for errors or omissions.

The copyright for this document vests in QualiTech, EMC Lab. All rights reserved.

This Test Report may not be reproduced, by any method, without the written permission of the QualiTech, EMC Lab.

If and when such permission is granted, the report must be reproduced only in the full format.

Test Personnel

Alles

Tests Performed By: -----

Dmitry Isaev

Bernd

Report Prepared By: -----Bina Talkar

Report Approved By:

Rami Nataf EMC Lab. Manager QualiTech EMC Laboratory

Test Report details:

Revision details:	
Issued on:	07.12.2016
Customer's representative:	Boaz Reuven
Test completion date:	29.09.2016
Test commencement date:	26.04.2016

Version	Date	Details/Reasons	
Rev. 1	05.10.2016	-	
Rev. 2	07.12.2016	Corrections according to ACB comments	

Assessment information:

This report contains an assessment of the EUT against Radio testing based upon tests carried out on the samples submitted. The results contained in this report relate only to the items tested. Manufactured products will not necessarily give identical results due to production and measurement tolerances. QualiTech, Radio Lab does not assume responsibility for any conclusion and generalization drawn from the test results with regards to other specimens or samples of type of the equipment represented by test item.

The EUT was set up and exercised using the configuration, modes of operation and arrangements defined in this report only.

EUT Models:

Per customer's declaration the RRU Mid Power has two models, AC and DC .both models are identical and belong to one product family and differ only in power input supply without any influence to the RF path. Full testing were performed on AC model and Mean Output Power, Radiated spurious emissions, and frequency stability tests for DC model as shown in present document.

Modifications:

Modifications made to the EUT

None.

Modifications made to the Test Standard

None.

Summary of Compliance Status

Test Spec. Clause	Test Case	Remarks		
Specific Requirements				
-KDB 935210 D05 v01r01, sec. 3.3	Out-of-Band Rejection	Done		
General Requirements				
-47 CFR §2.1049(h) -KDB 935210 D05 v01r01, sec.3.4	Occupied Bandwidth - Input-versus-output signal comparison	Pass		
-47 CFR §27.50(c)(3) -47 CFR §2.1046(a) -KDB 935210 D05 v01r01, sec 3.5.4	Mean Output Power and Amplifier/Booster Gain	Pass		
-47 CFR §27.53(g) -47 CFR §2.1051 -KDB 935210 D05v01r01, sec. 3.6.2, Conducted	Out-of-Band/Out-of-Block & Intermodulation Emissions Conducted Measurements	Pass		
-47 CFR §27.53(g) -47 CFR §2.1051 -KDB 935210 D05v01r01, sec. 3.6.3, Conducted	Spurious Emission Conducted Measurement	Pass		
-47 CFR §27.53(g) -47 CFR §2.1053 -KDB 935210 D05v01r01, sec. 3.6.8, Radiated	Spurious Emissions – Radiated Measurement	Pass		
-47 CFR §27.54 -47 CFR §2.1055 -KDB 935210 D05v01r01, sec. 3.7, Conducted	Frequency Stability	Pass		

Table of Contents

	FCC ID:NEO30ID7D8C17A19A	
1.	GENERAL	6
1.1.	Referenced documents	6
1.2.	Product Description	7
	FCC ID:NEO30ID7D8C17A19A	
	Serial Number: 16033001	7
2.	TEST FACILITY & UNCERTAINTY OF MEASUREMENT	10
2.1.	Accreditation/ Registration reference	10
2.2.	Test Facility description	10
3.	EXAMINATION TEST RESULTS	12
3.1.	Out-of-Band Rejection	12
3.2.	Occupied Bandwidth - Input-versus-output signal comparison	13
3.3.	Mean Output Power and Amplifier/Booster Gain	15
3.4.	Out-of-Band/Out-of-Block & Intermodulation Emissions Conducted Measurements	16
3.5.	Spurious Emission Conducted Measurement	19
3.6.	Spurious Emission, Radiated Measurements	23
3.7.	Frequency stability	36
4.	APPENDIX	37

1. General

1.1. Referenced documents

KDB 935210 D05 v01r01:Measurements Guidance for Industrial and Non-consumer Signal Booster,
Repeater and Amplifiers Devices.

ANSI/TIA-603-D: Land Mobile FM or PM Communications Equipment and Performance Standards.

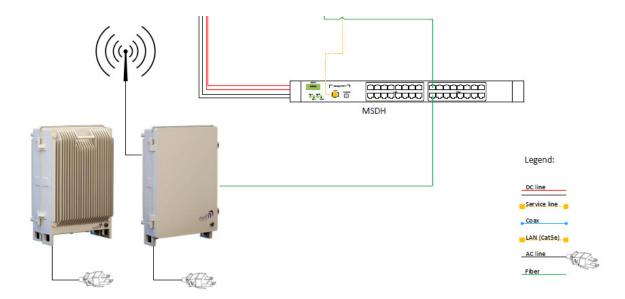
1.2. Product Description

FCC ID:NEO30ID7D8C17A19A

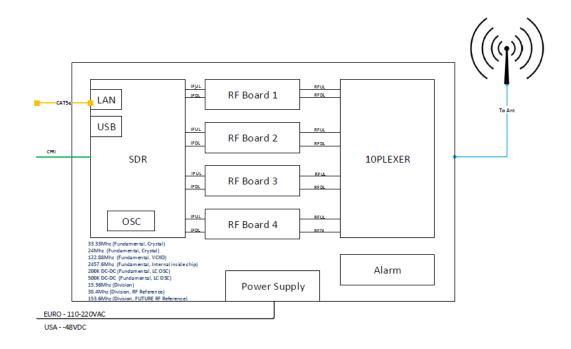
IC:8749A-30ID7817A19

Model Numbers:

id-DAS-RRU-M-3007-3008-3017-3019-AC.


id-DAS-RRU-M-3007-3008-3017-3019-DC.

Serial Number:16033001


Description of the EUT system/test Item:

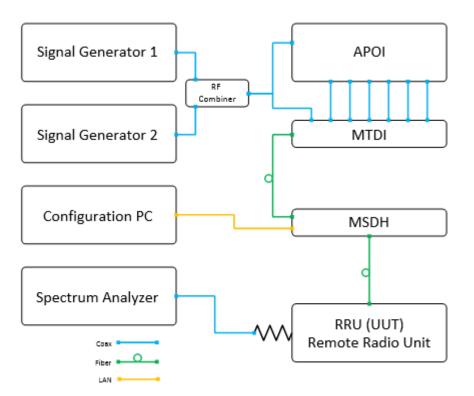
idRU – The idRU is an IP 65 outdoor as well as indoor four-band remote unit, where two units can be cascaded through a CPRI link to support eight bands. Each band can provide medium-power of 31.5, ± 0.5 dB per band. The Remote Units serve as the backhaul port of any IP device or switch in the neighborhood; thus, it distributes combined cellular and data services according to user defined configuration profiles. The idRU is connected to the MSDH via 10 Gbit/s CPRI interfaces, where each interface contains an Embedded 1Gbit/s IP backhaul link.

Description of the EUT system/test Item:

Bands and Modulations:

Technology	Direction	*Modulation & Bandwidth	Frequency Band	Maximum Measured Output Power
		AC Model		
		64 QAM 5 MHz		31.35
LTE	Downlink	64 QAM 10 MHz	728 - 746 MHz	31.46
		64 QAM 15 MHz		31.53
		DC Model		
		64 QAM 5 MHz		31.30
LTE	Downlink	64 QAM 10 MHz	728 - 746 MHz	31.34
		64 QAM 15 MHz		31.50

*Note-:Due to the EUT has only LTE wideband signals as shown above, all tests were performed with AWGN 4.1 MHz modulation which is representative the existing modulations according to 935210 D05 Indus Booster Basic Meas v01r01, section 3.1. Testing with a MSK modulation signal for narrowband signals isn't applicable in this circumstance.



Support /Ancillary Equipment:

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational features to the EUT.

The system was configured in a typical fashion, as it would be normally used. However, the ancillary equipment can influence the test results.

Test Setup and Module Description:

Signal Generator 1 and Signal Generator 2 generates a single tone or two-tones to the system. The tones can be selected to be CW or modulated. The signal can be routed either to the APOI or MTDI via Coax.

The APOI (Active Point of Interface), conditions and controls level of up to 16 low power BTS sectors of up to 30dBm. (Separate low PIM attenuators are used for higher power signals.)

The signals are conditioned by up to eight, band-specific modules, supporting two same-band sectors. The conditioned signals of each module are converged and fed to the corresponding (band–specific) MTDI module for digitization.

The MTDI (Multi Technology Digital Interface) unit digitizes and filters up to 16 conditioned cellular RF sectors from one more A-POI shelves. It then combines the signals over a single CPRI link that is routed towards the MSDH.

The MSDH (Multi Sector Digital Hub) serves as the idDAS central switching hub and control system. It routes digitized cellular resources received from MTDI units, along with data from the Ethernet network, over CPRI links towards the relevant remotes.

2. Test Facility & Uncertainty of Measurement

2.1. Accreditation/ Registration reference

- A2LA Certificate Number: 1633.01
- IC Canada: Site# 4808A-1

2.2. Test Facility description

The tests were performed at the EMC Laboratory, QualiTech Division, ECI Telecom Group

Address: 30, Hasivim St., Petah Tikva, Israel. Tel: 972-3-926-6994

3m Anechoic Chamber:

The 3m-screened chamber is used in two configurations: the semi-anechoic configuration for Radiated Emission measurements and the full-anechoic configuration for Radiated Immunity tests.

3m Anechoic Chamber:

Measurement distance	3m	
Chamber dimensions	9.5m x 6.5m x 5.2m	
Antenna height	1 - 4m	
Shielding Effectiveness	Magnetic field ≥80dB at 15 kHz ≥90dB at 100 kHz Electric field >120dB from 1MHz to 1GHz >110dB from 1GHz to 10GHz	
Absorbing material	Ferrite tiles on the walls and ceiling Emerson and Cuming absorbing material in selected positions on the walls	
Normalized Site Attenuation measured at 5 positions	±3.9dB, 30MHz to 200MHz ±3dB, 200MHz to 1000MHz	
Transmission Loss measured at 5 positions, at 1.5m height	±3dB, 1GHz to 18GHz	

Uncertainty of Measurement:

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16-4-2 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements ". Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

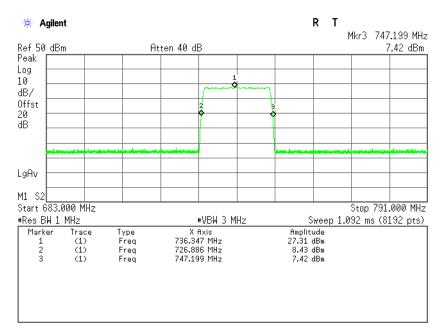
		Uncertainty	
Test Name	Test Method & Range	Combined std. Uc(y)	Expanded U
Radiated Emission	30MHz÷230MHz, Horiz. polar. 30MHz÷230MHz, Ver. polar. 230MHz÷1000MHz, Horiz. polar. 230MHz÷1000MHz, Vert. polar.	[dB] 1.8 1.967 1.487 1.499	[dB] 3.6 3.934 2.973 2.998
Conducted Emission	9 kHz÷150 kHz 150 kHz÷30MHz	[dB] 1.378 1.095	[dB] 2.756 2.190
Radio frequency	Up to 18 GHz	±1*10 -6	$<\pm1*10^{-5}$
Total Conducted RF Power	Up to 18 GHz	±1.378 dB	< ±1.5dB
Conducted Power density	Up to 18 GHz	±1.378 dB	< ±3dB
Temperature	23.6 °C	±0.6°C	< ±2°C
Humidity	54.9%	±3.1%	< ±5%
DC Voltage	0-60 VDC	±0.3%	< ±3%

Note: QualiTech EMC labs expanded measurement instrumentation has less uncertainty than the industry norm and compliance is deemed to occur as no measured disturbance exceeds the disturbance limit.

Note: The reported expanded uncertainty is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

3. Examination Test Results

3.1. Out-of-Band Rejection


Reference document:	KDB 935210 D05 v01r01		
Method of testing:	KDB 935210 D05 v01r01, Conducted	Done	
Operating conditions:	Under normal test conditions		
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: 48%	Atmospheric Pressure: 1011.4 hPa
Test Result:	See below	See Plot 3.1	

Test results:

	Modulation	±250% of Passband*, MHz	Frequency fo, MHz	-20dB lowest point, MHz	-20dB highest point, MHz
Ĩ	CW	683.000791.000	736.347	726.886	747.199

* 18MHz passband

Plot 3.1: Out-of-Band rejection, CW

3.2. Occupied Bandwidth - Input-versus-output signal comparison

Reference document:	§2.1049(h)			
Test Requirements:	The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. The spectral plot of the input signal shall be similar to the output signal			
Method of testing:	KDB 935210 D05 v01r01, Conducted	Pass		
Operating conditions:	Under normal test conditions			
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity:Atmospheric Pressure:48%1011.4 hPa		
Test Result:	See below	See Plot 3.2.1		

Test results:

Mode	Operating	26dB Bandwidth, MHz			26dB Bandwidth, MHz	
	Frequency, MHz	Output Input				
		0.5dB below AGC	0.5dB below AGC			
AWGN 4.1MHz	737.000	4.633 MHz	4.663 MHz			

Plot 3.2.1: Input-versus-output signal comparison, AWGN 4.1MHz

3.3. Mean Output Power and Amplifier/Booster Gain

Reference document:	47 CFR §27.50(c)(3), §2.1046(a),			
Test Requirements:	Fixed and base stations transmitting a signal with an emission bandwidth greater than 1 MHz must not exceed an ERP of 1000 watts/MHz and an antenna height of 305 m HAAT			
Method of testing:	For 47CFR: KDB 935210 D05 v01r01, sec 3.5(power meter method);	Pass		
Operating conditions:	Under normal test conditions			
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity:Atmospheric Pressure: 1011.4 hPa48%		
Test Result:	See below		-	

Test results:

Mode	Operatin g Frequenc y (fo) ¹	М	leasured	l AVG Power Input		Mean Gain ² [dBm]	Max Ant Gain	ERP Calculated [W]	Power Limit [W/M Hz]	Pass/ Fail
	y (10) MHz	Outp	out				[dBd]	[**]		
AWGN 4.1 MHz	736.350	1.31 W/MH z	31.1 7 dBm	1.05 mW/M Hz	-0.20 dBm	31.37	11.85	20.99	1000	Pass

¹ from "Out-of-Band Rejection" test

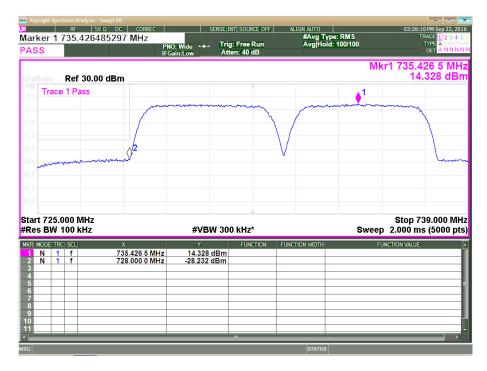
² Mean Gain [dBm] = Measured AVG Power (Output) [W] - Measured AVG Power (Input) [W]

3.4. Out-of-Band/Out-of-Block & Intermodulation Emissions Conducted Measurements

Reference document:	47 CFR §27.53(g), 47 CFR §2.1051							
Test Requirements:	For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB*. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.							
Method of testing:	KDB 935210 D05v01r01, , Conducted							
Operating conditions:	Under normal test conditions							
S.A. Settings:	RBW: minimum 1% of EBW or 100kHz or 1MHz; VBW: 3 times RBW		Pass					
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity:Atmospheric Pressure:48%1011.4 hPa						
Test Result:	See below	See Plot 3.4.1 - Plot 3.4.4						

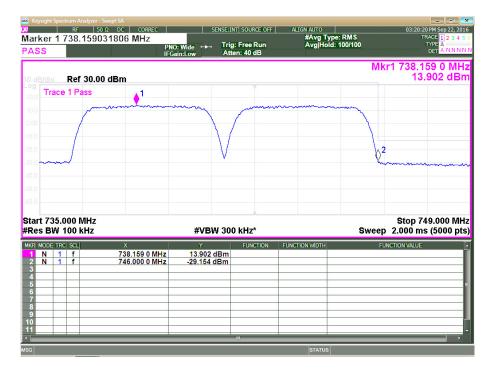
*It translates to a limit of -13dBm

Test results:


Modulation	-	ating cy, MHz	Emission Frequency,	Emission Level, dBm	Limit, dBm	Delta, dB	Pass/Fail	
	Carrier 1	Carrier 2	MHz	Level, abiii				
	730.500	NA	728.000	-24.95	-13.00	-11.95	Pass	
AWGN	730.500	735.500	728.000	-28.23	-13.00	-15.23	Pass	
4.1MHz	743.500	NA	746.000	-25.44	-13.00	-12.44	Pass	
	743.500	738.500	746.000	-29.15	-13.00	-16.15	Pass	

Plot 3.4.1: Band Edge test results, AWGN 4.1MHz, Fc = 730.5 MHz, single test signal

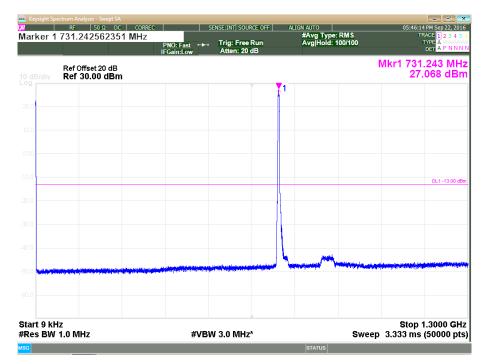
Plot 3.4.2: Band Edge test results, AWGN 4.1MHz, Fc = 730.5 MHz + 735.5 MHz, two test signals



Plot 3.4.3: Band Edge test results, AWGN 4.1MHz, Fc = 743.5 MHz, single test signal

Plot 3.4.4: Band Edge test results, AWGN 4.1MHz, Fc = 743.5 MHz + 738.5 MHz, two test signals

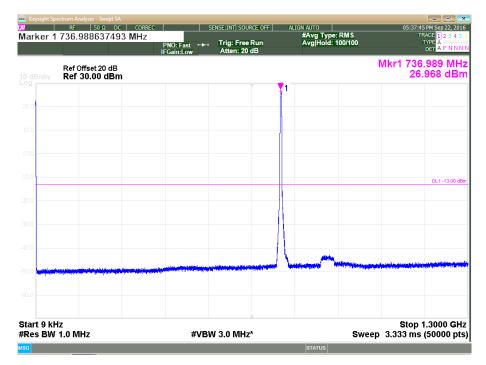
3.5. Spurious Emission Conducted Measurement


Reference document:	47 CFR §27.53(g), 47 CFR §2.1051	47 CFR §27.53(g), 47 CFR §2.1051							
Test Requirements:	For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB*. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.								
Method of testing:	KDB 935210 D05 v01r01		Pass						
Operating conditions:	Under normal test conditions		1 455						
S.A. Settings:	RBW: 1MHz, VBW: 3MHz								
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: 48%Atmospheric Pressure: 1011.4 hPa							
Test Result:	See below	See Plot 3.5.1 - Plot 3.5.6							

*It translates to a limit of -13dBm

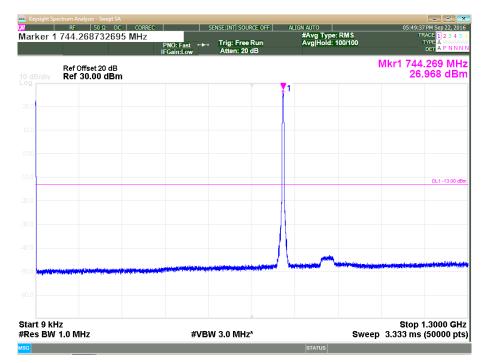
Test Results: all emission were at least 10 dB below the limit

Plot 3.5.1: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 730.5 MHz, 9 kHz – 1.3 GHz


Plot 3.5.2: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 730.5 MHz, 1.3 GHz – 8 GHz

With filter WHK1.2/15GHz

Plot 3.5.3: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 737.5 MHz, 9 kHz – 1.3 GHz


Plot 3.5.4: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 737.5 MHz, 1.3 GHz – 8 GHz

With filter WHK1.2/15GHz

Plot 3.5.5: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 743.5 MHz, 9 kHz – 1.3 GHz

Plot 3.5.6: Spurious Emission Conducted Measurement, AWGN 4.1MHz, Fc = 743.500 MHz, 1.3 GHz – 8 GHz

With filter WHK1.2/15GHz

3.6. Spurious Emission, Radiated Measurements

Reference document:	47 CFR §27.53(g), 47 CFR §2.1053							
Test Requirements:	For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB*. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.							
Method of testing:	KDB 935210 D05v01r01, Radiated KDB 971168[R8]	Pass						
Operating conditions:	Under normal test conditions							
S.A. Settings:	RBW: 1MHz, VBW: 3MHz							
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: 48%Atmospheric Pressure: 1011.4 hPa						
Test Result:	See below	AC Model-Plots DC Model- Plots 3.6.13-3.6.24						

*It translates to a limit of -13dBm = 84 dB μ V/m @3m distance

Note: All measurements performed with 4 simultaneous transmissions:

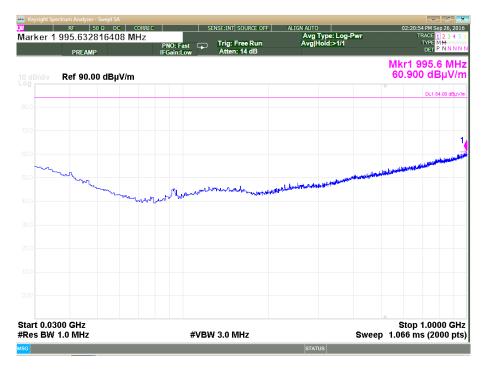
Low frequency: 728.2 MHz, 862.2 MHz, 1930.2 MHz, 2110.2 MHz, Middle frequency: 737.0 MHz, 865.5 MHz, 1962.5 MHz, 2132.5 MHz

High frequency: 745.8 MHz, 868.8 MHz, 1994.8 MHz, 2154.8 MHz

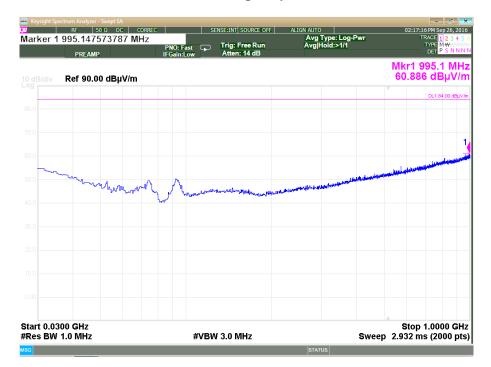
-All measurements were done in horizontal and vertical polarizations; the tables below show the worst case. **Test Results :AC Model**

Frequency [MHz]	Radiated Emission Level [dBµV/m]	Radiated Emission Level* EIRP [dBm]	Limit [dBm]	Margin [dB]	Pass/Fai l	Ref Plots			
	All emissions were at least 15dB below the Limit								

Test Results :DC Model

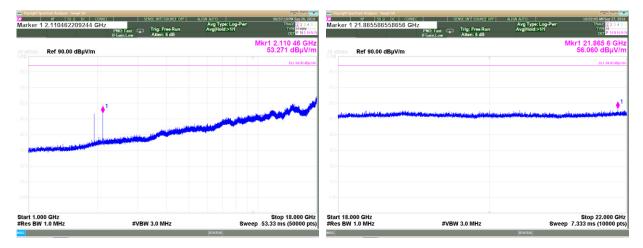

	Emission			Substitutio	n Method	1	Limit			Ref Plots
Frequency, MHz	MHz dBμV/m Polarization Signal Anten dBμV/m Gair	Antenna Gain, [dBd]	Cable Loss, dB	Calculated ERP*, [dBm]	Limit [dBm]	Delta**, dB	Pass/Fail			
Low Frequency										
70.748	65.7	V	-29.0	-3.9	0.4	-33.3	-13.0	-20.3	Pass	
76.450	67.7	V	-29.0	-3.5	0.4	-32.9	-13.0	-19.9	Pass	3.6.13-
94.622	73.0	Н	-23.0	-1.8	0.5	-25.3	-13.0	-12.3	Pass	3.6.24
100.852	71.7	V	-25.7	-1.7	0.5	-27.9	-13.0	-14.9	Pass	
106.095	70.2	Н	-27.5	-1.7	0.6	-29.8	-13.0	-16.8	Pass	
High Frequency										
150.791	68.21	V	-26.50	-0.8	0.9	-27.9	-13.0	-14.9	Pass	

*Calculated ERP = Signal Generator Output + Antenna Gain – Cable Loss



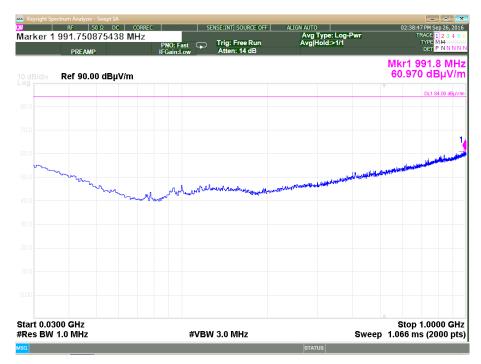
AC Model

Plot 3.6.1: Spurious Emission test results, 30 MHz – 1 GHz range, Horizontal polarization, Low Frequency

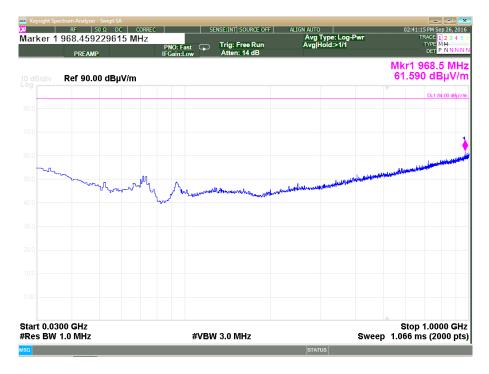


Plot 3.6.2: Spurious Emission test results, 30 MHz – 1 GHz range, Vertical polarization, Low Frequency

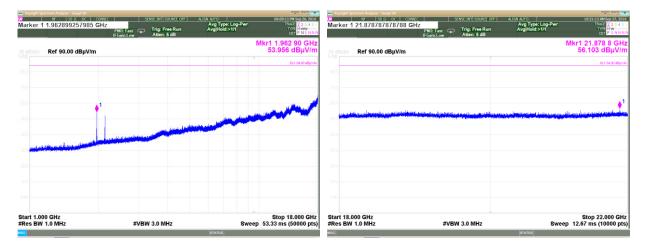
Plot 3.6.3: Spurious Emission test results, 1 GHz – 22 GHz range, Horizontal polarization, Low Frequency



Plot 3.6.4: Spurious Emission test results, 1 GHz – 22 GHz range, Vertical polarization, Low Frequency

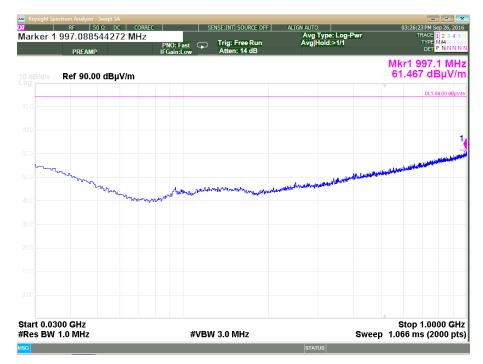

Keysight Spectrum Analyzer - Swept SA					Keysight Spectrum Analyzer - Swept SA	CORREC SENSE:INT SOURCE OFF		10:06:37 AM Sep 27, 2016
Marker 1 2.110462209244 G		NSE:INT SOURCE OFF / Trig: Free Run Atten: 6 dB	Avg Type: Log-P Avg Hold:>1/1	06:54:49 PM Sep 26, 2016 WF TRACE 1 2 3 4 5 6 TYPE MWW DET P N 5 NN N	Marker 1 21.44474447444		ALGN AUTO Avg Type: Log-Pwr Avg Hold:>1/1	10:06:37 AM Sep 27, 2016 TRACE 12:34 5 6 TYPE M DET P S N N N
Ref 90.00 dBµV/m				Mkr1 2.110 46 GHz 54.897 dBµV/m	10 dB/div Ref 90.00 dBµV/m	n		Mkr1 21.444 7 GH: 55.582 dBµV/m
80.0				V DL1 84.00 dBy/Vm	80.0			DL1 84.00 dByV/m
	<u>م</u> ا							1
50.0		Janua Jan dalah	and the second second					
and the second a balance of the second	A CONTRACT OF STREET, SAN DE STREET,							
20.0								
tart 1.000 GHz Res BW 1.0 MHz	#VBW	3.0 MHz		Stop 18.000 GHz weep 53.33 ms (50000 pts)	Start 18.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Swe	Stop 22.000 GH ep 7.333 ms (10000 pts
3	#1BH		STATUS		MSG		STATUS	

Plot 3.6.5: Spurious Emission test results, 30 MHz – 1 GHz range, Horizontal polarization, Middle Frequency

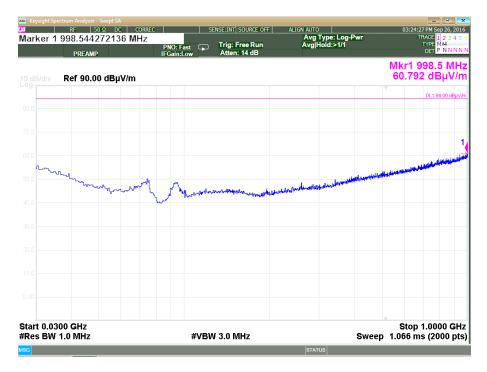


Plot 3.6.6: Spurious Emissions test results, 30 MHz – 1 GHz range, Vertical polarization, Middle Frequency

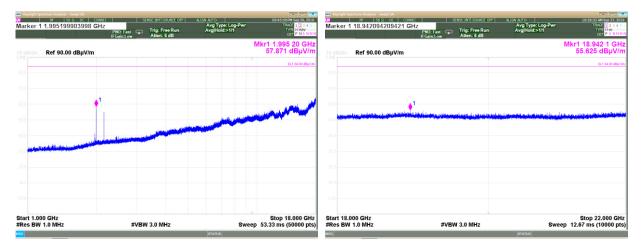
Plot 3.6.7: Spurious Emissions test results, 1 GHz – 22 GHz range, Horizontal polarization, Middle Frequency



Plot 3.6.8: Spurious Emissions test results, 1 GHz – 22GHz range, Vertical polarization, Middle Frequency


Keysight Spectrum Analyzer - Swept SA ■ RF 50 9: DC 00 Marker 1 1.962899257985 G		ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>1/1	06:03:22 PM Sep 26, 2016 TRACE 1 2 3 4 5 6 TYPE NW DET P N S NN N	Mail Keysight Spectrum Analyzer - Swept SA Data RF 50 9: 00: 00 Marker 1 21.894389438944		ALIGN ALITO 10:16:00 AMI Seg 27, 2016 Avg Type: Log-Pwr TRVCE 12, 23, 8, 6 Avg[Hold:>1/1 011 011 021 011 011 021 011 011 021 011 011 021 011 011 021 011 011 021 011 011 011
10 dB/div Ref 90.00 dBµV/m			Mkr1 1.962 90 GHz 55.215 dBµV/m	10 dB/div Ref 90.00 dBµV/m		Mkr1 21.894 4 GHz 55.961 dBμV/m τι 64 το 450/m
0.08			DC1 84 00 degroes	80.0		DC1 94.00 degivin
60.0	1			60.0		1
e0.0		and the state of the		600 400		
Start 1.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweet	Stop 18.000 GHz 53.33 ms (50000 pts)	Start 18.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Stop 22.000 GHz Sweep 12.67 ms (10000 pts)

Plot 3.6.9: Spurious Emissions test results, 30 MHz – 1GHz range, Horizontal polarization, High Frequency

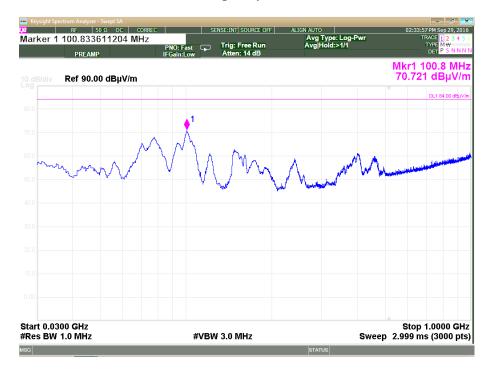


Plot 3.6.10: Spurious Emissions test results, 30 MHz – 1GHz range, Vertical polarization, High Frequency

Plot 3.6.11: Spurious Emissions test results, 1 GHz – 22 GHz range, Horizontal polarization, High Frequency

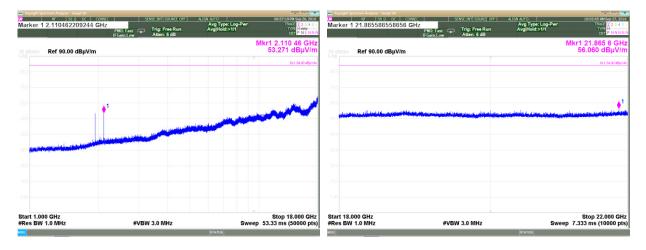
Plot 3.6.12: Spurious Emissions test results, 1 GHz – 22GHz range, Vertical polarization, High Frequency

Keysight Spectrum Analyzer - Swept SA		NT SOURCE OFF ALIG	N AUTO	05:40:10 PM Sep 26, 2016	Keysight Spectrum Analyzer - Swept SA	RREC SENSE:INT SOURCE OFF	ALIGN AUTO	10:28:41 AM Sep 27, 2016
Marker 1 17.9931998639	997 GHz	rijsounde om jado j: Free Run jen: 6 dB	Avg Type: Log-Pwr Avg Hold:>1/1	TRACE 1 2 3 4 5 6 TYPE NWW DET P NS NN N	Marker 1 21.907990799080		Avg Type: Log-Pwr Avg Hold:>1/1	TRACE 1 2 3 4 5 6 TYPE MW DET P S N N N N
10 dB/div Ref 90.00 dBµV	//m		M	r1 17.993 20 GHz 64.655 dBμV/m	10 dB/div Ref 90.00 dBµV/m			Mkr1 21.908 0 GHz 55.646 dBµV/m
80.0				DL1 84.00 dBy/Vm	80.0			DL1 84.00 dBµV/m
	31			and the second second	60.0	and a second state of the	a sa malini na maka da mata a	teres paral proposition of an effective first
		and the second second second	and the second second		50.0		n an	de note de provestatione, en des desenvands en la bier
and the states of the states								
Start 1.000 GHz #Res BW 1.0 MHz	#VBW 3.0	MHz	Sweep	Stop 18.000 GHz 53.33 ms (50000 pts)	Start 18.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Swee	Stop 22.000 GHz p 12.67 ms (10000 pts)
MSG			STATUS		MSG		STATUS	



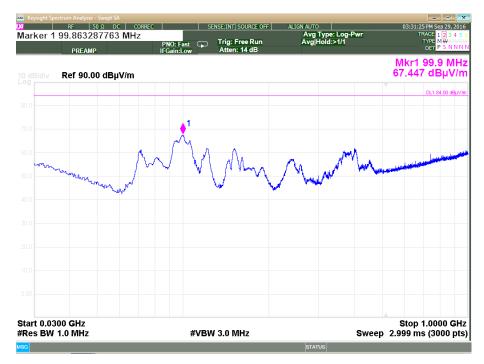
DC Model

Plot 3.6.13: Spurious Emissions test results, 30 MHz – 1 GHz range, Horizontal polarization, Low Frequency



Plot 3.6.14: Spurious Emissions test results, 30 MHz – 1 GHz range, Vertical polarization, Low Frequency

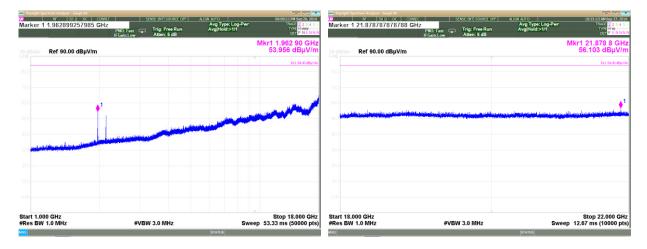
Plot 3.6.15: Spurious Emissions test results, 1 GHz – 22 GHz range, Horizontal polarization, Low Frequency



Plot 3.6.16: Spurious Emissions test results, 1 GHz – 22 GHz range, Vertical polarization, Low Frequency

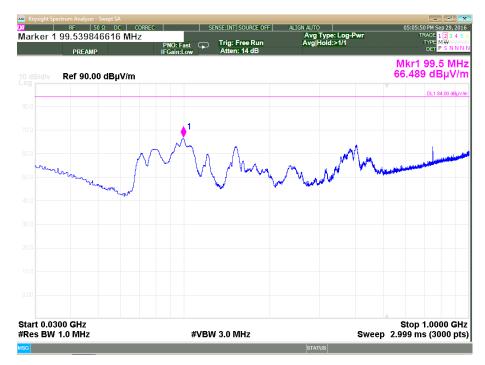
Keysight Spectrum Analyzer - Swept SA	are se	NSE:INT SOURCE OFF	ALIGN AUTO	06:54:49 PM Sep 26, 2016	Keysight Spectrum Analyzer - Swept SA	CORREC SENSE INT SOURCE OFF	ALIGN AUTO	10:06:37 AM Sep 27, 2016
Marker 1 2.110462209244 GH	7	Trig: Free Run Atten: 6 dB	Avg Type: Log-Pwr Avg Hold:>1/1	TRACE 123450 TYPE MWW DET P NS NNN	Marker 1 21.44474447444		Avg Type: Log-Pwr Avg Hold:>1/1	TRACE 1 2 3 4 5 6 TYPE M DET P 5 N N N
10 dB/div Ref 90.00 dBµV/m				Mkr1 2.110 46 GHz 54.897 dBµV/m	10 dB/div Ref 90.00 dBµV/n	n		Mkr1 21.444 7 GHz 55.582 dBµV/m
80.0				DL1 84.00 dByV/m	80.0			DL1 84 00 dBy/Vin
60.0	1			- And	60.0			¢1
50.0		alter land	and the second				la, ginger disintate partiti di singer data singer Angenerati di singer data sentiti di singer data singer Angenerati di singer data sentiti di singer data singer	
and the second second second second second								
20.0								
Start 1.000 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz	Sw	Stop 18.000 GHz eep 53.33 ms (50000 pts)	Start 18.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Swee	Stop 22.000 GHz p 7.333 ms (10000 pts
200			STATUS	· · · · · · · · · · · · · · · · · · ·	Mag		STATUS	

Plot 3.6.17: Spurious Emissions test results, 30 MHz – 1 GHz range, Horizontal polarization, Middle Frequency

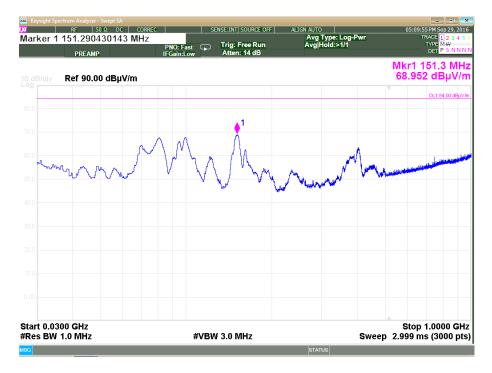


Plot 3.6.18: Spurious Emissions test results, 30 MHz – 1 GHz range, Vertical polarization, Middle Frequency

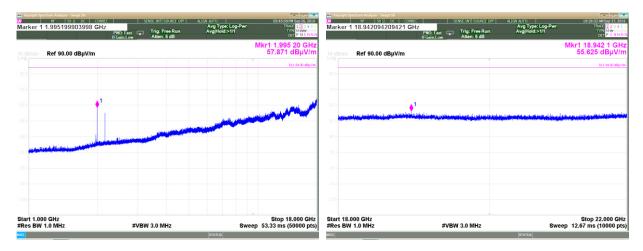
Plot 3.6.19: Spurious Emissions test results, 1 GHz – 22 GHz range, Horizontal polarization, Middle Frequency



Plot 3.6.20: Spurious Emissions test results, 1 GHz – 22 GHz range, Vertical polarization, Middle Frequency


Keysight Spectrum Analyzer - Swept SA ■ RF 50 9: DC 00 Marker 1 1.962899257985 G		ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>1/1	06:03:22 PM Sep 26, 2016 TRACE 1 2 3 4 5 6 TYPE NW DET P N S NN N	Mail Keysight Spectrum Analyzer - Swept SA Data RF 50 9: 00: 00 Marker 1 21.894389438944		ALIGN ALITO 10:16:00 AMI Seg 27, 2016 Avg Type: Log-Pwr TRVCE 12, 23, 8, 6 Avg[Hold:>1/1 011 011 021 011 011 021 011 011 021 011 011 021 011 011 021 011 011 021 011 011 011
10 dB/div Ref 90.00 dBµV/m			Mkr1 1.962 90 GHz 55.215 dBµV/m	10 dB/div Ref 90.00 dBµV/m		Mkr1 21.894 4 GHz 55.961 dBμV/m τι 64 το 450/m
0.08			DC1 84 00 degroes	80.0		DC1 94.00 degivin
60.0	1			60.0		1
e0.0	and the second	and the state of the		600 400		
Start 1.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweet	Stop 18.000 GHz 53.33 ms (50000 pts)	Start 18.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Stop 22.000 GHz Sweep 12.67 ms (10000 pts)

Plot 3.6.21: Spurious Emissions test results, 30 MHz – 1 GHz range, Horizontal polarization, High Frequency



Plot 3.6.22: Spurious Emissions test results, 30 MHz – 1 GHz range, Vertical polarization, High Frequency

Plot 3.6.23: Spurious Emissions test results, 1 GHz – 22 GHz range, Horizontal polarization, High Frequency

Plot 3.6.24: Spurious Emissions test results, 1 GHz – 22 GHz range, Vertical polarization, High Frequency

Keynight Spectrum Analyzer Swept SA ■ NF 50 © DC Marker 1 17.9931998639	97 GHz	Avg Type: Lo	05:40:10 PM Sep 26, 2016 og-Pwr TRACE 1 2 3 4 5 6	Keysight Spectrum Analyser - Swept SA UM RF 50 92 DC 000 Marker 1 21,907990799080	GHz	ALIGN AUTO 10:28:41 AM Sep 27, 2016 Avg Type: Log-Pwr TRACE 12, 34 se Avg/Hold:>1/1 THE I W
	PNO: Fast Trig: Fre IFGain:Low Atten: 6	ee Run Avg Hold:>1/ 5 dB	1 THE NWW CONTRACTOR		PNO: Fast Trig: Free Run IFGain:Low Atten: 6 dB	Avg Hold:>1/1 TYPE NW DET P S NNM
Ref 90.00 dBµV	//m		Mkr1 17.993 20 GHz 64.655 dBµV/m	10 dB/div Ref 90.00 dBµV/m		Mkr1 21.908 0 GHz 55.646 dBμV/m
80.0			DL1 84.00 dByV/m	80.0		DL1 84.00 dByVin
			1			
		and the second second	and the second s	an a later below a sector of the later	n night an	a ba an a' dhul in a' san bha dha na bha a gu danna da an an an da danna dha an an an da danna an dhun an dhun
0.04	A REAL PROPERTY AND ADDRESS OF THE OWNER OWNER OF THE OWNER OWN					
and the second big that has been a second						
Start 1.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MH	łz	Stop 18.000 GHz Sweep 53.33 ms (50000 pts)	Start 18.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Stop 22.000 GHz Sweep 12.67 ms (10000 pts
490		STATUS		MSG		STATUS

3.7. Frequency stability

Reference document:	47 CFR §27.54, 47 CFR §2.1055				
Test Requirements:	The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.				
Method of testing:	KDB 935210 D05v01r01, Conducted	Pass			
Operating conditions:	Under normal and extremes test conditions				
Environment conditions:	Ambient Temperature: 22°c	Relative Humidity: 48%	Atmospheric Pressure: 1011.4 hPa		
Test Result:	See below	-			

Test results - Fc= 737.5 MHz

Frequency error vs. Voltage:AC Model

Voltage [Vdc]	Frequency Error [Hz]	Frequency Error [%]	Frequency Error [ppm]	Limit [ppm]	Test Result		
Carrier frequency at 20°C (120 VAC): 737.5 MHz							
102-138		Pass					

Frequency error vs. Voltage: DC Model

Voltage [Vdc]	Frequency Error [Hz]	Frequency Error [%]	Frequency Error [ppm]	Limit [ppm]	Test Result		
Carrier frequency at 20°C (48 VDC): 737.5 MHz							
40.8-55.2		Pass					

Frequency error vs. Temperature

Temperature, °C	Reference Frequency, MHz	Measured Frequency, MHz	Frequency Error, Hz	Frequency Error, ppm	Limit, ppm	Delta	Pass/Fail	
-30	737.000150	737.000130	-20.00000	-0.03	1.50	-1.53	Pass	
-20	737.000150	737.000150	0.00000	0.00	1.50	-1.50	Pass	
-10	737.000150	737.000110	-40.00000	-0.05	1.50	-1.55	Pass	
0	737.000150	737.000130	-20.00000	-0.03	1.50	-1.53	Pass	
10	737.000150	737.000150	0.00000	0.00	1.50	-1.50	Pass	
20	Reference temperature							
30	737.000150	737.000130	-20.00000	-0.03	1.50	-1.53	Pass	
40	737.000150	737.000170	20.00000	0.03	1.50	-1.47	Pass	
50	737.000150	737.000130	-20.00000	-0.03	1.50	-1.53	Pass	

4. Appendix

Appendix A: List of test equipment used

Description	Manufacturer	Model	Serial No.	Last Cal	Cal Due
Anechoic new (large) chamber				10/03/2016	10/03/2018
Bilog Antenna	Teseq	CBL 6141B	34119	03/07/2016	03/07/2017
EMC Analyzer	Agilent	E7405A	US41160436	02/06/2016	02/06/2017
EMI Receiver (2.9GHz)	HP	8546A	3617A00318	23/05/2016	23/05/2017
EMI Receiver (6.5GHz)	HP	8546A	3710A00392	09/02/2016	09/02/2017
Horn Antenna 1-18GHz	A.R.A	DRG-118/A	17188	18/05/2016	18/05/2017
Horn Antenna 15-40 GHz	Schwarzbeck	BBHA 9170	BBHA9170214	06/03/2015	06/03/2018
LNA Amplifier 1 GHz to 18 GHz	AMP	7D-010180-30-10P-GW	618653	23/02/2016	23/02/2017
Low-Noise Amplifier 18 - 26.5 GHz	Miteq	AMF-5F-18002650-30-10P	945372	23/02/2016	23/02/2017
Power Meter	Agilent	N1911A	MY45100784	15/01/2015	15/01/2017
RF Filter Section (2.9GHz)	HP	85460A	3448A00282	23/05/2016	23/05/2017
RF Filter Section (6.5GHz)	HP	85460A	3704A00366	09/02/2016	09/02/2017
Spectrum Analyzer 3Hz-44GHz	Agilent	E4446A	MY46180602	13/11/2014	13/11/2016
Wideband Power Sensor	Agilent	N1921A	MY45241242	15/01/2015	15/01/2017

Appendix B: Accreditation Certificate

End of the Test Report